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Abstract—Eye-tracking experiments usually involves areas of
interests (AOIs) for the analysis of eye gaze data as they could
reveal potential cognitive load, and attentional patterns yielding
interesting results about participants. While there are tools to
define AOIs to extract eye movement data for the analysis of
gaze measurements, they may require users to draw boundaries
of AOIs on eye tracking stimuli manually or use markers to
define AOIs in the space to generate AOI-mapped gaze locations.
In this paper, we introduce a novel method to dynamically filter
eye movement data from AOIs for the analysis of advanced
eye gaze metrics. We incorporate pre-trained object detectors
for offline detection of dynamic AOIs in dynamic eye-tracking
stimuli such as video streams. We present our implementation
and evaluation of object detectors to find the best object detector
to be integrated in a real-time eye movement analysis pipeline
to filter eye movement data that falls within the polygonal
boundaries of detected dynamic AOIs. Our results indicate the
utility of our method by applying it to a publicly available dataset.
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I. INTRODUCTION

Eye-tracking can reveal objective and quantifiable infor-

mation about the quality, predictability, and consistency of

underlying covert process of the human brain when carrying

out cognitively demanding tasks [1], [2], [3]. According to the

eye-mind hypothesis [4], observers attend where their eyes

are fixating. Thus, eye-tracking measurements enable us to

investigate the cognitive behavior when visually exploring a

stimulus. With the advancement of eye-tracking technology,

gaze tracking measurements have become reliable and accu-

rate.

Eye gaze measurement includes a number of metrics rele-

vant to oculomotor control [5] such as saccadic trajectories,

fixations, and other relevant measures including velocity, du-

ration, amplitude, pupil dilation [6]. Studies have shown that

the size of the pupil diameter correlates to the task complexity

[7] enabling the use of pupillary behavior as bio-markers

of mental workload when completing a task. Several studies

[8], [9] have incorporated eye-tracking to obtain insights

into underlying covert processes and exploration processes.

As a standard practice in the community, upon successful

completion of the study, performance of users is measured,

traditional positional gaze metrics and advanced gaze metrics

are calculated, and statistical significance of computed numer-

ous metrics are evaluated [8], [9].

Eye-tracking experiments add AOIs to the analysis process

to extract eye gaze metrics. An AOI is a region of a stimuli that

is used to study the eye gaze metrics and link eye movement

measures to the part of the area of the stimuli [10]. Studies

in visual attention and eye movements [11], [12] have shown

that humans only attend to a few AOIs in a given stimulus.

Analysis of eye gaze metrics within AOIs can provide impor-

tant cumulative clues to the underlying physiological functions

supporting the allocation of visual attention resources. For in-

stance, in the context of user interface interaction, the number

of fixations within an AOI (a user interface component in this

example) indicates the efficiency of finding that component

among others, whereas the maximum and average fixation

duration within that AOI indicates the informativeness of that

component [13]. In addition, the fixation frequency and blink

frequency indicates cognitive workload [14].

Visual attention allocation may differ from subject to sub-

ject, thus enabling grouping of gaze locations with k-means

clustering to determine the AOIs [15], and using different

image processing algorithms [12] along with clustering to

automatically identify AOIs. These methods are used when

the primary focus is on detecting fixations sequences within

identified AOIs [15], [12]. While there are methodologies to

define AOIs to extract eye movement data for the analysis

of gaze measurements, they require users to draw boundaries

of AOIs on eye tracking stimuli manually or use markers to

define AOIs in the space or post process the gaze locations

to determine AOIs using clustering to generate AOI-mapped

gaze locations. In contrast, we propose a computer vision with

deep neural network approach to identify the AOIs in video

streams to filter gaze locations that fall into the identified AOIs

for the analysis of both positional and advanced eye gaze

metrics. From the application point-of-view, dynamic AOI-

based filtering can be applied in screen-magnifiers for low-

vision users using automatic zooming of AOI of the context

across frames [16].

We begin by outlining existing studies that incorporate AOIs

for the analysis of AOI-mapped gaze data. Upon doing so,

we discuss existing methodologies to generate AOI-mapped

gaze location. Then we present our implementation for the
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extraction of dynamic AOI-mapped eye movement data. This

work is based on our Real-Time Advanced Eye Movements

Analysis Pipeline (RAEMAP) [17], designed to analyze tradi-

tional positional gaze measurements as well as advanced eye

gaze measurements.

II. BACKGROUND

Eye-tracking experiments usually involve AOIs for the anal-

ysis of eye gaze data as they could reveal potential cognitive

load and attentional patterns of the participants. Static AOIs

are widely used to capture eye gaze metrics for detecting

neurocognitive indices of Attention-Deficit / Hyperactivity

Disorder (ADHD) symptomatology [18], including various

gaze features within AOIs to predict a diagnosis of ADHD

with 86% accuracy. Similarly, [8] explored eye gaze patterns

and statistically compared gaze transitions between static AOIs

in a group of antisocial violent offenders through an emotion

recognition task. Analysis of gaze patterns has been based

on four predefined AOIs, i.e., left eye, right eye, nose, and

mouth. Participants have been asked to label the emotion of the

given image and antisocial, violent offenders, and participants

of control group have shown similarities in eye gaze metrics in

some AOIs (i.e. eyes). The eye gaze metrics were processed in

various static AOIs of the face (such as eyes, mouth, and nose)

to reveal insights into the underlying categorization process of

emotions.

Though a majority of past studies have analyzed eye-

movements using static AOIs, the analysis of eye-movements

using dynamic AOIs, such as in videos, has recently gained

traction. This includes visually and statistically analysed view-

ers’ experience using eye movement data on video feeds

[19], and eye movements of 20 normal visioned subjects as

each watched six movie clips, to examine the similarities in

their viewing behaviors [20]. The centers of interest in movie

scenes were calculated using the areas of the best-fit bi-variate

contour ellipses [21], [22] obtained from the gaze points

of subjects. In terms of potential applications, the dynamic

controlled magnification around these centers of interest can

aid people with visual impairments.

Shot-based, spatio-temporal clustering [23] of data has also

been used to find potential AOIs in a time sequence to identify

the objects that received more attention. The visual analytics

which provides multiple coordinated views for analyzing var-

ious spatio-temporal aspects of gaze data on dynamic stimuli

focused on identifying trends in the general viewing behavior,

including objects with strong attentional focus. Similarly, [24]

has measured the gaze path overlaps of task videos between

the expert surgeon and third-party observers comparing gaze

data files by calculating the Euclidean distance between the

gaze points in pixels and by comparing with the target sepa-

ration.

The existing tools which are capable of defining AOIs to

extract eye movement data for the analysis of gaze mea-

surements, require users to draw boundaries of AOIs on eye

tracking stimuli manually or use markers to define AOIs in the

space to generate AOI-mapped gaze locations. For instance,

Tobii Pro Studio1 eye tracking software allows researchers to

export both the raw eye tracking data and the AOI-mapped

gaze locations for further processing and visualization. But

it requires researchers to draw boundaries of AOIs on static

stimuli or use infrared (IR) markers to define AOIs in space

to generate AOI-mapped gaze locations. Similarly [25], [26]

have introduced tools for defining AOIs and for extraction

of AOI-mapped gaze locations including annotations for gaze

data in dynamic eye tracking stimuli. This tools allow users

to visualize the dynamic changes of AOIs and to explore eye

tracking data of multiple participants over time.

In addition, [27] introduced an approach which applies

computer vision techniques to map their gaze coordinates to

objects of interest using template of a desired object derived

from a selected single frame of the eye tracking stimuli video.

If an AOI is detected in a frame, the tool can check whether

the raw eye gaze coordinates for that video frame fall within

the bounds of the AOI. This approach only works for pre-

recorded eye-tracking stimuli using manual specification of

the AOI template generated beforehand.

Though IR markers and tools provide the capability to

manually define AOIs to extract AOI-mapped gaze locations,

there are challenges when using them. For instance, when

placing the IR markers in the field of view of the subject,

there might be irregular surfaces or motion of the surface.

Furthermore, manually annotating AOIs frame-by-frame takes

time and effort for large video sequences, which demands

costly labor.

To overcome these challenges, we propose a dynamic

AOI-mapped gaze extraction workflow that uses deep neural

networks for object detection. Since improvements in the

field of computer vision have enabled successful identification

of objects and regions of possible interest, we incorporate

computer vision techniques to detect dynamic AOIs in eye-

tracking stimuli.

III. METHODOLOGY

We base our implementation of extraction of dynamic AOI-

mapped eye movement data using our work of RAEMAP [17],

designed to analyze traditional positional gaze measurements

as well as advanced eye gaze measurements in real-time. The

advanced gaze measurements include gaze transition entropy

[28], and complex pupillometry measurements such as index

of pupillary activity (IPA) [29] which indicate cognitive load.

It is capable of processing raw gaze data streamed from various

eye trackers in real-time and calculating eye gaze metrics

such as fixation count and fixation duration. The original

architecture of this pipeline is shown in Figure 1.

Since computer vision techniques can be adopted to detect

a wide range of objects, we apply computer vision techniques

to extract dynamic AOI-mapped eye movement data. We use

transfer learning to remodel existing image classifiers for

dynamic AOI detection. Upon detection of dynamic AOIs, we

extract eye movement data which falls within the detected

1https://www.tobiipro.com/learn-and-support/learn/tobii-pro-studio/
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Figure 1. The Architecture of the RAEMAP [17]. The API distributes tasks among the nodes using MPI. Each node hosts an instance of the RAEMAP
providing the functionality raw to extract raw gaze data, along with parallel processing of process and graph steps. Process step calculate fixations, fixations in
AOIs, saccade amplitudes, saccade duration, and IPA, whereas graph step generate visualizations. MPI gather function facilitates the aggregation of calculated
eye gaze metrics in collate step, which provides data for statistical analysis in stats step.

dynamic AOIs by checking if the gaze coordinate falls within

any dynamic AOIs’s polygonal boundaries (see Figure 2).

TABLE I
OBJECT DETECTORS

Method Backbone Head

Faster R-CNN ResNet-50-FPN Two-stage
Faster R-CNN ResNet-101-FPN Two-stage
Faster R-CNN ResNet-50-DC5 Two-stage

YOLOv3 Darknet-53-FPN One-stage

We select four CNN-based real-time object detectors that

were pre-trained on MS COCO [31] images dataset as the

baseline models for dynamic AOI-mapped gaze extraction.

The selected object detectors represent the two categories of

object detection, (1) one-stage object detection using dense

prediction, and (2) two-stage object detection using sparse

prediction. One-stage object detectors densely cover the space

of possible image boxes using a fixed sampling grid, whereas

two-stage object detectors classify image boxes at any posi-

tion, scale, and aspect ratio. We use YOLOv3 [32] method

to represent one-stage object detector and faster region based

convolutional neural networks (faster R-CNN) [33]) to repre-

sent two-stage object detectors. Table I provides a summary

of each object detector used.
1) Faster R-CNN: We used three faster R-CNN [33] object

detectors with backbone of depth 50 and 101 ResNets [34].

Among the three faster R-CNN object detectors we used,

two had a Feature Pyramid Network (FPN) [35] constructed

on top, whereas one used a ResNet conv5 backbone with

dilation in conv5 i.e. Dilated-C5 (DC5) [36]. All the faster

R-CNN models were trained on COCO images dataset using

an image scale of 600 pixels with the 3x schedule (37 COCO

epochs) [37].

Faster R-CNN object detectors have the capability of classi-

fying image boxes at any position, scale, and aspect ratio. The

architecture of Faster R-CNN is implemented with an (n×n)

conv layer followed by two (1 × 1) conv layers [33]. ReLUs

are applied to the output of the (n × n) conv layer. It uses

regression to achieve the bounding-box.

2) YOLOv3: We used YOLOv3 object detector [32] with

DarkNet-53 backbone. Darknet-53 uses successive (3 × 3)

and (1 × 1) convolutional layers with shortcut connections

and it has 53 convolutional layers. YOLOv3 has been trained

on COCO image dataset. It passes an (n × n) image once

in a fully convolutional neural network (FCNN) for object

detection. YOLOv3 selects the entire frame to apply a neural

network to predict bounding boxes of detected objects and

their probabilities. YOLOv3 splits the image into (m × m)

grids and generates boundaries around each detected objects

and their class probabilities [32]. It uses a logistic regression

with a threshold to calculate the class label of an object.

It uses the binary cross-entropy loss for each label for the

classification loss.

A. Implementation

We first load the pre-trained object detectors and COCO

object names (class labels) using OpenCV and Detectron [37].
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Figure 2. The Workflow of the RAEMAP which Processes Eye-tracking Data and Dynamic Eye-tracking Stimuli to Detect Dynamic AOIs. Raw video
sequence is given to the object detector. Upon defining object(s) of interest, object detector outputs bounding box coordinates of each object detected. These
dynamic bounding boxes are considered as dynamic AOIs. Raw eye-tracking data is filtered if they fall inside the boundaries of dynamic AOIs. For the
evaluation, raw video sequences are manually annotated using BeaverDam [30] software to create the ground truth of dynamic AOIs. Raw eye-tracking data
is then filtered if they fall inside the boundaries of manually annotated dynamic AOIs. Finally, detected dynamic AOIs (bounding boxes) are evaluated using
IoU and mAP, and filtered eye-movements are evaluated using precision, recall, accuracy.

Next, we configure the RAEMAP to use these object detectors

to dynamically detect AOIs in each frame. For each frame, the

models output the COCO class label and location of detected

objects in that frame in the form of bounding box coordinates.

The goal here is to provide the capability of defining an object

of interest in the eye-tracking stimuli such that the RAEMAP

can process the eye-tracking stimuli to dynamically detect the

corresponding AOIs.
Next, we define the object of interest in the eye-tracking

stimuli prior to the processing of eye movement data. Based

on the defined object of interest (no restriction on the object of

interest by default), the RAEMAP processes the eye-tracking

stimuli offline to detect corresponding dynamic AOIs using

the object detectors (see Figure 2).
Note that when extracting dynamic AOIs from the selected

models the default coordinate representation of the bounding

boxes returned by the faster R-CNN and YOLOv3 models are

different. The YOLOv3 object detector returns the bounding

boxes in the form of (x center, y center, width, height),
where x center and y center represent coordinates of

the center of the bounding box, while width and height
represent its width and height. In contrast, faster R-CNN

object detectors returns the bounding boxes in the form of

(x top left, y top left, x bottom right, y bottom right),
where x top left and y top left represent the

top-left coordinate of the bounding box, while

x bottom right and y bottom right represent its

bottom-right coordinate. Therefore, we reconfigured the

RAEMAP to transform all bounding box coordinates into

(x top left, y top left, x bottom right, y bottom right)
form.

For each video sequence, the RAEMAP first identifies the

bounding box coordinates of AOIs detected in each frame and

writes them into a file. Next, the RAEMAP extracts the raw

eye gaze data which falls within the detected dynamic AOIs

by checking if the gaze coordinate falls within the bounding

boxes. The advantage of this approach is that it does not

require manual annotation of the AOI or physical equipment

to mark the boundaries of the AOI in dynamic eye tracking

stimuli, thus eliminating the need for manual annotation of

AOIs.

IV. EVALUATION

We evaluated our method using a publicly available eye-

tracking dataset [38] that provided data collected from 15

participants while watching 12 video sequences. Participants

(2 F and 13 M) were aged between 18 and 30 [38], and

had normal or corrected-to-normal vision. During the study,

participants have worn a Locarna “Pt-Mini” head-mounted eye

tracker which had two 30 fps cameras, (1) the eye camera,

and (2) the scene camera. Though the eye tracker had allowed

participants to move their head naturally, all participants have

been seated in front of a 19” Samsung monitor at a dis-

tance of 31.5 inches throughout the eye-tracking experiment.

Participants were presented with the twelve video segments

sequentially.

The 12 video segments were provided in uncompressed

YUV format, at (352 × 288) resolution and 30 fps. The

gaze data from 15 participants were provided in 12 comma

separated value (CSV) files (i.e., one CSV per video). Each

row in the CSV files correspond to a particular frame in

the video sequence, and the columns provide the (x, y) gaze

coordinates of all participants at that frame. All coordinates

were measured from the bottom left corner of current the video

sequence. The dataset also provided a binary flag matrix in

the same format as the gaze data CSV, indicating whether the

gaze locations in the CSV are correct (flag = 1) or not (flag

= 0). Gaze locations are considered as incorrect if, (1) the
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gaze location is out of frame boundaries, (2) the gaze location

is at the frame boundaries or within 5 pixels of the frame

boundaries, or (3) the gaze location remains constant for 30

consecutive frames.

We pre-processed gaze data of each participant separately

for each video. Here, we filter out the incorrect gaze locations

from the gaze data based on the binary flag matrix. The goal

here was to separate the gaze locations of each participant

to pass into the RAEMAP, since the calculations of eye gaze

metrics of each participant could be done separately.

A. Dynamic AOI Detection

We selected four video sequences (Foreman, Bus, Mother
and Daughter, and Hall Monitor) out of the twelve sequences

available to test our method. These videos were selected as

they had dominant objects to draw boundaries for AOIs, that

were already a class label in the COCO names list. We

identified one dominant object from each video sequence, and

defined it as the AOI for that video sequence. Following are

the dynamic AOIs defined in the evaluation.

• Foreman: Person

• Bus: Bus

• Mother and Daughter: Two People

• Hall Monitor: Two People

For each video sequence, we apply an object detector using

the RAEMAP and dynamically detect the AOI at each frame.

Upon repeating this for each object detector, we obtain a

prediction for the bounding box coordinates at each frame of

the video sequences, from each object detector.

When evaluating the dynamic AOIs detected, we create

a ground truth dataset by manually annotating each video

sequence with the expected AOI in the form of bounding

boxes. We used BeaverDam[30] video annotation tool to

create training and evaluation data for dynamic AOI detection.

BeaverDam is designed for drawing bounding boxes on video

frames and annotating them with class labels. It also allows

arbitrary annotation of frames in the video sequence as it

provides a parameter indicating whether linear interpolation

should be continued for each AOI annotated arbitrarily. Video

annotations made in BeaverDam can be exported in JSON

format. Exported annotations consist of bounding box coordi-

nates at each marked frame along with the linear interpolation

parameter. We generate four JSON objects corresponding to

each video file, and linearly interpolate the bounding boxes

between the start and end frames to obtain a continuous

annotation. We use this interpolated result as the ground truth

for evaluating each object detector, and subsequently the gaze

extractions made using them.

IoU =
Area of Overlap

Area of Union
(1)

Next, we use intersection over union (IoU) and mean

average precision (mAP) as the evaluation metrics of dynamic

AOIs generated by object detectors. IoU is a measurement

of the overlap between two boundaries (see equation (1)),

whereas mAP is a metric used to evaluate object detectors. We

use IoU to calculate how much of the boundaries predicted

using each object detector overlaps with the ground truth

bounding boxes. We define IoU threshold to be 0.5 to classify

the predicted bounding boxes. The predicted bounding box is

classified as true positive (TP) if IoU ≥ 0.5 and false positive

(FP) otherwise. The, precision and recall is calculated based on

the classification of the predicted bounding boxes. Finally, we

calculate mAP in both COCO style and Pascal VOC2008 [39]

style using Average Precision (AP). In Pascal VOC2008, an

average for the 11-point interpolated AP is calculated, whereas

in COCO, an average for the 101-point interpolated AP is

calculated.

B. Eye-Movement Extraction

After detecting dynamic AOIs on video sequences, we pass

the raw eye-tracking data to the RAEMAP. The RAEMAP

extracts eye gaze data that falls within the bounding boxes of

dynamic AOIs as generated by each object detector. It extracts

gaze data in the form (xi, yi, ti) from the raw gaze data. In

the extracted eye gaze data, (xi, yi) coordinates indicate the

position of the gaze point, and ti indicates the timestamp.

Moreover, we configured the RAEMAP to compute traditional

positional gaze metrics such as fixation count and fixation

duration using the extracted gaze data.

Next, we pass the ground truth bounding boxes of AOIs

to the RAEMAP and extract eye gaze data within in the

form of (xi, yi, ti). To evaluate the dynamic AOI-mapped

eye movements, we classify the eye movements according

to the confusion matrix shown in Table II. We use standard

information retrieval domain evaluation metrics such as pre-

cision, recall, and accuracy for the evaluation of filtered eye

movements.

TABLE II
CONFUSION MATRIX FOR EYE MOVEMENTS EVALUATION

Ground Truth AOI
Falls Within Falls Outside

Predicted AOI Falls Within TP FP
Falls Outside FN TN

V. RESULTS

A. Dynamic AOI Detection

Figures 3(a), 3(b), and 3(c) show manually annotated objects

in a single frame of Bus, Foreman, and Hall Monitor video

sequences. In comparison, Figures 3(d), 3(e), and 3(f) show

detected objects in a single frame of Bus, Foreman, and Hall
Monitor video sequences using the YOLOv3 object detector.

Table III shows the mAP values in both COCO style Pascal

VOC2008 style for each object detector. AP corresponds to

the average AP for IoU from 0.5 to 0.95 with a step size of

0.05, AP@.50 corresponds to the average AP for IoU = 0.5,

and AP@.75 corresponds to the average AP for IoU = 0.75.

Faster R-CNN object detector with ResNet-101-FPN backbone

has the highest AP in both COCO style and PASCAL style

(see Table III) with the AP ≥ 0.19.
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(a) Bus (b) Foreman (c) Hall Monitor

(d) Bus (e) Foreman (f) Hall Monitor

Figure 3. Frames with AOIs, captured from manually annotated AOIs using BeaverDam annotation tool ((a), (b), (c)) and dynamic AOIs detected from
YOLOv3 object detector ((d),(e),(f)) in Bus, Foreman, and Hall Monitor video sequences.

Figure 4. Visualization of manually annotated AOIs (in blue), AOIs detected by faster R-CNN object detector with ResNet-101-FPN backbone (in red), the
gaze positions of a participant in five consecutive frames in Bus and Foreman video sequences.

TABLE III
COMPARISON OF BOUNDING BOX AP OF OBJECT DETECTORS

Method Backbone
COCO style Pascal style

AP AP@.50 AP@.75 AP AP@.50 AP@.75

Faster R-CNN ResNet-50-FPN 0.1812 0.3707 0.1768 0.1918 0.3926 0.1989
Faster R-CNN ResNet-101-FPN 0.1998 0.3877 0.1985 0.2180 0.4000 0.2136
Faster R-CNN ResNet-50-DC5 0.1406 0.3290 0.1111 0.1566 0.3238 0.1238

YOLOv3 Darknet-53-FPN 0.1269 0.3083 0.1123 0.1430 0.3123 0.1388

B. Eye Movement Extraction
Figure 4 illustrates dynamic AOIs detected from faster

R-CNN object detector with ResNet-101-FPN backbone in

comparison with the manually annotated ground truth AOIs.

Red color bounding boxes indicate the predicted bounding
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TABLE IV
COMPARISON OF FILTERED EYE MOVEMENTS OF OBJECT DETECTORS

Method Backbone Precision Recall Accuracy

Faster R-CNN ResNet-50-FPN 0.648 0.717 0.644
Faster R-CNN ResNet-101-FPN 0.646. 0.713 0.645
Faster R-CNN ResNet-50-DC5 0.647 0.697 0.639

YOLOv3 Darknet-53-FPN 0.637 0.717 0.641

boxes, whereas blue color bounding boxes indicate the ground

truth. Green color circle indicates the gaze position of that

frame.

Table IV shows the precision, recall, and accuracy of

eye movements extracted using dynamic AOIs generated by

each object detector. The Faster R-CNN object detector with

ResNet-101-FPN backbone, filters eye movements data with

the highest accuracy of 64.5%.

VI. DISCUSSION

Our evaluation of dynamic AOIs generated by object detec-

tors indicate that faster R-CNN object detector with ResNet-

101-FPN backbone achieves the highest AP in both COCO

style and PASCAL style (see Table III). Though faster R-

CNN object detector with ResNet-101-FPN backbone achieves

the highest AP rate, we observed it to be slower compared

to one-stage detector YOLOv3, supporting the literature that

two-stage object detectors are typically slower [40]. Two-

stage object detectors are slow because they generate regions

of interests in the first stage, and classify objects and find

bounding-boxes by regression in the second stage. On the

other hand, one-stage object detectors treat object detection

as a simple regression problem by learning the class prob-

abilities and bounding box coordinates, thus reaching lower

AP rates, but performing much faster than two-stage object

detectors [40]. Our evaluation indicates that two-stage object

detectors, despite being slow, performs the best in classifying

objects and finding bounding-boxes as dynamic AOIs. How-

ever, this observation is highly speculative and replication of

the current findings are required with a larger representation

of one-stage object detectors since we only used a single one-

stage object detector, YOLOv3 for the evaluation.

One limitation in our study is that we only used videos with

dominant objects. We could overcome this limitation by using

video sequences with dominant objects for dynamic AOIs

detection. Since majority of the frames in the video sequences

could be used to find the optimal object detector to optimize

the performance of the object detector [40], we could further

evaluate the object detectors with video sequences of varying

levels of complexity.

Figure 4 illustrates dynamic AOIs detected from faster R-

CNN (ResNet-101-FPN) object detector in comparison with

the manually annotated ground truth AOIs. We observed

that some eye movements that fall within the ground truth

bounding box may not fall within the predicted bounding box,

and they are classified as FN. This happens when either there

is no dynamic AOI detected in that frame, or the detected

object is surrounded by a tighter bounding box compared to

the ground truth. Also, eye movements that does not fall within

the ground truth bounding box may fall within the predicted

bounding box, since the predicted bounding box is relaxed

compared to the ground truth bounding box (see the last image

in the second row of Figure 4). Those eye movements are

classified as FP. Eye movements extracted by all four object

detectors, do not differ much in terms of evaluation precision,

recall, or accuracy. As shown in the Table IV, faster R-CNN

object detector with ResNet-101-FPN backbone, filters eye

movements data with the highest accuracy of 64.5%. Since eye

movement classification is highly dependent on both manually

defined bounding boxes and bounding boxes found by the

object detector, we believe it is essential to retrain the object

detectors to find better bounding boxes instead of using pre-

trained object detectors.

Interestingly, we observed in both evaluation criteria, the

faster R-CNN object detector with ResNet-101-FPN back-

bone scored the highest. Based on the performance in both

evaluation criteria, we choose faster R-CNN object detector

with ResNet-101-FPN backbone as the object detector in the

RAEMAP. Apart from the RAEMAP integration, proposed

pipeline with faster R-CNN (ResNet-101-FPN) as the object

detector could be used for offline extraction of eye gaze

metrics from dynamic AOIs.

VII. CONCLUSIONS

In this study, we incorporated computer vision methods for

offline detection of dynamic AOIs in dynamic eye-tracking

stimuli such as video streams. We presented our implemen-

tation and evaluation of object detectors to integrate in an

RAEMAP to filter eye movement data within dynamic AOIs.

Based on the performance evaluation, faster R-CNN with

ResNet-101-FPN backbone object detector works best for

the RAEMAP integration. In the future, we plan to evaluate

our methodology using one-stage object detectors such as

SSD [41], DSSD [42], and retinanet [37]. Moving forward

in this line of inquiry, we plan to use segmentation instead

of polygonal boundaries when defining dynamic AOIs for the

extraction of eye movements.
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