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ABSTRACT
When conducting eye tracking studies, having a mechanism to
collect data, build workflows, and validate results in a FAIR (i.e.,
findable, accessible, interoperable, and reusable) manner, facilitates
automation. Given the vast landscape of vendor-specific eye track-
ing software, adopting FAIRmetadata standards for the eye tracking
domain is one step towards this. In this paper, we propose an ap-
proach to simplify the creation, execution, and validation of eye
tracking studies through metadata. Using a metadata format that
we developed, we first describe two eye trackers, and two datasets
collected using them. Next, we use this metadata to simulate real-
time data collection by replaying each dataset. From this replayed
data, we analyze eye movements in real-time, and synthesize eye
movement data from analytics in real-time. Based on our results,
we discuss the utility of metadata in real-time eye tracking studies,
and how this idea can be generalized into other applications.

CCS CONCEPTS
• Applied computing → Document metadata; • Information
systems → Data streaming; Temporal data.
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1 INTRODUCTION
Eye tracking is the process of measuring where a person is looking
at over time, and thereby capturing the sequence in which their
gaze shifts from one position to another [14]. An eye tracker is a
device that samples one’s gaze position over time, and optionally,
their pupil diameter. Both measurements are known indicators of
one’s visual attention [10]. In eye movement analysis, eye tracking
data is typically grouped into sequences of higher-order events
such as fixations (i.e., the centering of gaze around a certain region)
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and saccades (i.e., a rapid shift of gaze from one region to another).
These events are akin to how we perceive the visual world; our gaze
is directed onto objects through rapid eyeball movements (saccade),
and remains on them (fixation) until they are perceived.

Modern eye trackers come in variants such as screen-based,
wearable, and webcam-based. Devices such as Tobii Pro Fusion and
EyeLink 1000 Plus are screen-based, while devices such as Tobii Pro
Glasses, Pupil Core, EyeLink II, and HTC Vive Pro Eye are wearable.
On the other hand, software such as WebGazer, GazeRecorder, and
XLabsGaze are webcam-based. While eye tracker manufacturers
provide software suites such as Tobii Pro Lab, EyeLink Data Viewer,
and Pupil, they are designed to work exclusively on specific de-
vices, and uses non-standard file formats such as EDF (SR Research)
and PLOF (Tobii) by default. As a solution to this vendor lock-in,
third-party research software such as iMotions support multiple
types of eye trackers and biosensors such as EEG and fMRI. These
softwares, however, are proprietary, which makes it challenging to
share/reuse applications built using them. Hence, eye tracking
data and workflows would benefit from adapting standard
file formats such as CSV/JSON, with FAIR [17] metadata.

Data-intensive research, such as eye movement analysis, typi-
cally involve developing, executing, and validating a series of data
manipulation and visualization steps (i.e., a workflow) that lead to
a desired outcome. A scientific workflow (SWF) system is a form
of a workflow management system designed for this specific need
[13]. They enable users to manage the execution of complex data
computations and parameter-driven simulations, and simplifies the
process of testing, refining, and comparing experimental setups [6].
While a plethora of SWF systems exist [6, 13], SWF systems such
as KNIME, Kepler, and Node-RED allow users to build workflows
through visual programming [1]. This appeals to non-programmers,
such as scientists with no programming background, as it abstracts
away the complexity of underlying programming [12]. Moreover,
SWF systems such as Node-RED allow users to build stream-based
workflows for real-time applications. With eye trackers increas-
ingly being used in real-time applications such as gaming,
adapting a stream-based visual programming SWF system
such as Node-RED would expedite the building of real-time
eye movement analysis workflows for a larger population
of users.

In this paper, we describe eye trackers and eye movement data us-
ing FAIR metadata, and attempt to build reusable, reproducible, and
verifiable stream-processing workflows using them. Based on our
Dataset File System (DFS) [7, 8] metadata format, we first generate
metadata for two eye trackers, and two eye tracking datasets col-
lected from them. Next, we use this metadata to replay the datasets
akin to real-time data collection. Following this, we stream the
replayed eye movement data into a workflow built visually using
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Node-RED, and into a workflow built natively on Python/OpenGL.
Using these workflows, we perform real-time eye movement anal-
ysis, synthesize eye movement data in real-time, and verify the
consistency of their outputs. Based on our results, we discuss the
utility of this approach for real-time eye tracking applications, and
how it could be generalized into other types of temporal data.

2 EXPERIMENTAL SETUP
Data:We use two of our pre-collected datasets: ADHD-SIN [9] and
N-BACK [4], each providing the gaze position and pupil diameter
of subjects engaging in cognitive tasks. The N-BACK dataset was
acquired using a SR Research EyeLink 1000 eye tracker (1000 Hz),
while the ADHD-SIN dataset was acquired using a Tobii Pro X2-
60 eye tracker (60 Hz). We pre-process each dataset to provide
normalized gaze position (x,y) and pupil diameter (d) readings over
time (t). Any missing values were filled via linear interpolation,
backward-fill, and forward-fill, in order.

Figure 1: DFS Metadata for the Tobii Pro X2-60 Datasource

Metadata: We first create metadata for the two eye tracking de-
vices, using the DFS data-source1 schema (see Figure 1). It provides
attributes to describe data streams, such as frequency and channels.

Figure 2: DFS Metadata for the N-BACK Dataset

1https://github.com/nirdslab/streaminghub/tree/master/dfs/datasource.schema.json

Next, we create metadata for the two datasets, using the DFS
data-set2 schema (see Figure 2). It provides attributes to describe the
ownership, identification, provenance, and groups (i.e., viewpoints)
of a dataset, and to reference a resolver script that maps stream-wise
and/or group-wise queries into data. In this study, both datasets
were grouped subject-wise and task-wise to facilitate such queries.

Replay: Here, we implement resolver scripts (in Python) for each
dataset, and invoke them to replay data. When a resolver is invoked,
outlets (i.e., data streams) are created for the requested streams and
groups of the dataset, and they transition into an awaiting state.
Once an inlet (i.e., subscriber) connects, the outlet transitions into
a streaming state, begins to replay the data, and continues doing so
until the inlet disconnects, or until all data has been replayed.

3 METHODOLOGY
Next, we use the aforementioned metadata and resolvers to replay
data akin to real-time data collection, and test them via four tasks.
(1) Detect fixations and saccades from gaze streams
(2) Synthesize gaze data from fixation and saccade analytics
(3) Chain a workflow to run on synthetic gaze streams
(4) Calculate a pupillary measure (LHIPA [4]) from pupil streams

In Task 1, we detect fixations and saccades from replayed gaze
streams. In Task 2, we generate synthetic gaze streams from real-
time fixation and saccade analytics. In Task 3, we feed the synthetic
gaze streams as input to another workflow running in parallel. In
Task 4, we calculate LHIPA from replayed pupil streams. The goal
of these tasks is to test the FAIR-ness of our data replay setup.

Task 1: Detect Fixations and Saccades
Here, we use StreamingHub3 to build and execute eye movement
analysis workflows (see Figure 3). StreamingHub is a framework that
we developed upon DFS and Node-RED to build stream-processing
workflows using visual programming. It has four components:
(1) Dataset File System (DFS)4 – Collection of JSON schemas for

describing data-sources, data-analytics, and data-sets.
(2) Data Mux – Bridge between connected sensors, datasets, and

data streams, which leverages DFS to automate data streaming.
Implemented using LabStreamingLayer [11] and WebSockets.

(3) WorkflowDesigner – Front-end based on Node-RED to design
stream-processing workflows using visual programming.

(4) Operations Dashboard – Web interface based on Node-RED
to monitor workflows, generate interactive visualizations, and
control data streams via search, subscribe, and seek operations.

Figure 3: Eye Movement Analysis Workflow

Figure 3 illustrates an eye movement analysis workflow designed
on StreamingHub. Here, the IVT node classifies data points as fixa-
tions or saccades using the IVT algorithm [15]. The Synthesizer node

2https://github.com/nirdslab/streaminghub/tree/master/dfs/dataset.schema.json
3https://github.com/nirdslab/streaminghub
4DFS Version 2.0 (https://github.com/nirdslab/streaminghub/tree/master/dfs)
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generates synthetic gaze streams from fixation data (see Task 3). The
Noise node adds Gaussian noise into data. The [UI] Gaze node uses
Vega [16] to display gaze points in a scatter plot, connect consecu-
tive gaze points with lines, overlay a heat map of the distribution
of gaze, and provide a seek bar to navigate through time.

Next, we deploy this workflow and use its operations dashboard
(See Figure 4) to replay and visualize data. Here, we first search
for available streams, and select three of them for replay. Once
this selection is confirmed, the workflow subscribes to the selected
streams and begins to receive their data. Whenever a new sample is
received, the interactive visualization is updated with that sample.

Figure 4: Operations Dashboard of Workflow: Available
Streams (left), Selected Streams (ticks), and Visualization (right).

Task 2: Synthesize Gaze Data
The idea of eye movement synthesis is to control and direct a
simulated point of gaze towards pre-defined areas of interest [5].
It is particularly useful for generating test cases to evaluate eye
movement workflows (e.g., by synthesizing data for specific viewing
patterns), and to evaluate the robustness of workflows (e.g., by
synthesizing data with varying levels of recording noise). For this
task, we select three parametric models of micro-saccadic jitter
[2, 3] that we previously developed to synthesize gaze data from
fixations, and adapt them for real-time eye movement synthesis.
• Pink Noise (1/𝑓 𝛼 ) – [𝐺 = 0.85, 𝛼 = 0.4, 𝑓 = 𝑓𝑠 ]
• White Noise (w/Butterworth LPF) – [𝑑 = 4, 𝑓 = 𝑓𝑠 , 𝑙 = 1.5915]
• Zero Noise (i.e., noise-free)
Here, 𝐺 is the gain, 𝛼 is the exponent, 𝑓 is the noise frequency, 𝑑
is the degree, 𝑙 is the cutoff frequency, and 𝑓𝑠 is the eye tracker
sampling frequency. We refer to them as IDEAL streams. Next,
we duplicate the IDEAL streams and add 2D Gaussian noise with
𝜇 = (0, 0) and 𝜎 ≈ (0.00002, 0.00004) into them, to mimic recording
noise. We refer to them as NOISY streams. All parameter values
were taken from the original work [2, 3]. Thus, for our threemodels,
we synthesize two data streams each, totaling six data streams.

Algorithm 1 Eye Movement Synthesis Workflow
1: model $pink, $white, $zero
2: istream $ivt
3: ostream $pI, $wI, $zI, $pN, $wN, $zN
4: async while (ivt) stream→ $v
5: synthesize ($pink, $v)→ (pI)
6: synthesize ($white, $v)→ (wI)
7: synthesize ($zero, $v)→ (zI)
8: end while
9: async while (pI) stream→ $v
10: noise ($v)→ (pN)
11: end while
12: async while (wI) stream→ $v
13: noise ($v)→ (wN)
14: end while
15: async while (zI) stream→ $v
16: noise ($v)→ (zN)
17: end while

Task 3: Chaining Workflows
In this task, we test whether the output from one workflow can be
consumed by another workflow, to effectively build chains of work-
flows. First, we create a replica of the original workflow used in the
previous tasks, and run it in parallel. Next, we use its operations
dashboard to subscribe to gaze streams, with one difference: instead
of subscribing to the replayed gaze streams (as in the original work-
flow), we subscribe to the synthetic gaze streams generated by the
original workflow. By doing so, we check whether the outputs of a
workflow (in our case, the synthetic gaze streams) can be discovered
using the same mechanism as discovering replayed gaze streams.

Task 4: Calculate Real-Time LHIPA
Here, we tested whether our data replay setup can be used outside
of SWF systems for real-time analysis. We first developed an eye
movement analysis workflow (using Python/OpenGL) to calculate
the Low/High Index of Pupillary Activity (LHIPA) [4] from pupil
streams in real-time. It estimates cognitive load from the frequency
of pupil diameter oscillation. Next we implemented a stream listener
(using Python/PyLSL5) to discover the outlets (in our case, the pupil
streams) currently available on the network and spawn inlets (i.e.,
subscribers) to receive incoming data and metadata. The stream
listener repeatedly polls the outlets from the inlets with a timeout
of 0 s, to obtain chunks of data available for immediate pickup.
If/when the data stream is lost, a LostError is raised by PyLSL, upon
which the the stream listener is closed.

Following this, we reused the metadata created earlier for the SR
Research EyeLink 1000 eye tracker and the N-BACK dataset, along
with the resolver implemented earlier for the N-BACK dataset, to
spawn outlets that replay pupil diameter readings of each subject
during each task. As specified in the eye tracker metadata, these
outlets replay pupil diameter readings at a frequency of 1000 Hz.
Then we subscribed to the replayed pupil streams through the
stream listener. Any incoming data chunks were passed into the
eye movement analysis workflow to calculate the real-time LHIPA,
and the processed pupil diameter signal and the threshold used to
calculate LHIPA were visualized via OpenGL (see Figure 5).

Figure 5: OpenGLplot of the processed pupil diameter signal
(yellow) and the threshold used to calculate LHIPA (green).

4 EVALUATION
Using RMSE, we compare the six synthetic gaze streams with origi-
nal data, both globally (i.e., all data) and group-wise (i.e., data within
a group). The goal here is to check the similarity of their data at
different levels. Table 1 reports the global RMSE between synthetic
and original data. Both datasets exhibited a similar RMSE for IDEAL
and NOISY streams across all models. This can be attributed to the
low standard deviation (𝜎) used to generate the Gaussian noise.

5https://pypi.org/project/pylsl/1.10.4/
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Overall, the RMSE was lower for N-BACK than ADHD-SIN. This
may be due to different sampling frequencies that they were col-
lected/replayed at (N-BACK: 1000Hz, ADHD-SIN: 60Hz). For both
datasets, the RMSE increased as Zero < White < Pink.

Table 1: Global RMSE: Synthetic vs Original Data

MDL N-BACK ADHD-SIN
IDEAL NOISY IDEAL NOISY

Pink 0.062640 0.062640 0.115373 0.115373
White 0.062596 0.062596 0.115244 0.115244
Zero 0.062593 0.062593 0.115226 0.115226

Table 2 reports the group-wise RMSE between synthetic and
original data. The N-BACK dataset was evaluated on two MODE
items and two TASK items, while the ADHD-SIN dataset was evalu-
ated on four NOISE items. Here too, both datasets exhibited similar
RMSE for IDEAL and NOISY streams, with a lower RMSE overall
for N-BACK than ADHD-SIN. For the N-BACK dataset, the RMSE
increased as Zero < White < Pink. For the ADHD-SIN dataset, how-
ever, this order was inconsistent between noise levels. By visually
inspecting gaze data from each stream, we found that the natural-
ness of simulation increases as Zero < White < Pink, which was
consistent with the original work [2, 3].

Table 2: Group-wise RMSE: Synthetic vs Original Data

GRP ITEM MDL RMSE SAMPLES
IDEAL NOISY

N
-B

A
C
K

(M
O
D
E) Baseline Pink 0.072336 0.072336 5,582,188

White 0.072283 0.072283 5,582,170
Zero 0.072277 0.072277 5,582,160

Task Pink 0.059648 0.059648 19,965,068
White 0.059607 0.059607 19,965,082
Zero 0.059604 0.059604 19,965,075

N
-B

A
C
K

(T
A
SK

) 1-back Pink 0.063064 0.063064 12,581,319
White 0.063023 0.063023 12,581,289
Zero 0.063018 0.063018 12,581,298

2-back Pink 0.062225 0.062225 12,965,937
White 0.062179 0.062180 12,965,963
Zero 0.062177 0.062177 12,965,937

A
D
H
D
-S
IN

(N
O
IS
E)

0dB Pink 0.102673 0.102673 50,052
White 0.102225 0.102225 50,051
Zero 0.102297 0.102297 50,051

5dB Pink 0.117201 0.117201 41,969
White 0.117311 0.117311 41,970
Zero 0.117228 0.117228 41,970

10dB Pink 0.112958 0.112958 40,240
White 0.112778 0.112778 40,241
Zero 0.112737 0.112737 40,242

15dB Pink 0.121464 0.121463 33,555
White 0.121521 0.121521 33,555
Zero 0.121467 0.121467 33,555

5 DISCUSSION
One foreseeable application of metadata-driven data replay and
synthesis is to test experimental setups, both pre and post-collection.
For pre-collection, one could simply stream in either random data
or synthesized test data to verify that workflows run as expected.
For post-collection, one could replay data through a workflow and
verify that experimental results match. Overall, this provides an
ecosystem to build robust, error-tolerant, and most importantly,
reproducible real-time applications. Moreover, one could synthesize
data from analytics akin to data augmentation.

In this study, our primary focus was on conceptual design and
evaluation, and not on performance. In the future, we plan to inte-
grate workflow engines like Flink or Kinesis to improve scalability
and performance.

6 CONCLUSION
Using two eye tracking datasets, we demonstrated how FAIR meta-
data can simplify the creation, execution, and validation of eye
tracking studies for real-time applications. From our experimental
setup, we were able to a) replay datasets as data streams, b) generate
synthetic gaze streams from replayed data, c) stream data into eye
movement analysis workflows, and d) perform exploratory data
analysis through stream control and visualization. We tested our
setup on eye movement analysis workflows running on different
technologies, both in serial and in parallel, and demonstrated that
it works as expected. When comparing the synthetic gaze streams
to the replayed data streams, we observed a low RMSE in data from
the 1000 Hz eye tracker than the 60 Hz eye tracker.
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