
InSupport: Proxy Interface for Enabling Efficient Non-Visual
Interaction with Web Data Records

Javedul Ferdous
Old Dominion University

Norfolk, VA, USA
mferd002@odu.edu

Hae-Na Lee
Stony Brook University
Stony Brook, NY, USA

haenalee@cs.stonybrook.edu

Sampath Jayarathna
Old Dominion University

Norfolk, VA, USA
sampath@cs.odu.edu

Vikas Ashok
Old Dominion University

Norfolk, VA, USA
vganjigu@odu.edu

ABSTRACT
Interaction with web data records typically involves accessing aux-
iliary webpage segments such as filters, sort options, search form,
and multi-page links. As these segments are usually scattered all
across the screen, it is arduous and tedious for blind users who
rely on screen readers to access the segments, given that content
navigation with screen readers is predominantly one-dimensional,
despite the available support for skipping content via either special
keyboard shortcuts or selective navigation. The extant techniques
to overcome inefficient web screen reader interaction have mostly
focused on general web content navigation, and as such they pro-
vide little to no support for data record-specific interaction activities
such as filtering and sorting – activities that are equally important
for enabling quick and easy access to the desired data records. To
fill this void, we present InSupport, a browser extension that: (i)
employs custom-built machine learning models to automatically
extract auxiliary segments on any webpage containing data records,
and (ii) provides an instantly accessible proxy one-stop interface
for easily navigating the extracted segments using basic screen
reader shortcuts. An evaluation study with 14 blind participants
showed significant improvement in usability with InSupport, driven
by increased reduction in interaction time and the number of key
presses, compared to state-of-the-art solutions.

CCS CONCEPTS
• Human-centered computing→ Accessibility technologies.

KEYWORDS
Web accessibility, Blind, Visual impairment, Screen reader, Data
records
ACM Reference Format:
Javedul Ferdous, Hae-Na Lee, Sampath Jayarathna, and Vikas Ashok. 2022.
InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IUI ’22, March 22–25, 2022, Helsinki, Finland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9144-3/22/03. . . $15.00
https://doi.org/10.1145/3490099.3511126

with Web Data Records. In 27th International Conference on Intelligent User
Interfaces (IUI ’22), March 22–25, 2022, Helsinki, Finland. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3490099.3511126

1 INTRODUCTION
Interaction with web data records (e.g., products, flights, posts, job
listings, emails) is an integral part of everyday web activities such
as shopping, seeking information, communication, and social net-
working. To facilitate convenient interaction with web data records,
modern web applications typical arrange these records in the form
of lists or grids, and additionally provide various auxiliary segments
such as filters, sort options, search form, and multi-page links sur-
rounding the records as shown in Figure 1. While sighted users
can indeed easily access these auxiliary segments using a pointing
device such as a mouse and thereby quickly locate the desired data
records, blind users on the other hand struggle to do the same us-
ing a screen reader (e.g, JAWS, NVDA, VoiceOver) – their ‘go-to’
assistive technology for interacting with web applications. This
is because the screen reader primarily supports one-dimensional
navigation of content (e.g., ‘H’ shortcut press for the next heading),
and thus the blind users have to endure an arduous and tedious
process involving a multitude of shortcut presses for navigating
back-and-forth between the data records and the auxiliary segments
(see Figure 1) [8, 17]. While this interaction burden is reduced to
a certain extent in some screen readers which support alterna-
tive modalities (e.g., rotor in VoiceOver allows users to choose and
selectively navigate certain types of HTML elements on the web-
page), the onus of locating the auxiliary segments nonetheless still
remains on the users. Moreover, to exploit this additional screen
reader support, the users should have apriori knowledge of the
HTML element types (heading, link, button, etc.) of auxiliary seg-
ments and their components; remembering such webpage-specific
details can induce cognitive overhead for blind users [15].

Existing research solutions to address this problem are mostly
based on speech interaction [8, 21], which is not only susceptible to
noise but also requires a tighter integration of a third party speech
service with the user’s screen reader, thereby limiting their prac-
ticality to a few open-source screen readers. The use of speech in
public settings has also shown to cause privacy issues for blind
users [2, 40]. The few extant non-speech solutions on the other
hand have all primarily focused on general webpage navigation

49

https://doi.org/10.1145/3490099.3511126
https://doi.org/10.1145/3490099.3511126

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

Figure 1: InSupport for convenient non-visual interaction with web data records. The auxiliary segments such as filters and
sort options are automatically extracted and instantly ‘delivered’ to a blind user via a proxy interface that is easily navigable
using basic screen reader shortcuts such as arrow and TAB keys.Without the proxy interface, the user has to performmultiple
key presses to manually navigate between the data records and auxiliary segments – a process that includes traversing realms
of irrelevant content.

[8, 14]. Specifically, these existing methods strived to improve inter-
action efficiency by allowing screen reader users to skip irrelevant
content during navigation, i.e., skip directly to the beginning of the
records from anywhere in the page [8], skip to the next/previous
record irrespective of underlying HTML markup [9], navigate the
webpage at a semantic level of logically meaningful segments [14],
etc. However, these solutions did little to enable convenient and
efficient execution of data record specific activities such as filtering,
sorting, and searching, which are also essential for quickly locating
the desired records, especially when the number of data records is
large and distributed across multiple pages.

To overcome these limitations of current approaches, in this
paper we present InSupport, a browser extension that automati-
cally extracts auxiliary segments from a webpage containing data
records, and then pushes these segments to a screen reader user
instantly on demand via a proxy interface (see Figure 1) that is
easily navigable with basic screen reader shortcuts. To extract the
auxiliary segments in the webpage, InSupport uses custom devised
machine learning-based detection algorithms that can identify sub-
trees in the DOM of the webpage that correspond to these segments.
With this instant access support from InSupport, blind users will no
longer have to spend significant time and effort manually explor-
ing and navigating between the different webpage segments via
numerous keyboard shortcuts in order to locate the data records

that match their needs or preferences. This is especially beneficial
for average and novice blind screen reader users who typically
remember only a handful of basic keyboard shortcuts [7]; these
users currently spend significantly more time than expert blind
users in performing web tasks [7], as they are unaware of advanced
shortcuts that enable faster navigation of web content.

A user study with 14 blind participants showed that with InSup-
port, the average time and the number of input actions required
by the participants for locating the desired data records were sig-
nificantly lower than those with a state-of-the-art solution [9] as
well as those with just their preferred screen readers. In sum, our
contribution are:

• Machine learning based algorithms to automatically identify
auxiliary segments such as filters, sort options, search form,
and multi-page links in webpages containing data records.

• A novel browser extension InSupport that enables blind
screen reader users to conveniently and instantly access
the auxiliary segments (e.g., filters, sort options) while inter-
acting with the web data records.

• The findings of a user study with 14 blind participants who
evaluated InSupport and also compared it with a state-of-
the-art solution [9] and their preferred screen readers.

50

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

2 RELATEDWORK
Plethora of prior research works have addressed the interaction
issues faced by blind users while browsing the web [8, 11, 17, 26,
30, 32]. While bulk of these works have predominantly focused
on the accessibility of web content for blind users [4, 5, 10, 12, 22–
24, 29, 32, 34, 37, 39], researchers have also explored the usability
of web interaction for blind users [7–9, 11, 17, 20, 26, 30]. For in-
stance, approaches have been proposed to automatically annotate
webpages [9, 20] by injecting JavaScript into the DOM of webpages
in order to improve their usability. In this regard, Brown et al. [20]
presented a JavaScript based method that captured and classified
dynamic changes in webpages, and subsequently provided this in-
formation to screen reader users via an injected ARIA live region.
Similarly, a recent work [9] employed visual saliency-capturing
deep neural networks to identify the important parts or ‘hot-spots’
of a webpage, and then automatically injected ARIA landmark roles
into the corresponding DOM subtrees of the identified hot-spots,
so as to enable a screen reader user to quickly navigate to these
hot-spots with special dedicated screen reader shortcuts (e.g., ‘R’ in
the JAWS screen reader). While some screen readers also provide
similar functionalities (e.g., the rotor feature in VoiceOver) for skip-
ping irrelevant content, navigation is nonetheless one-dimensional
and dependent on the DOM layout of the webpage; semantics and
relative importance of the individual segments are not considered
by these screen reader functionalities.

Apart from automatic annotations, researchers have also inves-
tigated several other approaches such as web automation [13, 33],
speech assistants [8, 21], and alternative input modalities [14]. Web
automation techniques [13, 16, 27, 31] facilitate automatic execu-
tion of certain repetitive web tasks (e.g., ordering a preferred pizza),
thereby significantly reducing the user’s manual effort and time for
doing these tasks. A common aspect of most automation techniques
is the use of task scripts or macros that contain the sequence of
actions to execute the corresponding tasks. These macros can either
be created through handcrafting [16, 31], or via user demonstration
[6, 13, 28, 33]. While these techniques indeed improved interaction
experience for blind screen reader users, they were limited to a
small set of repetitive tasks, and therefore they would not be able to
handle web tasks such as searching for a desired web data record,
which involve considerable ad-hoc web browsing. Furthermore,
end users face an extra burden of not only creating a script for each
web task, but also maintaining and updating the script over time to
accommodate changes to either the webpage or their preferences.

Accessibility assistants [7, 8, 21] on the other hand enable blind
users to use speech input to interact with webpage content. For
instance, Gadde et al. [21] proposed a simple speech-based interface
that enabled blind users to use simple voice commands to aurally
obtain a quick overview of any webpage and also directly navigate
(i.e., shift screen reader focus) to a few key segments. Ashok et
al. [8] on the other hand supported a richer set of speech com-
mands, including those to navigate and query web data records.
Although speech interfaces facilitate faster access to content, they
have several limitations, notably speech recognition accuracy (in
noisy environments) [1] and blind users’ social concerns (e.g., draw-
ing undesired attention from others) and privacy [3]. Also, many
of these assistants (e.g., [8, 21]) require tighter integration with

third-party screen reader framework, so their scope is limited to
open-source screen readers.

Researchers have also explored novel input modalities to facil-
itate convenient webpage navigation by overcoming some of the
core limitations of the keyboard based ‘press-and-listen’ mode of
screen reader interaction. For example, Billah et al. [14] proposed
using an off-the-shelf Dial input device as a surrogate for mouse
to hierarchically navigate the semantically-meaningful segments
(e.g., menu, forms, data records) on the page using simple rotate
and press gestures. Similarly, Soviak et al. [36] presented a new
tactile input device that enabled blind users to ‘feel’ the layout of
any webpage via tactile sensations provided at boundaries of the
webpage segments. Blind users could also employ this tactile device
to navigate webpage content in a 2D space and directly select one
of the segments on the page, akin to touch exploration on mobile
devices. While these interfaces were effective in improving non-
visual interaction with web content, they were limited to general
navigation of the webpage semantic structure, and as such did not
directly assist in accomplishing ‘high-level’ specific web tasks such
as locating desired data records, which involve activities such as
filtering, sorting, and searching. Moreover, these approaches were
less adoptable as they require additional hardware, which can be
potentially expensive to many blind screen reader users.

To overcome the limitations of current research works, in this
paper we present InSupport, a scalable approach for improving the
usability of non-visual interaction with web data records.

3 APPROACH
Figure 2 presents an architectural schematic illustrating the work-
flow of InSupport. As shown in the figure, InSupport was imple-
mented as a browser extension that has two core components: (i)
Segment Extractor and (ii) Proxy Interface. The Segment Extractor
analyzes the webpage DOM and extracts the auxiliary segments (i.e.,
filters, sort options, search form, and multi-page links) using cus-
tom machine learning-based identification algorithms. The content
of identified auxiliary segments is then replicated and presented to
a user via the Proxy Interface. The user can instantly access the In-
Support Proxy Interface using a special ‘CTRL+SHIFT+Z’ shortcut,
and then navigate the content using TAB or arrow keys. All user
selections in the Proxy Interface (e.g., “filter by price”, “sort by most
recent”, “next page”) are automatically translated by InSupport into
equivalent actions on the actual auxiliary segments on the webpage,
thereby achieving the same intended effect.

3.1 Extracting Auxiliary Segments
The Segment Extractor leverages custom identification algorithms
to extract the auxiliary segments from the webpages containing
data records. Specifically, InSupport extracts the following four
types of auxiliary segments: (i) Filter Options; (ii) Sort Options; (iii)
Search Form; and (iv) Multi-page Links (see Table 1 in Appendix).

3.1.1 Identification Algorithms. The four algorithms for extracting
the four types of auxiliary segments all have a similar workflow.
They start by first extracting all the candidate DOM nodes by re-
ferring to a predefined list as presented in Table 1. This predefined

51

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

Figure 2: InSupport architectural workflow.

list was compiled after manual analysis of 100 webpages from top-
visited websites1 belonging to different domains such as shopping,
travel, job search, and classifieds. Then the algorithms extract a
set of handcrafted features (see Table 2 in the Appendix) from the
subtrees of all candidates. The extracted features representing each
candidate are then fed to the custom trained machine learning
models (Table 1 in Appendix) that use classification to determine
whether the candidate is the intended auxiliary segment.
Features. The detailed list of features along with their descrip-
tions, for each auxiliary segment type are presented in Table 2 in
the Appendix. We handcrafted a unique set of features for each
segment type. As seen in Table 2, most features were binary (0 or
1) whereas the remaining features were numerical (integer). We
designed several keyword based features (e.g., presence of search
keyword) because we noticed in our earlier manual analysis that
the HTML metadata typically contained several of such keywords
within the attribute values of container nodes (e.g., div), even if
these words were not shown/rendered on the webpage.
Model evaluation. To evaluate the classification models, we con-
structed four separate datasets for each of the four types of aux-
iliary segments. The source for these datasets was a custom built
collection of manually-annotated 209 webpages (webpage collec-
tion/datasets and details available on Github 2). These webpages
were chosen from a diverse set of websites belonging to over 15
different domains including shopping, travel, finance, and sports
(e.g., bestbuy, airbnb, shutterstock, nba). Note that these datasets
did not overlap with the earlier dataset of 100 websites that was
used for manual analysis to determine candidate tags. We anno-
tated each webpage in the collection by manually inserting custom
data attributes, one for each type of auxiliary segment; these data

1Alexa Ranking: https://www.alexa.com/topsites
2https://github.com/javedulferdous/InSupport

attributes were then exploited while constructing the correspond-
ing datasets. Therefore, each webpage in the collection produced
1 positive data point for each type of auxiliary segment, thereby
totalling 209 positive data points per auxiliary segment type. As
the number of negative data points from each webpage can be
much higher than 1, we randomly picked one negative data point
per auxiliary type from each webpage in order to have balanced
datasets. In sum, for each type of auxiliary segment, we had a total
of 418 data points in the corresponding dataset, with equal number
of positive/negative points.

In each of these datasets, we randomly picked and set aside 320
data points (160 positive and 160 negative) for training and the
remaining 98 for testing. We performed a 5-fold cross validation for
two machine learning algorithms - Logistic Regression Classifier
and Multi-Layer Perceptron Classifier on the training dataset for
optimization. The best models (based on F-score) for each classi-
fier were then evaluated on each corresponding test dataset. The
performances of these classifiers for each auxiliary segment type
are presented in Table 3 (see Appendix). As noticeable in Table 3,
with the handcrafted features, both machine learning algorithms
performed very well in discriminating between auxiliary segments
and arbitrary webpage segments. The few erroneous classifications
were mostly due to unconventional HTML realizations of auxiliary
segments in some test webpages. For example, in one such instance,
the filter options were implemented as a collection of drop down
menus instead of the conventional group of checkboxes or links.
Similarly, in another instance, the Sort Options were implemented
as independent buttons instead of the traditional drop-down list.
In such scenarios, the algorithms were not able to correctly recog-
nize the auxiliary segments, thereby causing a slight drop in the
recall performance of these algorithms. The best performing model
(based on F-score) for each segment type was then selected for the
corresponding identification algorithm.

52

https://www.alexa.com/topsites
https://github.com/javedulferdous/InSupport

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

(a) (b)

Figure 3: InSupport Proxy interface: (a) Sort Options, (b) Multi-Page Links.

3.2 InSupport Proxy Interface
The proxy interface of InSupport was designed to be navigable with
simple TAB and arrow shortcuts. As seen in Figure 3, it is a “one-
stop” interface where a user can access all four auxiliary segments.
To access the interface, the user needs to press the ‘CTRL+SHIFT+Z’
shortcut. Initially the focus is set to the first auxiliary segment,
namely the Search form (e.g., Search form in Figure 3). To navi-
gate to other segments, the user can press TAB/SHIFT+TAB or
LEFT/RIGHT arrow keys. To select one of the segments, the user
has to simply press the ENTER key. Within each segment, the user
can navigate the various options using either the TAB/SHIFT+TAB
or UP/DOWN arrow keys. To select an option, the user has to again
press ENTER. To move focus back to the list of segments, the user
can press the ESCAPE key.

When the user selects an option (e.g., “filter by price less than
$50”, InSupport automatically translates this action into an equiva-
lent action on the actual auxiliary segment on the webpage, thereby
producing the same effect. Furthermore, InSupport refocuses the
screen-reader cursor to the beginning of the data records each time
they are updated or refreshed, thereby letting the user avoids the
burden of pressing numerous screen-reader shortcuts to navigate
back to the data records from the top of the webpage (by default,
the screen reader starts narrating from the top of a page whenever
the page is loaded or refreshed). Also, the use of InSupport to access
the auxiliary segments is purely optional; the user can always rely
on the standard screen-reader shortcuts to interact directly with
the webpage content including the auxiliary segments.

Note that InSupport does not show the tab option for a given aux-
iliary segment in its proxy interface if the corresponding extraction
algorithm is unable to: (i) detect the segment in the webpage, and (ii)
detect labels from the extracted segment (possibly due to improper
webpage design or due to inaccurate segment identification).

4 EVALUATION
To assess the effectiveness of InSupport’s proxy interface, we con-
ducted an IRB approved user study with blind participants. The
details of the study and the findings are described next.

4.1 Participants
We recruited 14 blind participants via email lists and snowball sam-
pling. Table 4 in Appendix presents the participants’ demographic
details. The average age of the participants was 43.57 (Median = 44,
Min = 26, Max = 64), and the gender representation was equal (7
female, 7 male). Our inclusion criteria required the participants to
be proficient with JAWS screen reader and Chrome web browser.
No participant had any motor impairments that affected their abil-
ity to do the study tasks. All participants stated that they regularly
accessed a wide range of e-commerce websites for doing activities
such as shopping, searching for jobs, and browsing classifieds.

4.2 Design
In the study, the participants were asked to perform the following
two tasks related to data record interaction:

• T1 – Locate a data record on a travel website that matches a
predefined criteria (e.g., morning flight, Delta carrier, price
less than $300).

• T2 – Locate a desired data record on a shopping website
based on the participant’s own personal preferences.

In a within-subjects experimental setup, the participants were
asked to perform the above two tasks under three study conditions:

• Screen reader – The participants could rely only on their
preferred screen readers to complete the tasks. This condition
represented the status quo for all the participants.

53

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

• SaIL [9] – The participants could rely only on their screen
readers in this condition too, except that the webpage was
preprocessed by a state-of-the-art transcoding technique
SaIL [9]. Specifically, SaIL uses visual saliency to detect im-
portant regions of a webpage, and then injects ARIA land-
marks to the webpage DOM so that screen reader users can
access the salient regions via special shortcut (e.g., ‘R’ in
JAWS screen reader).

• InSupport – The participants could not only interact with
webpages directly via screen reader shortcuts, but also in-
stantly access the four auxiliary segments (i.e., filter options,
sort options, search form, and multi-page links) via the In-
Support interface.

To mitigate learning effect and avoid confounds, we used three
different travel websites (Kayak, Travelocity, and Orbitz) for T1,
and also three different shopping websites (Amazon, eBay, and
Target) for T2. Furthermore, for T2, we also chose three different
but similar query items (‘laptop’, ‘desktop’, and ‘tablet’). For T1, the
target data record was located in the second data records webpage
(between fifth and eighth positions) on all three chosen websites.
Also, in all the websites, the SaIL model [9] was able to identify
all four auxiliary segments as being salient, and therefore these
segments had corresponding aria landmarks injected into them for
the SaIL study condition. We also ensured that InSupport too was
able to accurately extract the auxiliary segments so as to prevent the
confounding impact of extraction algorithm accuracy on InSupport
user interface evaluation. The assignment of websites to conditions,
items to websites, and the ordering of both tasks and conditions
were counterbalanced using the Latin square method [18].

4.3 Apparatus
The experiment was conducted remotely, and the participants used
their own computers – either laptop or desktop (‘Computer Type’
column in Table 4). All participants had JAWS screen reader and
Google Chrome web browser installed on their computers. The
InSupport extension was sent to the participants via email (as a
Google Drive link) just prior to the study, and the experimenter
also assisted the participants (via Zoom or Skype conferencing
software) in installing the extension onto their Chrome browser.
Four participants (P3, P8, P11, and P14) needed assistance from their
cohabiting family members or friends to install InSupport. Note that
for convenience, both the SaIL and InSupport systemswere included
in the single extension that was emailed to the participants. A
special shortcut was provided to turn ‘ON/OFF’ each condition, and
only one condition could be turned on at any given time. Specifically,
if the SaIL condition was turned ‘ON’, the InSupport condition was
automatically turned ‘OFF’, and vice versa.

4.4 Procedure
The experimenter first assisted the participant in downloading and
installing the InSupport extension. Next, the experimenter gave
the participant enough time to practice (∼ 20 minutes) so as to
make them familiar and comfortable with the study conditions.
The participant was then asked to complete all the tasks under
different study conditions in the predetermined counterbalanced
order. For each task, the experimenter allowed a maximum of 20

minutes for the participant to complete the task. The study lasted
for a maximum of 3 hours, and all conversations were in English.
After completing the tasks, the participant was asked to respond
to subjective questionnaires (System Usability Scale (SUS) [19] for
measuring usability and NASA Task Load Index (NASA-TLX) [25]
to measure perceived user workload), and also participate in an
exit interview to collect suggestions and other qualitative feedback.
Throughout the study, the screen-sharing and recording features
were turned on so as to capture (with the participant’s permission)
all user interaction activities for subsequent data analysis.
Measurements. During the study, the experimenter recorded
task completion times and the number of user actions for each task
performed by the participant. The experimenter also recorded the re-
sponses to previously mentioned System Usability Scale (SUS) [19]
and NASA Task Load Index (NASA-TLX) [25] questionnaires. Qual-
itative feedback and peculiar interaction behavior during the study
were also noted by the experimenter. We used grounding theory
(open coding technique [35]) for analyzing the transcribed qualita-
tive feedback from the participants. We iteratively went over the
user responses and identified key recurring themes or insights in
the data.

4.5 Results
4.5.1 Task T1 - Travel. Task completion time. Figure 4a presents
the results for task completion times of the participants under all
three study conditions for Task T1. Overall, in the screen reader
condition, the participants spent an average of 780.64 seconds (Me-
dian = 816.5, Min = 501, Max = 945), whereas they spent an average
of 540.85 seconds (Median = 521.5, Min = 455, Max = 679) with
SaIL, and 288.64 seconds (Median = 290, Min = 158, Max = 380)
with InSupport. A Kruskal-Wallis test showed that the difference
in task completion times between the three study conditions was
statistically significant (see Table 5 in Appendix).
Number of user actions. Figure 4b shows the statistics regard-
ing the number of input actions performed by the participants
under the three study conditions. In the screen reader condition,
the participants needed an average of 611.85 input actions (Median
= 623.5, Min = 352, Max = 815) to complete the task, whereas in
the SaIL condition they needed an average of 395.92 input actions
(Median = 356.5, Min = 304, Max = 567) to finish the task. However,
in the InSupport condition, the participants performed significantly
fewer input actions – an average of 187.21 input actions (Median =
193.5, Min = 89, Max = 283) to complete the task. As in case of task
completion times, we observed a statistically significant difference
between the number of user actions for the three study conditions
(Table 5 in Appendix).

An analysis of the study data revealed the underlying reasons for
the observed difference in task completion times and the number
of actions between conditions for Task T1. In the screen reader
condition, most users (12) exhibited the following two types of
interaction behavior: (i) navigate the data records one-by-one while
accessing only the multi-page links auxiliary segment (7 partici-
pants); and (ii) navigate back-and-forth between data records and
the filters segment, specifically, repeat the process of navigating the
first few records one-by-one and then go back to selecting filters,
until the target data record is found (5 participants). These two

54

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

0 200 400 600 800 1000
Completion Time (sec)

Screen
Reader

SaIL

InSupport

C
on

di
tio

n

(a) T1 completion time

0 200 400 600 800
Number of Shortcuts

Screen
Reader

SaIL

InSupport

C
on

di
tio

n

(b) T1 number of shortcuts

0 200 400 600 800 1000
Completion Time (sec)

Screen
Reader

SaIL

InSupport

C
on

di
tio

n

(c) T2 completion time

0 200 400 600 800
Number of Shortcuts

Screen
Reader

SaIL

InSupport

C
on

di
tio

n
(d) T2 number of shortcuts

Figure 4: User performance statistics for the two study tasks T1 and T2.

types of behavior significantly contributed to the increase in com-
pletion time and number of actions as the participants traversed a
vast amount of DOM content in the process. Only the two remain-
ing participants decided to set all the desired filters first and then
serially navigate the data records to locate the target record. Even
in the SaIL condition, despite practice, slightly over one-third of
the participants (5) did not use the special shortcut for quickly nav-
igating between different landmarks injected by SaIL that covered
both the data records and the filters segment. Instead, they chose to
navigate over the data records one-by-one as in case of the screen
reader condition, which considerably increased the time and input
actions overhead. Even in case of the remaining 9 participants who
used special SaIL shortcuts, they still had to navigate over quite a
few irrelevant segments that were present between the filter op-
tions and the data records, since these irrelevant webpage segments
too were landmarked by the SaIL saliency model. This problem did
not manifest in the InSupport condition as the participants could
directly access the auxiliary segments including filter options.

4.5.2 Task T2 - Shopping. Task completion time. Figure 4c
presents the results for task completion times under all three study
conditions for Task T2. Overall, in the screen reader condition, the
participants spent an average of 894.35 seconds (Median = 918.5,
Min = 602, Max = 1161), whereas they took an average of 646.14
seconds (Median = 623, Min = 580, Max = 789) with SaIL, and 413.64
seconds (Median = 405.5, Min = 278, Max = 579) with InSupport.
Similar to Task T1, a Kruskal-Wallis test showed that the difference
in task completion times between the three study conditions was
statistically significant (see Table 5 in Appendix). All participants
were able to successfully complete the task in all conditions.
Number of user actions. Figure 4d presents the statistics regard-
ing the number of input actions performed by the participants in

T2 under the three study conditions. In the screen reader condition,
the participants needed an average of 751.64 input actions (Median
= 756.5, Min = 482, Max = 997) to complete the task, whereas in
the SaIL condition, they needed an average of 506.85 input actions
(Median = 492.5, Min = 428, Max = 624) to finish the task. However,
in the InSupport condition, the participants only performed an
average of 276.64 input actions (Median = 259, Min = 179, Max =
458) to finish the task. This difference in the number of user actions
between the three study conditions was statistically significant (see
Table 5 in Appendix).

In contrast to Task T1 where the participants were focused on
locating a pre-specified target record, in Task T2 they exhibited a
more exploratory navigational behavior. In the screen reader condi-
tion, all participants on at least one occasion navigated to-and-fro
between the data records and the filters segment. However, each
back-and-forth added significant time and effort overhead given
the large of number of DOM elements they had to traverse while
navigating between these segments. A majority (9) of the partici-
pants exhibited a similar behavior in the SaIL condition, however,
the time and effort were considerably reduced due to the advan-
tage of special landmark shortcuts. However, these participants still
had to navigate over extraneous segments to go back-and-forth
between data records and filters segment. The remaining 5 partic-
ipants did not use the landmark shortcut and instead performed
the task just like how they did in the screen reader condition. In
the exit interviews, these participants stated that they forgot the
special landmark shortcut (despite practice) and that they were
hesitant to try out their guesses for the fear of losing context in
the task webpage. In the InSupport condition, all participants were
more liberal in their use of filters via the InSupport proxy interface
– all participants accessed the filters at least three times while doing
the tasks. As the InSupport interface was instantly accessible, the

55

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

participants did not expend any time or effort accessing the filters.
Instead, most of their time and effort (i.e., input actions) were dedi-
cated towards navigating the data records and also the linear list of
filters in the proxy interface.

4.5.3 Usability. As mentioned earlier, we administered the stan-
dard SUS questionnaire to measure usability [19]. The SUS ques-
tionnaire requires the participants to rate alternating positive and
negative statements about each study condition on a Likert scale
from 1 - strongly disagree to 5 - strongly agree, with 3 - neutral.
These responses are then assimilated into a score between 0 to
100, with higher values indicating better usability ratings. Over-
all, the SUS ratings for the InSupport condition were much higher
(µ = 86.07, σ = 6.38) compared to those for the screen reader (µ
= 53.92, σ = 13.61) and SaIL (µ = 68.92, σ = 14.66) conditions. A
one-way ANOVA test revealed that this difference in SUS scores
was statistically significant (F = 22.865, p < 0.0001). In the exit in-
terviews, most (12) participants attributed their high ratings to the
instant interface access feature of InSupport that saved multitude of
key presses which were otherwise necessary to navigate between
webpage segments. 8 participants also mentioned that the short
learning curve of InSupport motivated them to provide favorable
usability ratings for InSupport.

4.5.4 Perceived Workload. For workload estimation, we adminis-
tered the NASA-TLX questionnaire to the participants [25]. The
TLX questionnaire measures perceived task workload as a value
between 0 and 100, with lower values indicating lower workloads,
and hence better results. Overall, the TLX scores were significantly
better for InSupport (µ = 25.61, σ = 6.71) than those for screen
reader (µ = 74.38, σ = 4.93) and SaIL (µ = 45.57, σ = 6.76). As in
case of SUS score, the difference in TLX scores between the three
study conditions was statistically significant (one-way ANOVA,
F = 203.401, p < 0.0001). The individual subscales of TLX that con-
tributed the most towards the high total workloads in the screen
reader condition were temporal demand, effort, and frustration,
i.e., the ratings for these subscales were significantly higher than
those for the other subscales (mental demand, physical demand,
and overall performance). Effort and frustration subscales were also
the major contributors to the workloads in the SaIL condition. For
the InSupport condition, however, the ratings were much lower
and uniform across all subscales with no obvious patterns.

4.5.5 Qualitative Feedback. In addition to the responses to the
questionnaires, the participants also provided subjective feedback
in their exit interviews that also included suggestions for improve-
ment and feature requests. Some of the notable recurring themes
identified from the exit interview data are mentioned next.
Separate interface for auxiliary segments is important. Almost
all (12) participants stated that having a separate proxy interface for
accessing the auxiliary segments was important because it helped
them “separate their concerns”, i.e., use screen reader shortcuts
only for navigating within the data records and not worry about
how to navigate to the auxiliary segments. As quoted by P4, “I only
have to remember the layout of content in each item of the results,
and not the entire webpage.” In fact, a few (3) participants even

suggested providing a different input method such as speech to ac-
cess the InSupport proxy interface, so as to completely disentangle
InSupport from the screen reader keyboard shortcuts.
Mitigatingwebpage exploration reduces frustration and leads
to better record selection. All participants stated much of the
frustration and fatigue during web browsing stems from the tedious
serial exploration of webpage content using keyboard shortcuts,
and therefore they typically cannot explore many data records be-
fore their selection. Amajority (11) of the participants further stated
that due to limited exploration caused by fatigue, they often miss
out on the “best deals”. These participants expressed that as fatigue
and frustration are significantly lower with InSupport, they can
explore more data records and therefore take advantage of better
deals. As quoted by P7, “More coverage means more options, and
more options means more likelihood of finding a better product”.
Remembering and reusing past filters can increase efficiency
of data record interaction. More than one third (5) of partici-
pants expressed a desire for remembering the past selection of filters
and then automatically applying in future interactions involving
the same or similar data records. For example, P7 suggested that
InSupport should be able to remember his flight preferences based
on prior interaction data and then automatically apply these filters
every time he searches for flights, not only on the same website
but only on other travel websites. These participants indicated that
such a feature would significantly reduce their interaction burden
as the list of filters itself can sometimes be very long.
All data records on one single page is preferable. 7 partici-
pants mentioned that they would like to have all data records on
single webpage, so that they did not have to rely on multi-page
links to go over multiple webpages. The main reason given by these
participants was that every new page load in the browser tends to
refocus the screen reader cursor to the top of the page, and some-
times it is tedious and cumbersome to navigate to the data records
from the top of the page. These participants desired the InSupport
to be capable of prefetching all the data records and appending
them to the list on the first webpage.

5 DISCUSSION
The user study demonstrated the efficacy of InSupport in signifi-
cantly improving the interaction experience of blind screen reader
users with web data records. However, it also highlighted certain
limitations of InSupport as well as promising directions for future
work. Some of the notable ones are discussed next.
Limitations. A limitation of our work is that the evaluation of
segment extraction algorithms was performed on a small sample
of components extracted from webpages instead of arbitrary web-
pages themselves “in the wild”. Our user study too was limited to
evaluating the InSupport’s proxy interface on webpages where the
extraction algorithms could accurately identify all the auxiliary
segments, and as such we did not consider webpages where one or
more of the extraction algorithms had errors. Further elaborate val-
idation of the algorithms and InSupport interface is thus required
to determine the extent to which our findings generalize across
arbitrary webpages having different kinds of content layouts and

56

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

designs. Moreover, the extraction algorithms were designed exclu-
sively for webpages in English, and therefore need to be extended
with additional language-agnostic features to be able to accurately
identify auxiliary segments in webpages written in other languages.

Another limitation of our work is that we evaluated InSupport
only with JAWS screen reader users. Apart from JAWS, a recent
survey also found that a larger proportion (59.9%) of blind users rely
on other screen readers including NVDA and VoiceOver [38]. While
our observations are very likely to generalize across different screen
readers due to the similarities in how they support web browsing,
a formal study to compare the interaction experiences between
user groups relying on different screen readers can shed light on
the effectiveness of InSupport both within and between groups.
Also, the current InSupport is only supported for the Chrome web
browser. While Chrome browser is currently the most widely used
browser within the blind user community, there are still significant
proportions of blind users relying on other browsers such as Firefox
and Internet Explorer [38]. In future, we will explore options to
extend InSupport support for other browsers. Lastly, the current
InSupport prototype is limited to desktop/laptop web browsing,
and does not yet support mobile web browsing. As smartphones are
becoming ubiquitous and users are increasingly interacting with
web data records on smartphone browsers, e.g., online shopping,
support for convenient non-visual interaction with data records is
especially important for blind users, given that smartphone screen
readers offer far fewer input gestures compared to the plethora of
keyboard shortcuts offered by desktop screen readers. Recognizing
this emerging need, we will explore options in the future to port
InSupport for smartphone web browsers.
Automatic filter selection and reordering. As mentioned by
the participants in the exit interviews, sometimes the list of filters
can be very long, and therefore navigating this list can be tedious
and cumbersome even with InSupport. Therefore, mechanisms
are needed that can automatically determine the set of filters that
the user will mostly likely apply, given the user’s past interaction
history. By leveraging these mechanisms, InSupport will be able
to proactively either apply the desired filters on user’s behalf or
suggest them to the user. InSupport will also be able to dynamically
reorder the filters in the proxy interface so that the filters with high
likelihood of being selected are placed near the front of the list.
Exploring such solutions is scope of future research.
Prefetching data records. In the study, some participants also
expressed desire to have all the data records on one single page.
While some website do provide an option to choose the number
of records per page, many websites do not offer this feature. Also,
prefetching a large number of data records from possibly a mul-
titude of webpages can be challenging due to the significant time
overhead that may potentially render the prefetching method im-
practical for real-time interaction. Exploring feasible alternative
approaches to address this issue under such challenging constraints
will also be part of our future work.
Societal impact. Accessibility of webpages is important to en-
sure equality of access to digital content for people with disability,
including those with severe visual impairments. However, accessi-
bility in and of itself is not equivalent to usability, which is more

concerned with how easily people can accomplish their tasks on
the web. As most websites are primarily designed for convenient
sighted interaction, blind screen reader users have to expend signif-
icantly more time and effort to do the same web tasks compared to
those exerted by their sighted peers [8], thereby creating a usability
gap in the interaction experience. This paper seeks to narrow this
gap for one of the important everyday web tasks – interaction with
web data records. By facilitating more convenient interaction with
web data records, blind screen reader users too will be able to find
‘better deals’, complete transactions faster on e-commerce websites,
read more posts from their friends with less effort, and so on.

6 CONCLUSION
Interaction with web data records is an important and ubiquitous
activity in web browsing. The present interface design for data
records however is primarily tailored for sighted interaction and
therefore blind screen reader users struggle to locate desired data
records with the same ease and efficiency as their sighted peers.
To reduce this usability gap between sighted and blind users, this
paper presented InSupport, a browser extension that automati-
cally extracts the important auxiliary segments such as filters and
multi-page links from webpages containing data records, and sub-
sequently makes them instantly accessible to blind screen reader
users via an easily navigable proxy interface. Evaluation of InSup-
port in a user study with blind participants showed that InSupport
significantly reduced the interaction effort when compared with a
state-of-the-art solution and also the participants’ preferred screen
readers, thereby demonstrating the efficacy of InSupport in aid-
ing non-visual interaction with web data records. The study also
revealed promising avenues for future research that included auto-
matic selection of record filters that a user will most likely apply
for a given set of data records.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful feedback. This
researchworkwas funded byNSF awards 1805076, 1936027, 2113485,
and NIH awards R01EY030085, R01HD097188.

REFERENCES
[1] Ali Abdolrahmani, Ravi Kuber, and Stacy M Branham. 2018. " Siri Talks at You"

An Empirical Investigation of Voice-Activated Personal Assistant (VAPA) Usage
by Individuals Who Are Blind. In Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility. 249–258.

[2] Tousif Ahmed, Roberto Hoyle, Kay Connelly, David Crandall, and Apu Kapadia.
2015. Privacy Concerns and Behaviors of People with Visual Impairments. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3523–3532. https://doi.org/10.1145/2702123.2702334

[3] Tousif Ahmed, Patrick Shaffer, Kay Connelly, David Crandall, and Apu Kapadia.
2016. Addressing physical safety, security, and privacy for people with visual
impairments. In Twelfth Symposium on Usable Privacy and Security ({SOUPS}
2016). 341–354.

[4] Chieko Asakawa and Hironobu Takagi. 2000. Annotation-based transcoding for
nonvisual web access. In Proceedings of the fourth international ACM conference
on Assistive technologies. 172–179.

[5] Chieko Asakawa, Hironobu Takagi, Shuichi Ino, and Tohru Ifukube. 2002. Au-
ditory and tactile interfaces for representing the visual effects on the web. In
Proceedings of the fifth international ACM conference on Assistive technologies.
65–72.

[6] Vikas Ashok, Syed Masum Billah, Yevgen Borodin, and IV Ramakrishnan. 2019.
Auto-Suggesting Browsing Actions for Personalized Web Screen Reading. In

57

https://doi.org/10.1145/2702123.2702334

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Person-
alization (Larnaca, Cyprus) (UMAP ’19). Association for Computing Machinery,
New York, NY, USA, 252–260. https://doi.org/10.1145/3320435.3320460

[7] Vikas Ashok, Yevgen Borodin, Yury Puzis, and IV Ramakrishnan. 2015. Capti-
speak: a speech-enabled web screen reader. In Proceedings of the 12th International
Web for All Conference. 1–10.

[8] Vikas Ashok, Yury Puzis, Yevgen Borodin, and IV Ramakrishnan. 2017. Web
screen reading automation assistance using semantic abstraction. In Proceedings
of the 22nd International Conference on Intelligent User Interfaces. 407–418.

[9] Ali Selman Aydin, Shirin Feiz, Vikas Ashok, and IV Ramakrishnan. 2020. SaIL:
saliency-driven injection of ARIA landmarks. In Proceedings of the 25th Interna-
tional Conference on Intelligent User Interfaces. 111–115.

[10] Sean Bechhofer, Simon Harper, and Darren Lunn. 2006. Sadie: Semantic an-
notation for accessibility. In International Semantic Web Conference. Springer,
101–115.

[11] Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang. 2010. Accessibility
by demonstration: enabling end users to guide developers to web accessibility
solutions. In Proceedings of the 12th international ACM SIGACCESS conference on
Computers and accessibility. 35–42.

[12] Jeffrey P Bigham and Richard E Ladner. 2007. Accessmonkey: a collaborative
scripting framework for web users and developers. In Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A). 25–34.

[13] Jeffrey P. Bigham, Tessa Lau, and Jeffrey Nichols. 2009. Trailblazer: Enabling Blind
Users to Blaze Trails through the Web. In Proceedings of the 14th International
Conference on Intelligent User Interfaces (Sanibel Island, Florida, USA) (IUI ’09).
Association for Computing Machinery, New York, NY, USA, 177–186. https:
//doi.org/10.1145/1502650.1502677

[14] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and IV Ramakrishnan. 2017.
Speed-Dial: A Surrogate Mouse for Non-Visual Web Browsing. In Proceedings of
the 19th International ACM SIGACCESS Conference on Computers and Accessibility
(Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Machinery,
New York, NY, USA, 110–119. https://doi.org/10.1145/3132525.3132531

[15] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 5862–5868. https://doi.org/10.1145/3025453.3025731

[16] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C Miller.
2005. Automation and customization of rendered web pages. In Proceedings of the
18th annual ACM symposium on User interface software and technology. 163–172.

[17] Yevgen Borodin, Jeffrey P. Bigham, Glenn Dausch, and I. V. Ramakrishnan. 2010.
More Than Meets the Eye: A Survey of Screen-reader Browsing Strategies. In
Proceedings of the 2010 International Cross Disciplinary Conference on Web Acces-
sibility (W4A) (Raleigh, North Carolina) (W4A ’10). ACM, New York, NY, USA,
Article 13, 10 pages. https://doi.org/10.1145/1805986.1806005

[18] James V. Bradley. 1958. Complete Counterbalancing of Immediate Se-
quential Effects in a Latin Square Design. J. Amer. Statist. Assoc.
53, 282 (1958), 525–528. https://doi.org/10.1080/01621459.1958.10501456
arXiv:https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501456

[19] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7.

[20] Andy Brown and Simon Harper. 2013. Dynamic injection of WAI-ARIA into web
content. In Proceedings of the 10th International Cross-Disciplinary Conference on
Web Accessibility. 1–4.

[21] Prathik Gadde and Davide Bolchini. 2014. From screen reading to aural glancing:
towards instant access to key page sections. In Proceedings of the 16th international
ACM SIGACCESS conference on Computers & accessibility. 67–74.

[22] Cole Gleason, Amy Pavel, Himalini Gururaj, Kris Kitani, and Jeffrey P Bigham.
2020. Making GIFs Accessible.. In ASSETS. 24–1.

[23] Cole Gleason, Amy Pavel, Emma McCamey, Christina Low, Patrick Carrington,
Kris M. Kitani, and Jeffrey P. Bigham. 2020. Twitter A11y: A Browser Extension
to Make Twitter Images Accessible. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376728

[24] Darren Guinness, Edward Cutrell, and Meredith Ringel Morris. 2018. Caption
crawler: Enabling reusable alternative text descriptions using reverse image
search. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. 1–11.

[25] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in
Psychology, Vol. 52. North-Holland, 139 – 183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[26] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. 2007. What
frustrates screen reader users on the web: A study of 100 blind users. International
Journal of human-computer interaction 22, 3 (2007), 247–269.

[27] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
automating & sharing how-to knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 1719–1728.

[28] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. 2010. Here’s
what i did: sharing and reusing web activity with ActionShot. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 723–732.

[29] Letresa McLawhorn. 2001. Leveling the accessibility playing field: Section 508 of
the Rehabilitation Act.

[30] ValentynMelnyk, Vikas Ashok, Yury Puzis, Andrii Soviak, Yevgen Borodin, and IV
Ramakrishnan. 2014. Widget classification with applications to web accessibility.
In International Conference on Web Engineering. Springer, 341–358.

[31] Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and Javier López. 2009.
Automating navigation sequences in AJAX websites. In International Conference
on Web Engineering. Springer, 166–180.

[32] Christopher Power, André Freire, Helen Petrie, and David Swallow. 2012. Guide-
lines Are Only Half of the Story: Accessibility Problems Encountered by Blind
Users on the Web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Austin, Texas, USA) (CHI ’12). ACM, New York, NY, USA,
433–442. https://doi.org/10.1145/2207676.2207736

[33] Yury Puzis, Yevgen Borodin, Rami Puzis, and IV Ramakrishnan. 2013. Predictive
web automation assistant for people with vision impairments. In Proceedings of
the 22nd international conference on World Wide Web. 1031–1040.

[34] Yury Puzis, Yevgen Borodin, Andrii Soviak, Valentyn Melnyk, and IV Ramakrish-
nan. 2015. Affordable web accessibility: A case for cheaper ARIA. In Proceedings
of the 12th International Web for All Conference. 1–4.

[35] Johnny Saldaña. 2021. The coding manual for qualitative researchers. sage.
[36] Andrii Soviak. 2015. Haptic Gloves Prototype for Audio-Tactile Web Browsing.

In Proceedings of the 17th International ACM SIGACCESS Conference on Computers
& Accessibility (Lisbon, Portugal) (ASSETS ’15). Association for Computing Ma-
chinery, New York, NY, USA, 363–364. https://doi.org/10.1145/2700648.2811329

[37] W3C. 2018. Web Content Accessibility Guidelines (WCAG) Overview. https:
//www.w3.org/WAI/standards-guidelines/wcag/.

[38] WebAIM. 2019. WebAIM: Screen Reader User Survey #8 Results. https://webaim.
org/projects/screenreadersurvey8/

[39] Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. 2017. Automatic
alt-text: Computer-generated image descriptions for blind users on a social
network service. In Proceedings of the 2017 ACMConference on Computer Supported
Cooperative Work and Social Computing. 1180–1192.

[40] Hanlu Ye, Meethu Malu, Uran Oh, and Leah Findlater. 2014. Current and Future
Mobile and Wearable Device Use by People with Visual Impairments. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto,
Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York,
NY, USA, 3123–3132. https://doi.org/10.1145/2556288.2557085

58

https://doi.org/10.1145/3320435.3320460
https://doi.org/10.1145/1502650.1502677
https://doi.org/10.1145/1502650.1502677
https://doi.org/10.1145/3132525.3132531
https://doi.org/10.1145/3025453.3025731
https://doi.org/10.1145/1805986.1806005
https://doi.org/10.1080/01621459.1958.10501456
https://arxiv.org/abs/https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501456
https://doi.org/10.1145/3313831.3376728
https://doi.org/10.1145/3313831.3376728
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/2207676.2207736
https://doi.org/10.1145/2700648.2811329
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/projects/screenreadersurvey8/
https://webaim.org/projects/screenreadersurvey8/
https://doi.org/10.1145/2556288.2557085

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

A DETAILS OF EXTRACTION ALGORITHMS

Auxiliary Segment Candidate Tags # Features Classification
Model

Filter options div, li, section, article, dt, desktop-facet, ul,
form, fieldset, button, dl 5 MLP classifier

Sort options div, ul, select 4 MLP classifier
Search form form 5 Logistic regression

Multi-page links div, nav, li, ul, span, section, button, tr,
footer, aPage, pagination, bPage 6 Logistic regression

Table 1: Extraction algorithm details for the auxiliary segments.

59

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

B FEATURES FOR AUXILIARY SEGMENT CLASSIFIERS

Search Form
Feature Description
Inner text present Checks whether the candidate node has inner text in its subtree - binary
Search keyword Checks for the keyword “search” in the inner text of candidate’s subtree - binary
no. of search keyword Number of “search” keyword matches with in the candidate’s subtree - integer
Button present Check whether the candidate has a button in its subtree - binary
Search attribute value Checks if any attribute in any node within the candidate’s subtree has “search” keyword

in it - binary
Filter Options

Feature Description
Checkbox List Checks if the candidate’s subtree contains a list of check boxes - binary
Number of links Counts the number of links in the candidate’s subtree - integer
Number of inputs Counts the number of input tags in the candidate’s subtree - integer
URL valid Check if all the links in the candidate’s subtree contain valid URLs - binary
Button list Checks if the candidate’s subtree contains a list of buttons - binary

Sort Options
Feature Description
Keyword match Checks inner text of nodes in candidate’s subtree for keywords such as price, recom-

mended, ratings, distance, time, and so on - binary
Keyword count Counts the number of keyword matches using the same keywords as the previous

option - integer
Sort keyword Check if inner text values of nodes in candidate’s subtrees have the keyword sort -

binary
Option tag count Counts the number of option tags (if any) in the candidate’s subtree - integer

Multi-Page Links
Feature Description
Number of buttons Counts the number of buttons in the candidate’s subtree - integer
Number of links Counts the number of links in the candidate’s subtree - integer
Common URL Counts the number of links that have the same domain and subdomain URL - integer
Number of values Counts the number of nodes in the subtree that have only numeric text such as 1, 2,

and 3 - Integer
Keyword present Checks if inner text of subtree nodes contains keywords such as page, show, next,

previous, and so on - binary
Keyword count Counts the number of occurrences of select keywords in the candidate’s subtree -

integer
Table 2: Features for each auxiliary segment, along with their descriptions.

60

InSupport: Proxy Interface for Enabling Efficient Non-Visual Interaction with Web Data Records IUI ’22, March 22–25, 2022, Helsinki, Finland

C CLASSIFICATION PERFORMANCE OF EXTRACTION ALGORITHMS FOR AUXILIARY
SEGMENTS

Segment Type Classifier
Precision (%) Recall (%) F-score (%)

Negative Positive Negative Positive Negative Positive

Search Form Logistic Regression 90.4 94.5 94.7 90.0 92.5 92.2
Multi-Layer Perceptron 90.7 93.2 93.3 90.4 93.5 91.7

Multi-page Links Logistic Regression 83.4 100 100 79.9 90.9 88.8
Multi-Layer Perceptron 83.4 100 100 79.9 90.9 88.8

Sort Options Logistic Regression 91.9 100 100 90.8 95.7 95.1
Multi-Layer Perceptron 92.3 100 100 91.3 95.9 95.4

Filter Options Logistic Regression 99 100 100 99 99.5 99.5
Multi-Layer Perceptron 99 100 100 99 99.5 99.5

Table 3: Classification performance of machine learning algorithms.

D PARTICIPANT DEMOGRAPHIC DETAILS

ID Age Gender
Age of Preferred Hours

Computer Type
Vision Loss Screen Reader Per Day

P1 39 M Since birth JAWS 5-6 Laptop
P2 26 M Age 3 JAWS 5-6 Laptop
P3 52 F Age 5 JAWS 2-3 Laptop
P4 45 M Age 6 JAWS 3-4 Desktop
P5 34 F Age 11 JAWS 5-6 Laptop

P6 48 F Cannot
remember JAWS 4-5 Laptop

P7 34 M Cannot
remember JAWS 3-4 Desktop

P8 54 F Cannot
remember JAWS 1-2 Laptop

P9 57 F Since birth JAWS 2-3 Desktop
P10 28 M Age 2 JAWS 5-6 Desktop
P11 64 F Since birth JAWS 1-2 Desktop
P12 51 F Since birth JAWS 3-4 Laptop
P13 35 M Since birth JAWS 5-6 Desktop
P14 43 M Since birth JAWS 3-4 Laptop

Table 4: Participant demographics for the user study. All information was self-reported by the participants. Hours per day
indicates the average time a participant spent per day on web browsing.

61

IUI ’22, March 22–25, 2022, Helsinki, Finland Ferdous, et al.

E SIGNIFICANCE TEST RESULTS FOR USER STUDY

Task Completion Time Number of User Actions

Task T1 H = 34.207, d f = 2, H = 34.465, d f = 2,
p < 0.001 p < 0.001

Task T2 H = 34.369, d f = 2, H = 33.576, d f = 2,
p < 0.001 p < 0.001

Table 5: Kruskal-Wallis test for statistical significance between study conditions.

62

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Extracting Auxiliary Segments
	3.2 InSupport Proxy Interface

	4 Evaluation
	4.1 Participants
	4.2 Design
	4.3 Apparatus
	4.4 Procedure
	4.5 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	A Details of Extraction Algorithms
	B Features for Auxiliary Segment Classifiers
	C Classification Performance of Extraction Algorithms for Auxiliary Segments
	D Participant Demographic Details
	E Significance Test Results for User Study

