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Abstract—Electroencephalogram (EEG) research continues to
rely heavily on data silos used in isolated physical lab envi-
ronments. However, as a part of the digital transformation,
the EEG community has begun its exploration of the public
cloud to determine how it can be best utilized to increase
collaboration and accelerate research outcomes. The growing
number of online repositories for data and tools has provided ad-
ditional computational resources but the process of downloading
data and software along with the installation and configuration
requirements is cumbersome and prone to error. To break away
from this research paradigm, we present a novel application of
cloud technologies to provide reusable EEG data acquisition and
preprocessing software as a service (SaaS) that eliminates data
and software downloading prerequisites. We utilize the Amazon
Web Services (AWS) cloud platform and serverless technologies
to create a distributed, highly scalable and extensible solution
for EEG signal data preprocessing that is more conducive to
effective collaboration and data reproducibility with the potential
to expedite neurotechnology breakthroughs.

Index Terms—Electroencephalography, Pipeline, Serverless,
Microservices, Software Reuse, PREP, SaaS, AWS

I. INTRODUCTION

Electroencephalography (EEG) data has proven useful in

providing insight into various mental and physical health con-

ditions as well serving as the primary neuroactivity modality

for brain-computer interface (BCI) systems [1], [2]. However,

EEG data is very susceptible to signal loss or discontinuities as

well as contamination from electrical noise, electrode malfunc-

tion or misplacement, eye movements, teeth grinding, cardiac

activity, and other non-brain artifacts even when methods are

taken during research to reduce their occurrence [3], [4]. These

artifacts must be removed from the data while minimizing

neural signal loss so that it is suitable for subsequent feature

extraction and analysis for the various applications. The EEG

data cleansing process is very common because of this but still

requires considerable domain knowledge to perform this task

successfully [5], [6]. The use of more automation for EEG

signal data preprocessing and analysis in healthcare and other

domains has the potential to accelerate health assessments

and research outcomes, support reproducible results [7], and

reduce or eliminate bias in comparison to more manual data

collection and analysis techniques [8], [9].

There have been multiple software libraries, plugins, and

tools introduced to read and preprocess EEG data in a wide

range of file formats in hopes to produce more consistent re-

sults within the EEG research domain. Such software solutions

include EEGLAB [10], Brain Vision Analyzer [11], and MNE

suite [12] in addition to other commercial, open source, and

custom tools written in programming languages like Python or

R. Researchers have also developed pipelines using these tools

to standardize processing. These software solutions are usually

shared in online repositories such as Github from which

users must download the source code, properly configure their

environment, and compile and/or install the software before

use. Some libraries may even require at least intermediate

level programming skills to actually utilize. Tools built on

top of software applications like MATLAB may simplify or

eliminate programmatic tasks associated with EEG signal data

processing and/or automatically generate code [13]. However,

the need to properly configure these tools with a wide variety

of parameterization options remains, resulting in a significant

learning curve, especially for individuals less-experienced in

the domain.

Cloud-based software as a service (SaaS) can eliminate

the need for users to download and install applications on

individual computers. With SaaS, users do not have to con-

cern themselves with this nor debugging potential application

and environmental technical issues. There has been some

efforts focused on the creation of cloud-based environments

to advance EEG research. Unfortunately, most of the cloud

platforms that we have come across either are no longer

deployed without any available code base to build upon or

the platform has not been made publicly available. Yet, with

the rapid evolution of cloud technologies, a more unified

research approach into the applications of cloud capabilities

for EEG data preprocessing and analysis is necessary for the

community to keep pace with cloud technology development,

encourage technology adoption, and increase collaboration.

Some of the most recent trends in cloud computing in-

clude significant increases in artificial intelligence (AI) and

serverless technologies [14], [15]. This raised the question,

how can the serverless technologies be applied to reduce the

inefficiencies and burden of the manual tasks associated EEG

data preprocessing?

In response and as an alternative to independent, time

intensive research to perform repetitive EEG data prepro-
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cessing tasks, we propose a more simplified and automated

method for EEG signal data processing that leverages the

accessibility, scalability, and distributed computing nature of

the public cloud. We develop an EEG preprocessing capability

as a microservice and deploy it using Amazon Web Services

(AWS) to provide reusable SaaS that reduces the time and

resources that researchers, especially those new to the domain,

spend installing, managing, and manipulating software and

software applications to replicate these common tasks. Unlike

other cloud-based efforts that relied heavily on the use of

virtual compute, storage, and networking infrastructure, or

infrastructure as a service (IaaS), we developed this cloud

based application using microservices and serverless technolo-

gies. The serverless technologies used in this work support

quicker deployments while reducing operational overhead by

leaving provisioning, scaling, and management of the server

infrastructure to the cloud service provider.

II. RELATED WORK

A. Localized EEG Data Preprocessing

First released in 1997, the MATLAB based EEGLAB

toolbox has been well maintained and provides a significant

amount of EEG data preprocessing capabilities including high

band pass filtering, line noise removal, bad channel rejection,

interpolation of removed channels, and rereferencing [10].

Due to the numerous parameterization options that can be

especially confusing to those less familiar with the tool, EEG

data preprocessing pipelines have been developed that can

be run locally to streamline and standardized the usage of

EEGLAB and other like tools.

The standardized preprocessing pipeline (PREP) [16] is one

well-known solution based on EEGLAB that was designed for

large-scale EEG analysis. It was intended to eliminate as much

noise as possible while preserving the signal and retaining

the resulting dataset in an EEGLAB structure that can be

utilized by a variety of applications. The pipeline incorporates

the EEGLAB cleanline plugin to remove line noise as shown

in Figure 1 as well as the other functions. PREP has been

utilized for EEG data preprocessing in a number of research

applications, such as EEGNet [17], before any subsequent

machine learning or other analysis techniques are applied.

The Harvard Automated Processing Pipeline for EEG

(HAPPE) [18] is based on EEGLAB and capable of reading

64 and 128 channel resting-state EEG data from Electrical

Geodesics, Inc. (EGI) files. The code used to implement

HAPPE could be modified to also import other file types. The

pipeline uses both independent component analysis (ICA) with

automated component rejection as well as wavelet-enhanced

thresholding ICA (W-ICA) to improve the end results [18].

HAPPE also generates quality metrics in a post-processing

report unlike many other pipelines created before it [18].

Other pipelines implemented with EEGLAB include Au-

tomagic [19] and the Maryland analysis of developmental

EEG (MADE) [20], both of which cite improvements over

predecessor pipelines. There are also commercial solutions

that support EEG processing and analysis like the NeuroPype

Fig. 1: Selected channel spectra before and after line noise

removal using PREP Pipeline [16]

platform [21]. At the same time, some pipeline developers

have steered away from the usage of MATLAB based tools

in order to build fully open source solutions. The MNE

software libraries for Python and C provide an open source

alternative for EEG data processing and analysis capabilities

[12]. A Python-based version of the earlier PREP pipeline,

pyprep, was built using the MNE Python library, which better

enables reuse and automation given that users do not have

to purchase any additional software licensing to incorporate

it [22]. Nevertheless, all of these localized EEG processing

solutions require users to download and install software or

incorporate libraries into custom application code. These ap-

proaches require users to not only have an understanding of

EEG signal data, but also be proficient in properly installing,

configuring, programming, and/or invoking function calls in

the proper sequence to perform a fundamental step in EEG

signal data analysis.

B. Cloud-Based EEG Data Preprocessing

Cloud services can provide powerful computing resources

that are globally accessible and scalable on demand, which

has driven an increase in its interest for EEG research and in

other domains [23]. Computing power and storage provided

on demand in the cloud also facilitates big data analytics,

which require efficient high performance processors to produce

timely results. There are some studies that document cloud

technology usage for EEG data processing and analysis.

Hosseini et al. [24] used AWS infrastructure to establish

a cloud-based solution for epileptic seizure prediction. The

application used RESTful web services to transfer data from
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a local environment to the cloud for processing and analysis

[24]. Amazon Elastic Compute Cloud (EC2) virtual servers

were incorporated into the solution to perform unsupervised

feature extraction and classification in that work [24].

A year later, the BrainBase cloud-based research platform

was established to support EEG data management [25]. It

is built using AWS and incorporates the use of Amazon

EC2 virtual servers, a PostgreSQL database, Amazon Simple

Storage Solution (S3), and Amazon Simple Queue Service

(SQS) to handle file processing. The initial version also

provided clinical file parsing capabilities and a protocol library.

However, further details of its implementation and processing

capabilities have not been made available to the public.

Rushambwa et al. [26] developed a system to perform

EEG signal data processing and analysis for epileptic seizure

detection. The system completes EEG data acquisition and

processing in a local environment before transferring it to

a private channel in ThingSpeak.com, an Internet of things

(IoT) analytics platform service for aggregating, visualizing,

and analyzing live data streams in a cloud environment [26].

Once in the cloud, feature extraction and analysis is performed

to classify data sets as epileptic or non-epileptic.

However, in just the few years, the use of serverless tech-

nologies has significantly increased in industry [15]. Initially,

serverless technologies centered largely around the use of

function as a service (FaaS) like AWS Lambda and Google

Cloud Functions, which can run code written in multiple

programming languages in response to events. Microservices

were viewed as an architecture different from the serverless

paradigm [27], [28]. However, FaaS often has execution time

limitations to prevent run-away functions, making them not

appropriate for longer running services and/or more complex

applications. The introduction of serverless container options

like Amazon Fargate enabled the auto-scaling of microservices

and expanded the list of available serverless technologies [29].

III. METHODOLOGY

We selected AWS as the platform on which to deploy our

EEG data retrieval and preprocessing software capabilities to

produce a highly scalable system. Rather than requiring users

to download data and subsequently upload it into another

application as often performed during EEG research, the

microservices developed in this work retrieve selected data

files directly from cloud-based data storage repositories as later

described. The Python-based Flask micro web framework is

used to create the web applications deployed to AWS. It is

a lightweight, scalable option known to be easier to use in

comparison to other frameworks. All software development

was performed on a laptop running Windows 11 with Python,

Visual Studio (VS) Code, Docker Desktop, and AWS Com-

mand Line Interface (CLI) installed.

As seen in Figure 2, we use several serverless services

including Amazon Fargate, Lambda, and DynamoDB, which

are further described in the subsections that follow. Serverless

technologies eliminate the need for infrastructure management

tasks like capacity provisioning and patching.

A. Data Sources and Management

EEG signal data is retrieved from Amazon S3 buckets,

which is Amazon’s blob storage solution. There are two

sources of raw data in this initial work. Raw data obtained

from a prior study [30] was uploaded to an internal S3 bucket

to make it available for use. In addition to this, OpenNeuro

provides access to raw EEG data files via its website, its

Python library, and an open access Amazon S3 bucket [31].

We programmatically obtain data [32] from the OpenNeuro

S3 bucket to demonstrate a consistent method of retrieving

raw EEG data between internal and external sources. The

OpenNeuro datasets are stored in accordance with the Brain

Imaging Data Structure (BIDS) standard for file storage and

sharing [31]. While our implementation does not currently

enforce strict adherence to the BIDS format, it does expect

that a directory for each study is stored in the root of the S3

bucket, with each containing separate sub-directories for every

subject in the study. A third S3 bucket was created to store

files resulting from completed EEG data preprocessing tasks.

An Amazon DynamoDB NoSQL database is used as a part

of the overall solution. A key-value database table, FilePro-

cessingTask, was created for storing and tracking the status

of preprocessing tasks submitted. A user was created through

the AWS Identity and Access Management (IAM) service with

the AmazonDynamoDBFullAccess AWS managed permission

policy as well a custom policy to permit the creation of

database access keys. The access keys were assigned to the

user to support programmatic interactions. DynamoDB stream

service was enabled on FileProcessingTask table through the

AWS Management Console. This stream is used to trigger file

processing as later described.

Each task in the FileProcessingTask table can currently have

one of four statuses assigned to them:

• Pending: Assigned to new EEG file preprocessing task.

• Preprocessing: The task was received by the EEG Pre-

processing service.

• Completed: All steps in the pipeline have been completed.

• Error: A critical failure occurred preventing completion.

B. User Interface

The User Interface (UI) was created primarily using the

Flask micro web framework, WTForms, and Bootstrap web

design front-end framework. Amazon Elastic Beanstalk was

used to deploy it to the cloud. The UI is composed of three

main pages: a home/introductory page, a page used to submit

file processing requests, and a page for viewing the status

of requests and downloading the resulting files. All three of

these pages are accessible from the menu at the top of each

page. The Process File page permits users to select the data

source, the internal S3 bucket or OpenNeuro, and subsequently

select a study then one or more subjects from the study to

be processed. Additional user parameter options include the

montage, which is the arrangement of EEG channels used

during the recordings, and signal filtering settings.

When a file processing request is submitted, a record

is immediately added to the FileProcessingTask DynamoDB
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Fig. 2: Serverless EEG Data Preprocessor Framework

table with a unique identifier created for the request. The

Amazon SDK for Python, Boto3, is used to perform basic

create, retrieve, update, and delete (CRUD) operations on

DynamoDB tables. Amazon API Gateway could be used to

handle the authentication of requests and database updates but

was not included in this simplified implementation. The user

is immediately notified that the request has been successfully

captured in the database and can submit additional requests or

navigate to other pages while waiting for the file processing

to complete. With none of their local computing resources

impacted by the cloud-based data processing, users could also

continue with other localized work.

Amazon Lambda, which provides FaaS, is used here to

handle events as they are captured on the DynamoDB stream.

The Lambda function will determine if an event on the

DynamoDB stream is a new record insert signifying a new

file processing task. If so, the Lambda function will send the

file processing task to the application load balancer (ALB)

of the EEG Data Preprocessing Service, as later described,

to initiate the EEG data preprocessing. The status of the task

is updated to Preprocessing in DynamoDB upon successful

initiation.

C. EEG Data Preprocessing Capability

An event-driven microservice was created using Python to

provide the signal data preprocessing capability. The service

expects an HTTP PUT request with a JSON body containing

the task identifier, selected S3 bucket, study identifier, subject

identifier(s), and other parameters entered by the user. The

application retrieves the selected file(s) from its source S3

bucket using Boto3. MNE is used to read data from various

EEG file formats, perform downsampling as needed, and

generate visualizations [12]. The pyprep library is used to

clean the EEG signal. Pyprep simplifies the process of filtering,

removing line noise, bad channel rejection, and interpolation

as shown in Figure 3 [22]. Some initial feature data is also

generated using MNE, numpy and scipy libraries.

Fig. 3: Code snippet for PREP pipeline execution

prep = PrepPipeline(raw_copy, prep_params, montage)
prep.fit()
# raw_eeg contains processed data if fit() invoked
return prep.raw_eeg

While other output formats could be supported, the appli-

cation currently produces its clean output data file in CSV

format. The output file, time and frequency based feature data,

and time-domain and power spectral density (PSD) plots are

added to a zip file and saved in the eeg-clean-data S3

bucket. Object creations in the S3 bucket automatically trigger

another Lambda function that is responsible for updating the

status of the file processing task to Completed in DynamoDB.

Once marked as completed, users can download the zip file

from S3 using icons on the View Task page of the UI.

D. Service Container Orchestration

All of the microservice’s dependencies were saved to a

requirements.txt file and a Dockerfile was added
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Fig. 4: A PSD plot generated by the EEG Data Preprocessing

service

to the program directory to support the creation of a Docker

container image. The Python official Docker image is used,

instead of building an image from a Linux distribution, since

it already has all the tools and packages needed to run a Python

application. Commands to build the Docker image, tag it, and

push it to a private Amazon Elastic Container Registry (ECR)

repository were executed in a VS Code terminal window.

Amazon Elastic Container Service (ECS) is an AWS con-

tainer orchestration service used here to create a serverless

solution. A new ECS cluster managed by AWS Fargate was

created. A new Fargate task definition was then created that

referenced the URI of the Docker image previously pushed to

the ECR repository. In this task definition for the containers,

2 virtual CPU (vCPU) and 4 GB of memory was reserved. An

ALB was also created to distribute incoming application traffic

across multiple containers. The inbound traffic rules for the

security group assigned to the ALB were modified to permit

traffic on the HTTP port. The task definition and load balancer

were used to configure and deploy a new service in the ECS

cluster. The service was configured to have a minimum of 3

containers running with autoscaling up to a maximum of 8.

IV. RESULTS AND DISCUSSION

Amazon CloudWatch collects performance and operational

data in the form of logs and metrics from ECS, DynamoDB,

and Lambda in this application. To evaluate performance, we

examined CPU utilization and memory utilization metrics for

the EEG Data Processing service while executing several tasks.

We also examined the total processing time for each task. In

this case, each task will equate to processing files for one

subject from a study selected from the OpenNeuro database

[32].

Metrics were initially collected after processing the 30 MB

data file for one subject from the selected study. The study

used a sampling rate of 500 Hz with 10uV/mm resolution

[32]. The end-to-end processing was completed within 55

seconds and the service had an average CPU utilization of

2.31% with a maximum CPU utilization of 63.44% as seen

in the first spike in Figure 5. We then processed five data

files simultaneously. The application took 128 seconds to

complete all five tasks as configured. However, CPU utilization

spiked to 99% during the execution and remained there for

several minutes. Changing the task definition to reserve 4

vCPU and 8 GB of memory of each container lowered total

execution time to 103 seconds for the five tasks. We expect

that additional performance tuning of the microservices and

cloud environment could further improve results.

Although autoscaling was turned on and CPU utilization

spiked, CPU utilization was low on average. Therefore, the av-

erage CPU utilization threshold had to be lowered significantly

before it would trigger the creation of additional containers

using that metric. Also, due to the amount of processing time

required and/or the amount of time it takes to launch a new

container, there appeared to be data loss between the Lambda

function and the service when the number of tasks processed

simultaneously was increased to 10. To initially combat this

issue, the batch size and batch window was increased for

the Lambda function that sends data to ECS. However, long

running batches could cause the Lambda function to reach its

timeout threshold.

Fig. 5: EEG Data Preprocessing Service CPU Resource Uti-

lization

As a result of the observations, the framework was modified

so that the Lambda function sends new tasks to an SQS queue

instead of directly to ECS, thereby eliminating the data loss

previously encountered. The code comprising the worker con-

tainer images was modified to long poll the queue for new file

processing tasks to complete. Step autoscaling, based on the

number of visible tasks in the queue, replaced the CPU based

autoscaling. While the EEG preprocessing service containers

were initially configured to long poll the queue constantly,

current system usage remains low in this developmental stage.

Therefore, cloud service costs are reduced by having these

workers stop polling the queue if no tasks are found after

a several attempts until they are triggered to resume polling

again by the Lambda function.

V. CONCLUSION AND FUTURE OUTLOOK

In this work, a serverless EEG data retrieval and preprocess-

ing framework was developed and examined. Through it, we

eliminated data download requirements via direct interfaces

with public cloud data repositories. We demonstrated the use

of AWS ECS on AWS Fargate and Lambda functions to

produce a scalable EEG data preprocessing capability. The

initial design using the ALB worked well with a small number
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of tasks. However, we found using SQS with polling better

handled higher numbers of long running tasks. We showed

how increases in computing power in terms of vCPU and

memory reduced processing time but could also increase

costs. Additionally, we demonstrated how autoscaling can be

configured to handle workload increases by creating more

worker containers in response to changes in CPU utilization,

memory utilization, or even custom metrics like queue size.
We continue to develop enhancements to this framework to

include to security improvements, additional error handling,

further decoupling of services as well as additional user

parameter options for algorithm performance optimization.

We also plan to incorporate additional services into the ECS

cluster to expand the system’s EEG analysis capabilities.

Further evaluation of the resulting system in terms of system

performance and usability through an approved user study will

be completed in the near future.
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