
Change Detection Optimization in Frequently
Changing Web Pages

L. B. Meegahapola, P. K. D. R. M. Alwis,
L. B. E. H. Nimalarathna, V. G. Mallawaarachchi,

D. A. Meedeniya
Department of Computer Science & Engineering,

University of Moratuwa, Sri Lanka
{lakmalbuddikalucky.13, alwisroshan.13, eranga.13,

vijini.13, dulanim}@cse.mrt.ac.lk

Sampath Jayarathna
Department of Computer Science,

 California State Polytechnic University
Pomona, CA 91768

ukjayarathna@cpp.edu

Abstract— Web pages at present have become dynamic and
frequently changing, compared to the past where web pages
contained static content which did not change often. People have
the need to keep track of web pages which are of interest to them,
using bookmarks in the web browser and continuously keep
track of them in order to get the updates. Tracking changes
which occur in these bookmarked web pages and getting updates
has become a significant challenge in the current context. Hence
there is a need for better and convenient methods to keep track of
web pages. Many researches and implementations have been
carried out in order to increase the efficiency of change detection
of web pages and related algorithms. In this paper, we discuss the
architectural aspects of change detection systems and introduce
an optimized change detection solution including a web service,
browser plugin and an email notification service. Consequently,
this research will pave the way for a novel research area to
explore.

Keywords— Change detection; change notification; distributed
architecture

I. INTRODUCTION
The World Wide Web (WWW) is growing at a quick pace

and it has become a challenge to track changes because the
content of the Web is changing continuously. In order to detect
the changes, people had to retrieve web pages periodically,
which was both inefficient and time consuming [1]. However,
with the introduction of Change Detection and Notification
(CDN) systems, users can easily get notified about changes to
web pages without having them to retrieve these documents. At
present many CDN systems have emerged to automate the
process of change detection. Google Alerts [2] and Follow That
Page [3] are two of the most popular change detection services
available at present. However, because of the rapid growth in
the number of websites being tracked and the vast number of
users getting registered every day, current change detection
systems have come across many performance issues [4], [5].

Change detection in web pages can be classified into two
categories based on the architecture involved in the detection
system. Namely they are Server side detection and Client side
detection. In change detection systems where server side
detection architecture is used, the processing load of the server

increases when the server has to crawl a vast number of web
pages. Furthermore, the detection frequency for a particular
web page may be decreased as well. Scaling of such server
based change detection services has become time consuming
and expensive. The client side architectural approach utilizes
client machines to poll the web pages and track their changes.
When we review existing change detection systems based on
client side detection, users with spare computing resources will
be able detect frequent changes to web pages whereas, the
remaining fraction of users may not detect these changes.

The above mentioned two architectures have their own
strengths and limitations when considering certain aspects such
as computational power, performance, speed of detection and
time taken to detect. There is a clear need for an improved
solution which optimizes the change detection mechanism and
combines the advantages of both architectures while
eliminating their weaknesses. This paper explores the
limitations of existing change detection systems and proposes
an efficient change detection solution.

 This paper presents a solution with an optimized change
detection system with a hybrid architecture. Section II
discusses the related work in the area of CDN systems. Section
III describes the system architecture of the proposed solution
with its main features and Section IV explains the methodology
including the experiments we have carried out. The obtained
results discusses in Section V. Finally, Section VI concludes
the paper with the importance of the work being carried out.

II. BACKGROUND
A wide range of research studies have been carried out on

detecting changes of digital collections [4], [5], [6], [7].
Nadaraj [4], has described an approach for distributed content
aggregation and change detection of web content utilizing
client resources. In that approach, the consumers obtain the
crawling data from a queue and run the crawlers on the
working machine. It distributes the work among consumers
while increasing the efficiency of the crawling mechanism. It
also minimizes the coupling of spiders to particular machines,
allowing them to operate freely in distributed networks and can
be considered as a scalable content classification approach.
Bloom filters have been used to detect the duplicate URLs and

978-1-5090-6491-5/17/$31.00 ©2017 IEEE

content in the site. However, bloom filters can only confirm
that the crawled URL was not visited previously.

The work done in [5] has focused on classifying web pages
in a digital collection and detecting the changes which have
occurred in them. This system keeps track of the differences
between two versions of a particular web resource within a
digital collection in order to detect the changes which have
occurred. As a study, they have mainly considered conference
web sites for their data collection. Another interesting work is
presented in [6] that detects changes in distributed and
collaborative data collection. They have presented a Web
Change Detection (WCD) system that detects the changes of
the web pages and notifies them. This is primarily used by
search engines in order to determine when web pages should be
crawled and indexes should be built. They have considered
PageRank values using shash tool to detect the near duplicates.
This tool provides fast change detection with a low
maintenance cost. However, if there are many requests at a
given time, due to heavy usage, the system may not be able to
process those in real time.

Architecture for a parallel crawling of the web pages using
multiple machines and integrating the trivial issues of crawling
is presented in [7]. They have provided a three-step algorithm
for detecting web page changes. The server has a unique
method for distribution of URLs to client machines after
determination of their priority index. However, the clients are
server nodes themselves. Hence the number of server nodes has
to increase when scaling the system. This will yield in high
costs as well.

ChangeDetection.com [8] and ‘Follow That Page’ [3] are
popular free online services that provide change detection and
notification facilities for online users. Users have to register to
these services by providing the page URL and the email
address where notifications should be sent. However, if a
particular user has a vast number of web pages to track, many
performance issues may arise and the user will not be notified
regularly. Distill Web Monitor [9] (formerly known as
AlertBox) is a Firefox plugin, which monitors web pages to
identify changes and sends notifications by email and SMS.
However, with this plugin, certain users might not detect the
changes as frequently as the remaining fraction of users.

III. SYSTEM ARCHITECTURE

A. Overview
Many researches and implementations have been carried

out in order to increase the efficiency of change detection of
web pages and related algorithms such as tree comparison
techniques [10] and diff algorithms [11]. It is evident from
most of the recent research in this area that researchers are
more focused on improving the efficiency algorithmically.
Lack of focus on architectural aspects of change detection can
be clearly seen when exploring the available change detection
systems and modern research. To fill this void, we have come
up with a new area of research to improve the architectural
aspects of change detection and notification systems. We have
created a hybrid solution combining server side and client side
change detection systems where limitations of both the
architectures are reduced. In creating this novel architecturally

improved solution we used currently available change
detection algorithms and methodologies. The main aim of this
architecture is to ensure that the frequent changes are identified
and clients are notified. This also makes sure that no
intermediate changes are missed by the change detection and
notification system.

B. Hybrid Architecture
Fig. 1, shows a high level view of our hybrid solution

considered for this research. It comprises of three main
components. First component is the Web application with web
service. This is where a user can submit a link in which they
want to track changes. The second component is the Web
browser plugin for client side change detection. In fact we
created a Google Chrome app for this purpose. The final
component is the Email notification service which alerts users
when a change is detected.

Fig. 1. High level view of the hybrid architecture.

According to the proposed hybrid architecture, the server
has a main list of web pages to crawl. As shown in Fig. 1. this
list contains web pages which were submitted by clients to
track. When a new web page is added, this solution runs a
server side algorithm to determine the change frequancy [12]
of a particular web page using Poisson model [13]. Here, it is
important to estimate the polling rate of a particular web page
in order to detect changes. After this process, the web page
will be added to the main list of web pages the server has to
poll. However, the issue comes when the list increases. In order
to keep up with the pace of change detection, the server needs
to be scalable. This may result in many negative implications
such as high cost and time consumption.

This approach uses client side detection to cater the above
mentioned scalability issues. When a web page is added by a
user, the server prepares a schedule for all the clients who have
requested to track that particular page. When a new client
requests to track an existing page, the server includes that client
as well for the schedule of that particular web page. After
preparing the schedule, the server communicates the polling
times and time intervals to the clients. Fig. 1, describes this
situation where a Client Scheduler with the clients who have
subscribed to get updates for a particular web page is visible.
After the scheduling process, the server goes through the list of
web pages and tries to detect changes using a machine learning
based algorithm [5], where it tries to detect both relevant and

irrelevant changes. If a relevant change is identified, the clients
are notified through emails.

While the server is processing, the clients executes the
process of identifying changes based on the schedule. However
considering the processing power requirements, clients are only
running a light weight change detection algorithm [11]. This is
to ensure that the browser plugin does not use a high
processing power. In case a change is found, the client plugin
notifies the server and server runs the machine learning based
algorithm to confirm the change and find both relevant and
irrelevant changes. If relevant changes are found, the server
will notify all the relevant clients through an email. With the
new architecture, the time between two server polls is divided
between clients until the time between two client polls reaches
a minimum value. This ensures that the changes can be
detected even in frequently changing web pages.

C. Change Detection

Fig. 2. Server side change detection mechanism.

Fig. 2, presents the work flow diagram of the server side in
the proposed hybrid change detection solution. It explains how
the components such as Scheduler, Web Crawler, Parser and
Notifier work together to make the entire process efficient and
effective.

Given below is the terminology used in Fig. 2.

• Browsing List: List of URLs of web pages which were
requested by the users to track and detect changes. Each
of the URLs is mapped to a set of clients who have
requested to detect changes in those web pages.

• Scheduler: Generates two main schedules; the schedule
for clients who have requested to track a particular web
page and the schedule for the server side detection.

• Web Crawler: Retrieves web content via Internet by
crawling through those web pages.

• Version Controller: To detect changes, previous versions
of a particular web page need to be there. Version
controller is responsible for handling previous versions
(handle CRUD operations).

• Version Storage: Collection of previous versions of the
web pages in list of URLs.

• Algorithm Loader: Loads the necessary algorithms and
modules to detect changes in the web pages. It uses the
current version of a web page and the previous version
from the Version Storage to detect changes.

• Machine Learner: Consists of the machine learning model
which helps to classify the types of changes occurring in
web pages.

• Comparison System: Evaluate changes happen in the
comparison System or the comparison module.

• Notifier: Email notification system to notify clients who
are interested in the changes of a particular web page.

IV. METHODOLOGY

A. Survey Statistics
Initially we conducted a survey [14] to understand the

participants who are interested in detecting web page changes.
The sample contained 200 randomly selected users. The results
[15] show that out of the sample, 82% had the need to track
changes in web sites as given in Fig. 3 (a) and 83% of them
kept refreshing some page expecting a change to occur as
shown in Fig. 3 (b). Only 70% of the participants have
actually used a tool to track the changes, which is depicted in
Fig. 3 (c). According to Fig. 3 (d), 76% of the participants
liked to have an efficient tool to track changes in web pages.

Fig. 3. Answer analysis of the survey questions.

83%

17%

Yes No
(b) Question 2

70%

30%

Yes No
(c) Question 3

76%

17%

7%

Yes I don't care No
(d) Question 4

82%

18%

Yes No
(a) Question 1

B. Implementation Procedure
When a client detects a change, that client will notify the

server and then add the client request to the User Generated
Linked List. While the server is executing the normal schedule,
it runs a micro service to take care of the User Generated
Linked List. This micro service detects the changes in the web
pages in the User Generated Linked List using the machine
learning based model and notifies the clients if any relevant
change is presented. The Web Crawler downloads the current
version of the web page to the server and the content of the
web page parses into a HashMap by the Parser. Version
Controller goes through the Version Storage and brings the old
version of that particular web page, which is used by the
Comparison System to detect any changes. Machine Learner
facilitates to determine relevant changes and if the changes
exceed the threshold, the clients will be notified through emails
using the Notifier.

Given below is the terminology of Algorithm 1.

• time_gap: Optimal time gap between two crawls to
detect meaningful changes for a particular link

• crawl_gap: Time gap between two crawls for a
particular client for a particular web page.

• delay_to_start: Time that the client will wait after
receiving the start command before starting its initial
crawling for the new schedule.

According to the pseudocode shown in Algorithm 1,
Scheduler executes at the beginning of the each iteration. It
iterates links in the Link Storage and identifies the links with
changes in their Client Lists. Then Scheduler generates
schedules for those links. The time_gap allocated for each link
decides the crawl_gap for a particular client. For each client in
the Client List, the server initiates at different time points
(using delay_to_start) and maintains the crawl_gap from their
starting points until the next scheduling.

Algorithm 1 Scheduling Clients
Require: List of clients, Dataset of links
Ensure: Schedule clients to optimize change detection
1. Start
2. while link in link_storage
3. if isClientsChanged(link) then
4. client_list = getClientList(link)
5. time_gap = getTimeGapFromLink(link)
6. delay_to_start = 0
7. crawl_gap = time_gap * size(client_list)
8. for client in client_list:
9. notifyClient(client, link, crawl_gap,

delay_to_start)
10. delay_to_start = delay_to_start + time_gap
11. End

If the update frequency of a web page is high, it will
determine by the Poisson model as described in [13] and the
minimum time between two client polls will adjust accordingly
to ensure that any changes are not missed by the change
detection algorithm. This minimum time depends upon the

change frequency and the number of clients available to detect
changes of that particular web page. When considering a
scenario with a large number of clients, still the server would
schedule considering the optimal number of clients necessary
to detect changes of the particular web page. Hence, there will
not be an overhead for the system when the number of clients
for a web page is increased.

C. Experimental Setup
For a selected 20 frequently changing websites, we

executed a lightweight algorithm (O(n) time complexity) to
detect whether the site was changed. If it has changed, we
used a machine learning based algorithm (O(n2) time
complexity) to provide more information on the relevancy of
the change and to understand the type of changes occurred.
The light weight algorithm first creates a tree structure of the
web page and then computes a hash value for each node of
that tree. It compares hash values of two different versions of
the same website and identifies if there is any change.
Furthermore, it could detect changed nodes, unchanged nodes,
missing nodes and new nodes. Since the purpose of this paper
is to describe the architectural aspect of change detection
further details are not included.

The experiments were done on a cluster of 11 Virtual
Machines (VMs) in Azure private cloud. Each VM had Linux
Ubuntu (kernel 3.13.0-36-generic). 10 VMs (acted as clients)
were running on 64-bit IntelTM Intel Xeon E312xx (Sandy
Bridge) which operates at 2.70GHz. They had one CPU
socket, with 2 cores each. L1(d/i) and L2 caches were 32KB
and 4096KB respectively. Those had 4GB RAM with one
40GB hard disk. Server VM was running on 64-bit IntelTM
Intel Xeon E312xx (Sandy Bridge) which operates at 3.4GHz.
It had four CPU sockets, with 2 cores each. L1(d/i) and L2
caches were 64KB and 8192KB respectively and RAM was
16GB.

We implemented a java application to run on client VMs
to model the client side architecture (CSA). Then clients crawl
a particular website and detect changes. The crawler runs
repeatedly to detect changes for a list of 10 web pages in order
to model the server side architecture (SSA). The proposed
hybrid architecture (HA) mentioned in Section III consists of
clients equipped with the lightweight change detection
algorithm and a server equipped with a complex algorithm that
used machine learning to classify changes. Furthermore, the
server has a scheduling algorithm to schedule clients to crawl
a particular web page by taking turns and identifying whether
changes have occurred or not.

We assigned the same web page used in CSA to 5 client
VMs of HA. Then we compared the performance of a single
client VM of HA with a client VM of CSA. We added 5 more
VMs (5 more clients) and let them crawl the same web page,
modelling the arrival of 5 new clients in HA. Ultimately, it
would mean that 10 clients are subscribed to detect changes in
that particular web page. This approach is used to compare the
impact of the number of clients subscribed for a particular web
page. We detected changes in a list of 10 web pages using
both HA and SSA and compared the performance of the
server. Next, we added 10 more new websites to track in HA
and compared the arrival of new websites to HA to compare

the impact on performance when new web pages were
introduced. In each test, we collected Java Flight Recorder
[16] dumps to analyze CPU, memory and network usage.

V. RESULTS AND DISCUSSION
We have measured the average resource utilization of both

client and server architectures with the proposed hybrid
architecture (HA). As shown in Table I, the client side
architecture requires more resources than the proposed hybrid
architecture, because each client has to crawl and detect
changes on its own. In the proposed HA, when the number of
clients subscribed for a particular web page doubled from 10
to 20, the detection frequency of a client got almost halved
without affecting the frequency of the overall change detection
as shown in Fig. 4 (a), (b) and (c). Ultimately, when more
clients are added, the overall change detection frequency is
increased, because the time between two server polls are
divided among more clients to poll that particular website.

Resource utilization of the server has not deviated much
when the architecture is changed from SSA to HA, which can
be seen according to the results in Table II and Fig. 5 (a), (b)
and (c). This is due to the server crawls through its website list
repeatedly regardless of the number of web sites. Since clients
crawl for changes in parallel to the server in HA, the frequency
of detecting changes of a particular web page is still much
higher than SSA. Another advantage in HA is that the server
does not have to scale up in order to detect changes faster and
reduce the time taken to process a list of websites. In real-
world scenarios, since the number of web pages to be tracked
can go beyond 100,000, this proposed method would be
crucial.

Although the results provided are for a set of 20 web pages
and 11 virtual machines, the proposed solution can be easily
scaled to cater a large number of web pages and devices, as it
is supported by the design of the scheduler and the hybrid
architecture. Furthermore, results clearly show that even when
no client is online (worst-case scenario), it would provide
good results as the server side detection system. However,
when many clients use the system, above worst case scenario
has a low probability to occur. Hence, when the system is used
by many users, the system would work effectively all the time
compared to any currently available system.

TABLE I. AVERAGE RESOURCE UTILAZATION OF A CLIENT IN CLIENT
SIDE ARCHITECTURE VS. HYBRID ARCHITECTURE

AVERAGE
USAGE

Any Number of
Clients (CSA) 5 Clients (HA) 10

Clients(HA)

CPU 3.84% 1.64% 0.966%

Memory 45MiB 39.4Mib 31MiB

Network 177,734 bytes 95,354 bytes 43,827 bytes

TABLE II. AVERAGE RESOURCE UTILIZATION OF THE SERVER IN SERVER
SIDE ARCHITECTURE VS. HYBRID ARCHITECTURE

AVERAGE
USAGE

10 Web Pages
(SSA)

10 Web Pages
(HA)

20 Web Pages
(HA)

CPU 31.1% 34.2% 31.1%

Memory 234MiB 234MiB 196MiB

Network 418,646 bytes 420,435 bytes 422,439 bytes

 Fig. 4. Performance Analysis of Clients.

(a) A client in client-side architecture (CSA)

(b) A client in from 5 clients in hybrid architecture (HA)

(c) A client in from 10 clients in hybrid architecture (HA)

N
et

w
or

k
U

sa
ge

N
et

w
or

k
U

sa
ge

N
et

w
or

k
U

sa
ge

 Fig. 5. Performance analysis of the Server.

VI. CONCULSION
Change Detection and Notification (CDN) systems have

made a significant impact on the area of information retrieval
by automating the process of change detection. However, still
there are opportunities for improvement on the current
implementations of CDN systems when considering
performance and speed of detection. This paper has proposed
a hybrid architecture that supports the optimization of current
change detection systems. Survey responses have shown that
people prefer more efficient means to keep track of the web
pages. An experimental study was carried out to compare the
performance of the proposed hybrid architecture. The results
indicate that there is a significant improvement in the
performance of change detection. This study has paved the
way for a new area of research in the field of change detection
using the proposed hybrid architecture.

REFERENCES
[1] S. Chakravarthy and S. Hara, "Automating Change Detection and

Notification of Web Pages (Invited Paper)," in 17th International
Workshop on Database and Expert Systems Applications, Krakow,
Poland, 2006, pp. 465-469.

[2] "Google Alerts - Monitor the Web for interesting new content,"
[Online]. [Accessed 8 February 2017].

[3] "Follow That Page - web monitor: we send you an email when your
favorite page has changed," [Online]. Available:
https://www.followthatpage.com. [Accessed 8 February 2017].

[4] S. Nadaraj, "Distributed Content Aggregation& Content Change
Detection using Bloom Filters," International Journal of Computer
Science and Information Technologies,, vol. 7, no. 2, pp. 745-748,
2016.

[5] S. Jayarathna and F. Poursardar, "Change Detection and Classification
of Digital Collections," in 2016 IEEE International Conference on Big
Data, Washington D.C., USA, 2016, pp. 1750-1759.

[6] M. Prieto, M. A. lvarez, V. Carneiro and F. Cacheda, "Distributed and
Collaborative Web Change Detection System," Computer Science and
Information Systems, vol. 12, no. 1, pp. 91-114, 2015.

[7] D. Yadav, A. Sharma, J. Gupta, N. Garg and A. Mahajan, "Architecture
for Parallel Crawling and Algorithm for Change Detection in Web
Pages," in 10th International Conference on Information Technology,
Orissa, India, 2007.

[8] "Change Detection - Know when any web page changes," [Online].
Available: https://www.changedetection.com/. [Accessed 4 Feburary
2017].

[9] "Distill Web Monitor," [Online]. Available:
https://addons.mozilla.org/en-us/firefox/addon/alertbox/. [Accessed 4
February 2017].

[10] S. D. Jain and H. Khandagale, "A Web Page Change Detection System
For Selected Zone Using Tree Comparison Technique," International
Journal of Computer Applications Technology and Research, vol. 3, no.
4, pp. 254 - 262, 2014.

[11] Y. Wang, D. J. DeWitt and J. Y. Cai, "X-Diff: an effective change
detection algorithm for XML documents," in 19th International
Conference on Data Engineering, Bangalore, India, 2003, pp. 519-530.

[12] D. Ford, C. Grimes and E. Tassone, "Keeping a Search Engine Index
Fresh: Risk and optimality in estimating refresh rates for web pages," in
Proceedings of the 40th Symposium on the Interface: Computing
Science and Statistics, Durham, NC, USA, 2008, pp. 1-14.

[13] C. Grimes and S. O’Brien, "Microscale Evolution of Web Pages," in
17th International World Wide Web Conference, Beijing, China, 2008,
pp. 1149-1150.

[14] "Survey on Change Detection in Webpages," [Online]. Available:
https://vijinim.typeform.com/to/dlnPdY. [Accessed 14 February 2017].

[15] "General report - Survey on Change Detection in Webpages," [Online].
Available: https://vijinim.typeform.com/report/dlnPdY/kcXx.
[Accessed 5 March 2017].

[16] "Java Flight Recorder Runtime Guide," [Online]. Available:
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-
guide/run.htm#JFRUH164. [Accessed 27 February 2017].

(a) Server with 10 pages in server-side architecture (SSA)

(c) Server with 20 pages in hybrid architecture (HA)

(b) Server with 10 pages in hybrid architecture (HA)

N
et

w
or

k
N

et
w

or
k

N
et

w
or

k

