

Random Forest Classifier based Scheduler Optimization
for Search Engine Web Crawlers

Lakmal Meegahapola, Vijini Mallawaarachchi,
Roshan Alwis, Eranga Nimalarathna, Dulani

Meedeniya
Department of Computer Science & Engineering

University of Moratuwa, Sri Lanka

Sampath Jayarathna
Department of Computer Science

California State Polytechnic University
California, United States of America

ABSTRACT
The backbone of every search engine is the set of web crawlers,

which go through all indexed web pages and update the search

indexes with fresh copies, if there are changes. The crawling

process provides optimum search results by keeping the indexes

refreshed and up to date. This requires an “ideal scheduler” to

crawl each web page immediately after a change occurs. Creating

an optimum scheduler is possible when the web crawler has

information about how often a particular change occurs. This

paper discusses a novel methodology to determine the change

frequency of a web page using machine learning and server

scheduling techniques. The methodology has been evaluated with

3000+ web pages with various changing patterns. The results

indicate how Information Access (IA) and Performance Gain (PG)

are balanced out to zero in order to create an optimum crawling

schedule for search engine indexing.

CCS Concepts
• Information systems → World Wide Web → Web searching

and information discovery → Web search engines → Web

crawling

Keywords
Web crawler; search engine indexes; optimum scheduler; change

frequency; information access; performance gain.

1. INTRODUCTION
Navigating through the different web pages and retrieving the

exact content is a difficult and time-consuming task. A search

engine is a system that is designed to search the World Wide Web

(WWW) for relevant web pages and content [1]. Search engines

have made the task of searching the web content easier and less

tedious. Two of the major components of a typical search engine

are the crawler and indexer, both of which play important roles in

the process of providing latest search results [2].

A search engine mainly performs three processes; crawling,

indexing and searching in a cyclic manner [3]. Figure 1, depicts

the cyclic architecture of a search engine, which facilitates to keep

search indexes up-to-date. In other words, the search results of a

search engine depend on the search indexes and if the indexes are

outdated, the search results may not be up-to-date and accurate.

Figure 1: Cyclic architecture of search engines [3]

Web crawlers are dedicated agents in search engines, which crawl

the web content and retrieve information for analysis and indexing

processes [4]. The crawling process starts from an initial set of

URLs named as the seed URLs. The crawler visits these seed

URLs, identifies the hyperlinks in the web pages and adds them to

the list of links to be crawled. URLs from this list are then

revisited based on certain policies to refresh the copy of the data

available currently. It is crucial to have an optimum schedule for

the crawlers to retrieve most recent versions of web pages.

The data obtained from the web crawlers are mainly used by

search engines for the process of indexing web pages across the

WWW [5] as well as for Change Detection and Notification

(CDN) systems [6]. Information in web pages are collected and

stored to facilitate easy and accurate retrieval. The behavior of a

web crawler is determined by number of special policies [7] to

provide information to search engines. However, with the rapid

growth of WWW, crawling each web page and retrieving the data

to detect changes has become more tedious and expensive [8].

This paper presents a novel approach to determine the change

frequency of a web page and optimum crawling schedule to get

up-to-date information about web pages to assist in indexing and

search engine optimization. Section 2 explores related wok and

Section 3 describes the methodology with the frequency detection

algorithm. Section 4 discusses the evaluation results and Section 5

concludes the paper stating possible future extensions.

2. BACKGROUND
WWW has developed and expanded to what it is at present,

consisting of billions of web pages and documents that keep on

ever changing [9]. Search engines have improved the task of

browsing and navigating through these web pages in a more user-

friendly manner. Processing such large volumes of data has

resulted in performance and efficiency issues [10]. Determining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICSCA 2018, February 8–10, 2018, Kuantan, Malaysia

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5414-1/18/02…$15.00

DOI: https://doi.org/10.1145/3185089.3185103

285

the amount of computational resources that should be assigned to

web servers is important [11]. However, it is crucial for search

engines to maintain up-to-date indexes of web pages. Many

researches have been carried out to increase efficiency of web

crawlers. Accurate prediction of significant changes in the content

of web pages enables to create an improved incremental crawling

strategy that only re-crawls web pages when necessary [12].

A study on scheduling algorithms for web crawling [13] has

discussed a major issue in web crawling; the website being

crawled can be overloaded, as the crawler can impose a huge load

on the web server. Another issue of crawling is that the crawlers

have to get updates on web pages on a periodic basis [14], and

therefore require a mechanism to detect changes in the web pages

which have been already indexed. Here, the authors have

suggested an enhanced architecture for the crawlers utilizing client

machines, along with a page update algorithm.

Coffman et al. [15], have discussed the binary freshness model,

which can be used to measure the freshness of a web page. It

compares the live copy of a particular web page with the cached

copy of a web crawler over a specific time period to check if they

are identical (or near-identical). However, the binary freshness

model lacks the ability to determine whether a page is fresher than

the other since the model outputs a binary value; fresh or stale

[12]. However, a non-binary freshness model, temporal freshness

metric, was introduced in [16]. In this model, the longer a cached

page remains unsynchronized with its live copy, the more their

content tends to drift away from the current page.

Many related studies [17] [18] [19], have identified the Poisson

model as a key element to estimate the page changes in a given

time interval. Most of the work has assumed that the changes

arrive as a Poisson process, and that the average rate of change can

be estimated under this model. Grimes et al. [18], have described a

mechanism to identify changes occurred in a web page and a

model to compute the rate of change of a given web site. However,

the question of whether all the changes that have occurred are

useful to the users is still unanswered.

The study in [20], has proposed new re-crawl scheduling policies

that consider the longevity of content in the Web. The authors

have stated the crawlers should focus on persistent content and not

on transient content such as advertisements. This approach has

obtained better freshness at a lower cost and has increased the

crawler effectiveness. Further, the work done in [21] states that

web crawlers should be aware of web page modifications and has

discussed techniques that retrieve information on such

modifications. However, the presence of multiple JavaScript and

CSS files can reduce the efficiency of certain techniques.

Our previous work. [22], has presented a novel method to detect

change frequency in web pages to optimize server-side scheduling

of CDN systems using machine learning techniques. Furthermore,

in [23], we have described an adaptive technique to carry out web

page change detection using multi-threaded crawlers. This method

can utilize existing high performance servers in an optimum

manner.

Work carried out by Radinsky et al. [24], have highlighted the

importance of an algorithm to predict changing web content where

it is useful in designing a better crawling strategy that only re-

crawls pages when it is necessary. The authors have proposed an

algorithmic framework for predicting web page changes. It

handles temporal features, derived from both single and multiple

objects over time. It is claimed that the use of page content and

related pages has significantly improved prediction accuracy.

However, identifying related pages can be computationally

expensive within a general web crawling process.

As discussed, researches have been carried out to determine the

change frequency to optimize the crawling process, which is the

largest overhead in web page indexing. However, still there is a

need for a more efficient, scalable and generalized method for web

page change detection while overcoming existing issues.

3. METHODOLOGY

3.1 Change Frequency Estimator

The proposed system consists of a list of web pages, where it has

already computed the changing frequency (or the refresh rate).

When a new page is added to the system, it goes through our

module Change Frequency Estimator Module (CFEM). As shown

in Figure 2, when the new page is added to the module, it crawls

the page and saves the initial version of the web page in the

Version Repository (VR). Then it crawls the web page in the

specified fixed time intervals: 4 hours, 6 hours, 9 hours, 14 hours,

21 hours, 32 hours, 48 hours and 72 hours, to determine the

changes compared to the initial version and subsequent fetched

versions of the same web page. The change values for each of the

time intervals are then saved in the Change Data Repository

(CDR). The change values contain 3 types of content changes

(number of new element additions, missing elements, element

modifications) and attribute changes.

Figure 2. Work Flow of the Change Frequency Estimator

Module & its interaction with the Web Search Engine.

286

At the end of all change detection iterations of a web page, data

from CDR for that particular web page are sent to the random

forest learner model in H2O.ai machine learning API [25], and

outputs a loop-time basket. The data from CDR are the features

used in the random forest machine learning model described in

Figure 3, to predict which loop-time basket a particular web page

should be categorized into. In the random forest classifier we used

the term Loop-time basket, which is a predicted time interval

between two crawls for a particular web page.

The random forest classifier has 9 trees and each tree has a

training data set, which is represented using a feature matrix. It

should also be noted that each tree contain training data collected

from a particular type of web page meaning that data from web

pages with a very high change frequency would be present in the

feature matrix of tree 1 and data from web pages with a very low

change frequency would be present in the feature matrix of tree 5.

Each row of the feature matrix represent a set of change values X4,

X6, X9, X14, X21, X32, X48, X72 of a particular web page where X4

means the change value after 4 hours from the time that the initial

version was stored in VR and X72 is the change value after 72

hours from storing the initial version of the web page. Hence, a

data point in the matrix can be depicted as given in Equation 1 and

n is the number of rows of a feature matrix.

Data Point = xi,j

where (i{1..n} and j{4,6,9,14,21,32,48,72}) (1)

When a new change value set is sent to the random forest

classifier, the change value set would be an array of 8 elements.

This value set is passed to each tree in the classifier. The deviation

calculation algorithm is used inside the decision trees to find the

fit of the newly sent data array with the data set.

rowDeviation =
 ∑ |𝑋𝑖−𝑌𝑖|

𝑖 /𝑋𝑖

 8
 x 100%

 where i{4,6,9,14,21,32,48,72} (2)

As given by Equation 1, the algorithm inside the classifier finds

the sum of residual errors between each data element of the input

array compared to a dataset present in a row of the feature matrix.

This rowDeviation calculation suggested by Euation 2 is repeated

for each row of the feature matrix as given by Algorithm 1.

The considered Random Forest Classifier has 9 trees, as shown in

Figure 3. The first 5 trees combine to give a decision on how often

a web page would change and the next 4 trees explore the

behavioral elements of the web page in order to predict a

regression value (a percentage), whether the web page has relevant

changes or irrelevant changes using a modification to the

methodology suggested by the work done in [26]. If all the

changes are relevant, the regression value would be 100% and if

all the changes are not relevant, the value would be 0%. Both

regression value and most voted class combine to finally output

the predicted loop-time basket for a particular web page as given

by algorithm 1.

Algorithm 1 Modified Random Forest Classifier

Require: Array of change values of a web page

Ensure: Find a new perfect frequency to poll the web page

1. input: changeValueArray

2. treeOutputs = {array with 5 elements initialized to zero}

3. for each tree in random forest

4. threashold1

5. votes = 0

6. for each row in feature matrix

7. rowDeviation = Calculate using equation 2

8. if(rowDeviation< threashold1)

9. votes++

10. treeOutputs.insert(votes/numberOfRows * 100%)

11. index = indexOfMaximum(treeOutputs)

12. flag = whether the change is relevant using trees numbered

from 6 to 9

13. if(flag or index==4)

14. loop-time basket = getTheBasket(index)

15. else

16. loop-time basket = getTheBasket(index+1)

17. output: loop-time basket

In this process, each tree checks whether the newly change value

data fits the training data set present in the feature matrix of each

tree. They output a percentage value describing the fit of the

model with the new change value data and the category of the tree

with the closest fit is chosen as the output of the classifier given

that it is identified as a relevant change using the trees numbered

from 6 to 9.

Figure 3: High level view of the Random Forest supervised

learning model

287

3.2 Experimental Setup
The accuracy of the change detection time-interval classification is

tested with a training dataset generated by randomly selecting 80%

of the data points from the dataset and the remaining 20% is

treated as test data set for each iteration. Hence, for each web page

in the test set, we have the loop-time basket which was determined

by the machine learning algorithm: say (b1) and the actual loop-

time basket, which was determined by the process suggested in

[16]: say (b2). We gave a value to the loop-time baskets from 1 to

5, where 1 is the shortest loop-time and 5 is the largest loop-time.

For each of the web pages we calculated the difference between b1

and b2. This difference could be considered as the error (E) for

each web page.

3.3 Data Set
In the current case study, we selected 3122 web pages with various

changing patterns, including frequently changing websites to static

web pages. In order to train the model in H2O.ai machine learning

API based random forest classifier, we collected data from 2498

(3122 x 80%) different web sites over a period of 12 weeks. We

divided these 2498 websites into 5 groups based on the frequency

in which they change. These web pages were passed through the

proposed CFEM and obtained the resultant dataset from CDR for

each web page. We used the methodology suggested by [27], to

find the refresh rate of web pages. Together with the change

values for each of the time intervals, the change frequencies were

used for supervised learning model. Further, 10-folds cross-

validation is applied for the training data set to avoid the over

fitting to a given scenario.

We tested the accuracy of this classifier using another 624 (3122 x

20%) new websites by putting them in one of the 5 loop-time

baskets using the changes occurring in each of the time intervals.

Therefore, each of the 624 web pages was analyzed using the

proposed algorithm and then forwarded to the classifier. We used

the method suggested by [27] for all these 624 web pages, to

obtain the categorization.

4. RESULTS AND DISCUSSION
Figure 4, shows the learning curve of the supervised classification

using H2O.ai machine learning API. The accuracy of the learning

algorithm increases with the size of both the training and test

datasets. The accuracy can be further improved by having a larger

dataset; however, it will increase time complexity due to data

labeling. Figure 4 depicts the obtained results and the most

accurate results were obtained with the largest data set. The

accuracy is measured using the residual error, which is the

distance between the actual loop-time basket value and the

predicted loop-time basket value.

When analyzing and interpreting the results obtained from the

experimental methodology, the two concepts Information Access

(IA) and Performance Gain (PG) can be used. IA is a process

where no information about successive different versions of the

web page is lost due to the small time interval of crawling a

particular web page, for which in reality has a larger refresh

rate/loop-time. PG is a process where the scheduler does not crawl

a web page often in a situation as the web page does not change

often. Processing power of the servers is saved because the

particular web page is crawled only when needed. As IA and PG

have an inverse relationship, the optimum scheduling is done

when IA and PG are both 0.

Figure 5, shows the accuracy of the classifier in determining a

loop-time basket. Previously we have defined the loop-time basket

which was determined by the machine learning algorithm as b1

and the actual loop-time basket which was determined by the

process as b2. 87.98% (the precision of the algorithm being

87.98%) of the web pages (549 out of 624) reported an error (E)

value of 0; hence, there is no deviation of the CFEM. In 45 cases,

we observed an E value of +1, which means, b1 is greater than b2.

All these cases have positive IAs because more information is

collected than normally needed. However, they have negative PGs

because they consume more processing power from the server. 19

cases showed an E of -1, which means, b1 is less than b2. These

cases have positive PGs because they are not checked as

frequently as they should be. However, they might lead to

information losses or negative IAs. Hence, we could say that our

machine learning classifier has provided accurate results where

most of the E values are 0.

5. CONCLUSIONS
This paper proposes a methodology to detect change frequency of

web pages and the evaluation study ascertains the importance of

identifying the change frequency of web pages. This helps search

engine indexers to efficiently crawl and schedule the indexes up-

to-date. In the future, we are interested on extending the proposed

work towards distributed servers where frequency detection is

based on multiple servers. Further, this research can be extended

to increase the accuracy of the machine learning model by

increasing the number of features and trees used in creating the

random forest classifier.

Figure 4: Learning Curve of machine learning model with the

size of dataset used for testing and training.

Figure 5: Distribution of E against the frequency/number of

web pages for each E

288

6. REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S.

Raghavan. Searching the Web. ACM Transactions on

Internet Technology, 1 (1), 2-43, 2001.

[2] G. Rao, G. Narender, B. Rao and M. Srilatha. Web Search

Engine. International Journal of Scientific & Engineering

Research, 2 (12), 2011.

[3] C. Castillo. 2005. Effective web crawling. ACM SIGIR

Forum, 39 (1), 55-56, 2005.

[4] K. Desai, V. Devulapalli, S. Agrawal, P. Kathiria and A.

Patel. Web Crawler : Review of Different Types of Web

Crawler, Its Issues, Applications and Research

Opportunities. International Journal of Advanced Research

in Computer Sci, 8 (3), 1199-1202, 2017.

[5] X. Jin et al., Hybrid Indexing for Versioned Document

Search with Cluster-based Retrieval. In 25th ACM

International on Conference on Information and Knowledge

Management. ACM, Indiana, USA, 377-386, 2016.

[6] L. B. Meegahapola et al., Change Detection Optimization in

Frequently Changing Web Pages. In Moratuwa Engineering

Research Conference (MERCon), Moratuwa, Sri Lanka,

111-116, 2017.

[7] S. Mali and B. Meshram. Focused Web Crawler with Page

Change Detection Policy. In 2nd International Conference

and workshop on Emerging Trends in Technology (ICWET).

Mumbai, India, 51-57, 2011.

[8] L. Meegahapola et al., Optimizing Change Detection

in Distributed Digital Collections: An Architectural

Perspective of Change Detection. In 18th IEEE/ACIS

International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/

Distributed Computing, Japan, 277-282, 2017.

[9] E. Adar, J. Teevan, S. T. Dumais and J. L. Elsas. The web

changes everything: understanding the dynamics of web

content. In 2nd ACM International Conference on Web

Search and Data Mining. ACM, Barcelona, Spain, 282-291,

2009.

[10] Y. Shi, L. Wang and F. Du. Performance and energy

efficiency of big data systems: characterization, implication

and improvement. In 6th International Conference on

Software and Computer Applications. ACM, Bangkok,

Thailand, 55-61, 2017.

[11] S. Hagihara, Y. Fushihara, M. Shimakawa, M. Tomoishi

and N. Yonezaki. Web server access trend analysis based on

the Poisson distribution. In 6th International Conference on

Software and Computer Applications. ACM. Thailand, 256-

261, 2017.

[12] C. Olston and M. Najork. Web Crawling. Foundations and

Trends in Information Retrieval, 4 (3), 175–246, 2010.

[13] C. Castillo, M. Marin, A. Rodriguez and R. Baeza-Yates.

Scheduling Algorithms for Web Crawling. In Proceedings

of WebMedia and LA-Web. IEEE, Ribeirão Preto-SP, Brazil,

10-17, 2004.

[14] D. Yadav, A. Sharma, J. Gupta, N. Garg and A. Mahajan.

Architecture for Parallel Crawling and Algorithm for

Change Detection in Web Pages. In 10th International

Conference on Information Technology. IEEE, Orissa,

India, 258-264, 2007.

[15] E. G. Coffman, Z. Liu and R. R. Weber. Optimal robot

scheduling for web search engines. Journal of Scheduling, 1

(1), 15-29, 1998.

[16] J. Cho and H. Garcia-Molina. Effective page refresh policies

for web. ACM Transactions on Database Systems, 28 (4),

390–426, 2003.

[17] D. Fetterly, M. Manasse, M. Najork and J. L. Wien. A large-

scale study of the evolution of web pages. Software:

Practice and Experience, 34(2), 213–237, 2004.

[18] C. Grimes and S. O’Brien. Microscale Evolution of Web

Pages. In 17th International World Wide Web Conference,

Beijing, China, 1149-1150, 2008.

[19] D. Ford, C. Grimes and E. Tassone. Keeping a Search

Engine Index Fresh: Risk and optimality in estimating

refresh rates for web pages. In 40th Symposium on the

Interface: Computing Science and Statistics, Durham, NC,

USA, 1-14, 2008.

[20] C. Olston and S. Pandey. Recrawl scheduling based on

information longevity. In 17th International World Wide

Web Conference. ACM, Beijing, China, 437-446, 2008.

[21] A. Anjum and A. Anjum. Aiding web crawlers; projecting

web page last modification. In 15th International Multitopic

Conference (INMIC). IEEE, Islsmabad, Pakistan, 245 – 252,

2012.

[22] L. Meegahapola et al., Detection of Change Frequency in

Web Pages to Optimize Server-based Scheduling. In

International Conference on Advances in ICT for Emerging

Regions (ICTer), IEEE explorer, Colombo, Sri Lanka, 165-

172, 2017.

[23] L. Meegahapola et al., Adaptive Technique for Web Page

Change Detection using Multi-threaded Crawlers. In 7th

international conference on Innovative Computing

Technology, London, 2017.

[24] K. Radinsky and P. N. Bennett. Predicting Content Change

on the Web. In 6th ACM international conference on Web

search and data mining. ACM. Rome, Italy, 415-424, 2013.

[25] Cook, D. (2016). Practical Machine Learning with H2O. 1st

ed. O'Reilly Media, Incorporated.

[26] S. Jayarathna and F. Poursardar. Change Detection and

Classification of Digital Collections. In 2016 IEEE

International Conference on Big Data. IEEE, Washington

D.C., USA. 1750-1759, 2016.

[27] V. M. Prieto, M. A. lvarez, V. Carneiro and F. Cacheda.

Distributed and Collaborative Web Change Detection

System. Computer Science and Information Systems, 12 (1),

91-114, 2015.

289

