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ABSTRACT 
The backbone of every search engine is the set of web crawlers, 

which go through all indexed web pages and update the search 

indexes with fresh copies, if there are changes. The crawling 

process provides optimum search results by keeping the indexes 

refreshed and up to date. This requires an “ideal scheduler” to 

crawl each web page immediately after a change occurs. Creating 

an optimum scheduler is possible when the web crawler has 

information about how often a particular change occurs. This 

paper discusses a novel methodology to determine the change 

frequency of a web page using machine learning and server 

scheduling techniques. The methodology has been evaluated with 

3000+ web pages with various changing patterns. The results 

indicate how Information Access (IA) and Performance Gain (PG) 

are balanced out to zero in order to create an optimum crawling 

schedule for search engine indexing.   

CCS Concepts 
• Information systems → World Wide Web → Web searching 

and information discovery → Web search engines → Web 

crawling 

Keywords 
Web crawler; search engine indexes; optimum scheduler; change 

frequency; information access; performance gain. 

1. INTRODUCTION 
Navigating through the different web pages and retrieving the 

exact content is a difficult and time-consuming task. A search 

engine is a system that is designed to search the World Wide Web 

(WWW) for relevant web pages and content [1]. Search engines 

have made the task of searching the web content easier and less 

tedious. Two of the major components of a typical search engine 

are the crawler and indexer, both of which play important roles in 

the process of providing latest search results [2].  

A search engine mainly performs three processes; crawling, 

indexing and searching in a cyclic manner [3]. Figure 1, depicts 

the cyclic architecture of a search engine, which facilitates to keep 

search indexes up-to-date. In other words, the search results of a 

search engine depend on the search indexes and if the indexes are 

outdated, the search results may not be up-to-date and accurate.  

 

Figure 1: Cyclic architecture of search engines [3] 

Web crawlers are dedicated agents in search engines, which crawl 

the web content and retrieve information for analysis and indexing 

processes [4]. The crawling process starts from an initial set of 

URLs named as the seed URLs. The crawler visits these seed 

URLs, identifies the hyperlinks in the web pages and adds them to 

the list of links to be crawled. URLs from this list are then 

revisited based on certain policies to refresh the copy of the data 

available currently. It is crucial to have an optimum schedule for 

the crawlers to retrieve most recent versions of web pages. 

The data obtained from the web crawlers are mainly used by 

search engines for the process of indexing web pages across the 

WWW [5] as well as for Change Detection and Notification 

(CDN) systems [6]. Information in web pages are collected and 

stored to facilitate easy and accurate retrieval. The behavior of a 

web crawler is determined by number of special policies [7] to 

provide information to search engines. However, with the rapid 

growth of WWW, crawling each web page and retrieving the data 

to detect changes has become more tedious and expensive [8]. 

This paper presents a novel approach to determine the change 

frequency of a web page and optimum crawling schedule to get 

up-to-date information about web pages to assist in indexing and 

search engine optimization. Section 2 explores related wok and 

Section 3 describes the methodology with the frequency detection 

algorithm. Section 4 discusses the evaluation results and Section 5 

concludes the paper stating possible future extensions.  

2. BACKGROUND 
WWW has developed and expanded to what it is at present, 

consisting of billions of web pages and documents that keep on 

ever changing [9]. Search engines have improved the task of 

browsing and navigating through these web pages in a more user-

friendly manner. Processing such large volumes of data has 

resulted in performance and efficiency issues [10]. Determining 
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the amount of computational resources that should be assigned to 

web servers is important [11]. However, it is crucial for search 

engines to maintain up-to-date indexes of web pages. Many 

researches have been carried out to increase efficiency of web 

crawlers. Accurate prediction of significant changes in the content 

of web pages enables to create an improved incremental crawling 

strategy that only re-crawls web pages when necessary [12]. 

A study on scheduling algorithms for web crawling [13] has 

discussed a major issue in web crawling; the website being 

crawled can be overloaded, as the crawler can impose a huge load 

on the web server. Another issue of crawling is that the crawlers 

have to get updates on web pages on a periodic basis [14], and 

therefore require a mechanism to detect changes in the web pages 

which have been already indexed. Here, the authors have 

suggested an enhanced architecture for the crawlers utilizing client 

machines, along with a page update algorithm. 

Coffman et al. [15], have discussed the binary freshness model, 

which can be used to measure the freshness of a web page. It 

compares the live copy of a particular web page with the cached 

copy of a web crawler over a specific time period to check if they 

are identical (or near-identical). However, the binary freshness 

model lacks the ability to determine whether a page is fresher than 

the other since the model outputs a binary value; fresh or stale 

[12]. However, a non-binary freshness model, temporal freshness 

metric, was introduced in [16]. In this model, the longer a cached 

page remains unsynchronized with its live copy, the more their 

content tends to drift away from the current page. 

Many related studies [17] [18] [19], have identified the Poisson 

model as a key element to estimate the page changes in a given 

time interval. Most of the work has assumed that the changes 

arrive as a Poisson process, and that the average rate of change can 

be estimated under this model. Grimes et al. [18], have described a 

mechanism to identify changes occurred in a web page and a 

model to compute the rate of change of a given web site. However, 

the question of whether all the changes that have occurred are 

useful to the users is still unanswered.  

The study in [20], has proposed new re-crawl scheduling policies 

that consider the longevity of content in the Web. The authors 

have stated the crawlers should focus on persistent content and not 

on transient content such as advertisements. This approach has 

obtained better freshness at a lower cost and has increased the 

crawler effectiveness. Further, the work done in [21] states that 

web crawlers should be aware of web page modifications and has 

discussed techniques that retrieve information on such 

modifications. However, the presence of multiple JavaScript and 

CSS files can reduce the efficiency of certain techniques. 

Our previous work. [22], has presented a novel method to detect 

change frequency in web pages to optimize server-side scheduling 

of CDN systems using machine learning techniques. Furthermore, 

in [23], we have described an adaptive technique to carry out web 

page change detection using multi-threaded crawlers. This method 

can utilize existing high performance servers in an optimum 

manner. 

Work carried out by Radinsky et al. [24], have highlighted the 

importance of an algorithm to predict changing web content where 

it is useful in designing a better crawling strategy that only re-

crawls pages when it is necessary. The authors have proposed an 

algorithmic framework for predicting web page changes. It 

handles temporal features, derived from both single and multiple 

objects over time. It is claimed that the use of page content and 

related pages has significantly improved prediction accuracy. 

However, identifying related pages can be computationally 

expensive within a general web crawling process. 

As discussed, researches have been carried out to determine the 

change frequency to optimize the crawling process, which is the 

largest overhead in web page indexing. However, still there is a 

need for a more efficient, scalable and generalized method for web 

page change detection while overcoming existing issues. 

3. METHODOLOGY 

3.1 Change Frequency Estimator 

 

 

The proposed system consists of a list of web pages, where it has 

already computed the changing frequency (or the refresh rate). 

When a new page is added to the system, it goes through our 

module Change Frequency Estimator Module (CFEM). As shown 

in Figure 2, when the new page is added to the module, it crawls 

the page and saves the initial version of the web page in the 

Version Repository (VR). Then it crawls the web page in the 

specified fixed time intervals: 4 hours, 6 hours, 9 hours, 14 hours, 

21 hours, 32 hours, 48 hours and 72 hours, to determine the 

changes compared to the initial version and subsequent fetched 

versions of the same web page. The change values for each of the 

time intervals are then saved in the Change Data Repository 

(CDR). The change values contain 3 types of content changes 

(number of new element additions, missing elements, element 

modifications) and attribute changes.  

Figure 2. Work Flow of the Change Frequency Estimator 

Module & its interaction with the Web Search Engine. 
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At the end of all change detection iterations of a web page, data 

from CDR for that particular web page are sent to the random 

forest learner model in H2O.ai machine learning API [25], and 

outputs a loop-time basket. The data from CDR are the features 

used in the random forest machine learning model described in 

Figure 3, to predict which loop-time basket a particular web page 

should be categorized into. In the random forest classifier we used 

the term Loop-time basket, which is a predicted time interval 

between two crawls for a particular web page.  

 

 

The random forest classifier has 9 trees and each tree has a 

training data set, which is represented using a feature matrix. It 

should also be noted that each tree contain training data collected 

from a particular type of web page meaning that data from web 

pages with a very high change frequency would be present in the 

feature matrix of tree 1 and data from web pages with a very low 

change frequency would be present in the feature matrix of tree 5. 

Each row of the feature matrix represent a set of change values X4, 

X6, X9, X14, X21, X32, X48, X72 of a particular web page where X4 

means the change value after 4 hours from the time that the initial 

version was stored in VR and X72 is the change value after 72 

hours from storing the initial version of the web page. Hence, a 

data point in the matrix can be depicted as given in Equation 1 and 

n is the number of rows of a feature matrix.  

Data Point = xi,j  

where (i{1..n} and j{4,6,9,14,21,32,48,72})     (1) 

When a new change value set is sent to the random forest 

classifier, the change value set would be an array of 8 elements. 

This value set is passed to each tree in the classifier. The deviation 

calculation algorithm is used inside the decision trees to find the 

fit of the newly sent data array with the data set.  

rowDeviation =  
 ∑ |𝑋𝑖−𝑌𝑖|

 
𝑖 /𝑋𝑖 

 8
  x 100% 

  where i{4,6,9,14,21,32,48,72}                  (2) 

As given by Equation 1, the algorithm inside the classifier finds 

the sum of residual errors between each data element of the input 

array compared to a dataset present in a row of the feature matrix. 

This rowDeviation calculation suggested by Euation 2 is repeated 

for each row of the feature matrix as given by Algorithm 1.  

The considered Random Forest Classifier has 9 trees, as shown in 

Figure 3. The first 5 trees combine to give a decision on how often 

a web page would change and the next 4 trees explore the 

behavioral elements of the web page in order to predict a 

regression value (a percentage), whether the web page has relevant 

changes or irrelevant changes using a modification to the 

methodology suggested by the work done in [26]. If all the 

changes are relevant, the regression value would be 100% and if 

all the changes are not relevant, the value would be 0%. Both 

regression value and most voted class combine to finally output 

the predicted loop-time basket for a particular web page as given 

by algorithm 1.  

Algorithm 1 Modified Random Forest Classifier 

Require: Array of change values of a web page 

Ensure: Find a new perfect frequency to poll the web page 

1. input: changeValueArray 

2. treeOutputs = {array with 5 elements initialized to zero} 

3. for each tree in random forest 

4.       threashold1 

5.       votes = 0 

6.       for each row in feature matrix 

7.             rowDeviation = Calculate using equation 2 

8.             if(rowDeviation< threashold1) 

9.                   votes++ 

10.       treeOutputs.insert(votes/numberOfRows * 100%) 

11. index = indexOfMaximum(treeOutputs) 

12. flag = whether the change is relevant using trees numbered 

from 6 to 9  

13. if(flag or index==4)  

14.  loop-time basket = getTheBasket(index) 

15. else 

16.  loop-time basket = getTheBasket(index+1) 

17. output: loop-time basket 

_____________________________________________________  

In this process, each tree checks whether the newly change value 

data fits the training data set present in the feature matrix of each 

tree. They output a percentage value describing the fit of the 

model with the new change value data and the category of the tree 

with the closest fit is chosen as the output of the classifier given 

that it is identified as a relevant change using the trees numbered 

from 6 to 9.       

 

 

 

Figure 3: High level view of the Random Forest supervised 

learning model 
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3.2 Experimental Setup 
The accuracy of the change detection time-interval classification is 

tested with a training dataset generated by randomly selecting 80% 

of the data points from the dataset and the remaining 20% is 

treated as test data set for each iteration. Hence, for each web page 

in the test set, we have the loop-time basket which was determined 

by the machine learning algorithm: say (b1) and the actual loop-

time basket, which was determined by the process suggested in 

[16]: say (b2). We gave a value to the loop-time baskets from 1 to 

5, where 1 is the shortest loop-time and 5 is the largest loop-time. 

For each of the web pages we calculated the difference between b1 

and b2. This difference could be considered as the error (E) for 

each web page.  

3.3 Data Set 
In the current case study, we selected 3122 web pages with various 

changing patterns, including frequently changing websites to static 

web pages. In order to train the model in H2O.ai machine learning 

API based random forest classifier, we collected data from 2498 

(3122 x 80%) different web sites over a period of 12 weeks. We 

divided these 2498 websites into 5 groups based on the frequency 

in which they change. These web pages were passed through the 

proposed CFEM and obtained the resultant dataset from CDR for 

each web page. We used the methodology suggested by [27], to 

find the refresh rate of web pages. Together with the change 

values for each of the time intervals, the change frequencies were 

used for supervised learning model. Further, 10-folds cross-

validation is applied for the training data set to avoid the over 

fitting to a given scenario. 

We tested the accuracy of this classifier using another 624 (3122 x 

20%) new websites by putting them in one of the 5 loop-time 

baskets using the changes occurring in each of the time intervals.  

Therefore, each of the 624 web pages was analyzed using the 

proposed algorithm and then forwarded to the classifier. We used 

the method suggested by [27] for all these 624 web pages, to 

obtain the categorization.  

4. RESULTS AND DISCUSSION 
Figure 4, shows the learning curve of the supervised classification 

using H2O.ai machine learning API. The accuracy of the learning 

algorithm increases with the size of both the training and test 

datasets. The accuracy can be further improved by having a larger 

dataset; however, it will increase time complexity due to data 

labeling. Figure 4 depicts the obtained results and the most 

accurate results were obtained with the largest data set. The 

accuracy is measured using the residual error, which is the 

distance between the actual loop-time basket value and the 

predicted loop-time basket value.  

When analyzing and interpreting the results obtained from the 

experimental methodology, the two concepts Information Access 

(IA) and Performance Gain (PG) can be used. IA is a process 

where no information about successive different versions of the 

web page is lost due to the small time interval of crawling a 

particular web page, for which in reality has a larger refresh 

rate/loop-time. PG is a process where the scheduler does not crawl 

a web page often in a situation as the web page does not change 

often. Processing power of the servers is saved because the 

particular web page is crawled only when needed. As IA and PG 

have an inverse relationship, the optimum scheduling is done 

when IA and PG are both 0. 

 

 

Figure 5, shows the accuracy of the classifier in determining a 

loop-time basket. Previously we have defined the loop-time basket 

which was determined by the machine learning algorithm as b1 

and the actual loop-time basket which was determined by the 

process as b2. 87.98% (the precision of the algorithm being 

87.98%) of the web pages (549 out of 624) reported an error (E) 

value of 0; hence, there is no deviation of the CFEM. In 45 cases, 

we observed an E value of +1, which means, b1 is greater than b2. 

All these cases have positive IAs because more information is 

collected than normally needed. However, they have negative PGs 

because they consume more processing power from the server. 19 

cases showed an E of -1, which means, b1 is less than b2. These 

cases have positive PGs because they are not checked as 

frequently as they should be. However, they might lead to 

information losses or negative IAs. Hence, we could say that our 

machine learning classifier has provided accurate results where 

most of the E values are 0.  

 

5. CONCLUSIONS 
This paper proposes a methodology to detect change frequency of 

web pages and the evaluation study ascertains the importance of 

identifying the change frequency of web pages.  This helps search 

engine indexers to efficiently crawl and schedule the indexes up-

to-date. In the future, we are interested on extending the proposed 

work towards distributed servers where frequency detection is 

based on multiple servers. Further, this research can be extended 

to increase the accuracy of the machine learning model by 

increasing the number of features and trees used in creating the 

random forest classifier.    

Figure 4: Learning Curve of machine learning model with the 

size of dataset used for testing and training. 

 

Figure 5: Distribution of E against the frequency/number of 

web pages for each E 
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