
2017 International Conference on Advances in ICT for Emerging Regions (ICTer): 165 - 171

978-1-5386-2444-9/17/$31.00 © 2017 IEEE

Detection of Change Frequency in Web Pages to
Optimize Server-based Scheduling

Lakmal Meegahapola#1, Roshan Alwis#2, Eranga Nimalarathna#3, Vijini Mallawaarachchi#4, Dulani Meedeniya#5,

Sampath Jayarathna*6
#Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka

{ lakmalbuddikalucky.13, alwisroshan.13, eranga.13, vijini.13, dulanim}@cse.mrt.ac.lk
*Department of Computer Science, California State Polytechnic University, Pomona, CA 91768

ukjayarathna@cpp.edu

Abstract—The Internet at present has become vast and dynamic
with the ever increasing number of web pages. These web pages
change when more content is added to them. With the
availability of change detection and notification systems,
keeping track of the changes occurring in web pages has become
more simple and straightforward. However, most of these
change detection and notification systems work based on
predefined crawling schedules with static time intervals. This
can become inefficient if there are no relevant changes being
made to the web pages, resulting in the wastage of both
temporal and computational resources. If the web pages are not
crawled frequently, some of the important changes may be
missed and there may be delays in notifying the subscribed
users. This paper proposes a methodology to detect the
frequency of change in web pages to optimize server-side
scheduling of change detection and notification systems. The
proposed method is based on a dynamic detection process,
where the crawling schedule will be adjusted accordingly in
order to result in a more efficient server-based scheduler to
detect changes in web pages.

Keywords—Internet; web page; change detection and
notification systems; crawling; change frequency; server-side
scheduling;

I. INTRODUCTION
The World Wide Web (WWW) is expanding at a rapid

rate with the availability of various tools and services to create
and update web content. Keeping track of the changes
occurring in web content has become a challenge, as there is a
vast number of web pages and these web pages keep on
changing frequently. If people are interested in certain web
pages and have the need to know when changes occur, they
have to manually refresh pages periodically to see whether
any changes have occurred. This is a time consuming and
tedious process. As a result, users may miss certain changes if
they were unable to check the web pages frequently as
required.

With the introduction of change detection and notification
systems, the process of keeping track of changes to web pages
has become less time consuming. Some of the most popular
and widely used change detection and notification services
include Google Alerts [1], ChangeDetection [2] and Follow
That Page [3]. These automated change detection systems can
identify changes by providing the user the option to provide
his or her email address and the list of Uniform Resource
Locators (URLs) of the web pages, which they want to
keeping track of. These systems send email notifications to
users when changes occur to the web pages in which the users
have an interest. The monitoring process of these applications

varies from service to service and ranges from monitoring a
single web page at a time to collections. The content
monitored can include text, links, images, documents and
layouts.

There are many issues related to current tracking systems
due to the increasing number of web pages being registered to
track. For example, performance issues related to change
detection and tracking system architectures have arisen [4],
[5]. Some change detection systems keep track of websites
based on static time intervals and therefore, certain critical
changes to web pages may not be notified to users as soon as
they occur. On the other hand, if change detection systems
check web pages frequently, this might cause for wastage of
computational and temporal resources of the system.

One of the important research problems at present is the
scheduling process of the visits to un-visited pages within the
hierarchy of links. Different web pages updated at different
temporal schedules and the change frequency may differ from
web page to web page. Some web pages (e.g., news sites and
blogs) may update frequently, whereas some web pages may
update rarely (e.g., wiki pages). Hence, there is a need for a
dynamic mechanism to detect the frequency at which the
changes occur in web pages and create checking schedules, so
that the web pages are crawled efficiently. Users will be able
to get updates immediately after the changes occur and this
will enable them to receive notifications as soon as they occur.
This will ensure the optimum usage of computational
resources and time without any wastage.

This paper presents a mechanism to detect the change
frequency of web pages and to optimize the server-side
scheduling of change detection and notification services.
Section II outlines the related work carried out in the area of
interest. Section III describes the proposed design and the
architecture of the solution. Section IV explains the
methodology which we carried out and Section V presents the
obtained experiment results. Finally, Section VI concludes the
paper with the inferences obtained from the results,
emphasizes on the importance of the research being conducted
and discusses some of the future research directions.

II. BACKGROUND
A wide range of related literature is available on web

crawler scheduling [6], [8], [9]. A comparative study of
scheduling strategies for web crawling is described in [6].
Here, the authors have crawled 3.5 million pages from over
50,000 web sites. Using the data collected, they have created a
web graph and run a simulator using different scheduling
policies. A heap priority queue has been used to represent

166 Detection of Change Frequency in Web Pages to Optimize Server-based Scheduling

07th & 08th September 2017 2017 International Conference on Advances in ICT for Emerging Regions (ICTer)

sites as nodes. For each site-node there is another heap
representing the web pages in each site. The scheduling
process has been divided in to two parts: ordering the queue of
web sites (long-term scheduling) and ordering the queues of
web pages (short-term scheduling). The authors have
considered five long term scheduling strategies, namely
optimal, depth, length, batch and partial. In optimum strategy,
the crawler visits the web pages according to the order of their
PageRank [7] value. In depth strategy, the crawler visits web
pages according to their breath-first ordering. Length strategy
sorts the web pages according to their depth and priority is
given according to the number of pages. Where as in batch
strategy, the crawler downloads web pages as batches and the
PageRank algorithm is run on these batches to sort the pages
according to the PageRank value. Moreover, partial strategy
is somewhat similar to the batch strategy but new pages are
given a temporary PageRank value after the algorithm is run
for each batch. Results have shown that simple crawling
strategies are sufficient to retrieve web pages with better
bandwidth utilization. However, these strategies lack the
ability to determine how often web pages change.

An interesting work related to the comparison of
scheduling algorithms for domain specific web crawling is
described in [8]. The authors have concentrated on scheduling
algorithms which determines the order of crawling URLs
collected by the crawler. Four different algorithms, depth first
search, breadth first search, best first search and best n-first
search are compared using several metrics. The algorithms
have been evaluated based on how much relevant links were
found compared to the iteration number of algorithm in the
early phase of crawling. The algorithm is considered as better,
if it returns more relevant links. However, algorithms may
affect by issues such as efficiency as they keep on crawling
even though any changes have not occurred in the web pages
being crawled.

An approach for distributed content aggregation and
change detection for web content using Bloom Filters is
described in [9]. In this work, consumers get the templates and
start URL to crawl from a queue, which are updated by a
scheduler on a periodic basis and run the crawler on the
working machine. Once crawled, the web crawlers will load
the content to another queue and this process is repeated. This
method distributes the work among consumers running
crawlers in parallel and finally the results are aggregated by
improving the efficiency of the crawling mechanism. This
also claims to reduce the coupling of spiders to machines
allowing them to operate in distributed networks. Hash key for
each visited URL will be loaded to the bloom filter and when
a new URL is found, it is checked with the bloom filter entry.
This ensures that the crawling mechanism will not repeat in a
loop. However, certain limitations can be caused by the use of
bloom filters. Users may not know size of the available
storage space and lookup times can be inconvenient when
many web pages are crawled. Furthermore, the crawlers keep
on crawling without an extract track of the change frequency
of web pages, which can impact on the performance of the
system.

In several related studies [10], [11], the Poisson model has
been identified as an important element for the estimation of
web page changes in a given time interval. The work done in
[11], states that the number of updates that occurs within a
certain time satisfies a Poisson distribution. Simhash
technique has been used to identify changes occurred in a web

page, where the distance between simhash values are
considered to measure similar content. A model has been
proposed to compute the rate of change of a given web site
using a simple estimator (dividing the total number of changes
observed by the total time observed). However, the question
of whether all the changes that have occurred are useful to the
users is still unanswered. If changes have not occurred or the
occurred changes are not relevant, the crawling effort will be
useless. Hence, more vigorous methods are necessary to detect
the frequency of relevant change occurrences in web pages.

Most of the currently available change detection and
notification systems have pre-defined intervals to check web
pages, which is not optimal as the user has no clear indicator
on the change frequency of web pages. Follow That Page [3]
is one of the widely used online web page monitoring
services. It provides 20 daily checks and one hour check per
each user. The premium account provides users with 1000
daily checks, 20 hourly checks, five 10-minute checks and
100 weekly checks. The free account is limited to 1 hourly
check per each user and this is a disadvantage, if the user has
to track more than one frequently changing web page.
Moreover, ChangeDetect [12] is another popular online web
page monitoring service where users can monitor relevant
changes. Saved web pages are automatically checked once a
week and additionally users can request on demand web page
change detection with a limited number of requests (one
request per day). Change detection for registered users can be
scheduled to check every 24 hours or every 12 hours and on
demand detection is available without any limitation. The
major drawback of these systems is that users have no idea on
how often web pages change. Thus, they randomly specify the
checking interval out of the pre-defined set of checking
intervals, which can result in crawls, even though no changes
have occurred. Furthermore, these systems have no
mechanism to evaluate how often web pages change and they
keep on crawling according to the pre-defines static schedule.
This results in inefficient use of temporal and computational
resources of the change detection systems.

As discussed above, researches have been carried out
regarding how to increase the overall efficiency of the change
detection process of web pages using efficient algorithms for
server-side change detection. Many tools are available to
provide change detection and notification services as well. An
improved scheduling mechanism can provide better results in
improving the change detection of web pages in server-side
architectures. In order to address the above discussed issues,
this paper proposes a mechanism to detect the change
frequency of web pages in order to make server-side change
detection process more efficient and robust.

III. SYSTEM ARCHITECTURE

A. Overview
This section describes the architecture of the change

frequency detection algorithm for server-side change detection
systems to optimize the scheduling of web pages. The
proposed architecture is based on the content and layout
changes of web sites as they are the main types that change
frequently in web pages that are relevant to the users. The
solution is designed in a scalable manner to cater many web
pages.

Lakmal Meegahapola, Roshan Alwis, Eranga Nimalarathna, Vijini Mallawaarachchi, Dulani Meedeniya,Sampath Jayarathna 167

2017 International Conference on Advances in ICT for Emerging Regions (ICTer) 07th & 08th September 2017

B. Frequency Detection
 This system contains a web application with a web
service, where users can enter the websites that they want to
keep track of and the multi-threaded server, which crawls web
pages to detect changes.
 Consider the following example. When a new user uses
this web application, he or she includes a web site named x to
the change detection process. If x is a web page which is
already tracked by the servers, priority of the web site would
increase and the new user will be associated with x, so that the
user would get notifications when x is changed. However, in
case if x is not in the system, the change frequency detection
process starts which takes up to 1 day. Initially servers poll the
web site within 4 hours and depending on the occurrence of
number of changes within the time period, server increases the
time period to do the next poll by multiplying the time by a
factor of 1.5. Hence the times from the initial poll would be 4
hours, 6 hours, 9 hours, 14 hours and 21 hours.

The reason behind using 1.5 as the multiplication factor is
the necessity to have changes detected in uneven time
intervals. Using change values for uneven time intervals is
useful in obtaining accurate results from the machine learning
model. Although we have used 4 hours and 48 hours as the
minimum and maximum time limits, respectively and 1.5 as
the multiplication factor in the experimental setup, these
values could be changed according to the necessities when
integrating the proposed methodology with a currently
available change detection system. These necessities could be
factors such as the required minimum change detection time,
processing power of the server and the change frequency
prediction accuracy of the proposed system.
 By increasing the time interval, the server polls the web
page several times in the first day to identify whether it is a
frequently changing page or not. This classification is
performed by a machine learning based model, which assigns
a time between 4 hours and 2 days for the new web page
based on the changes occurred in each of the considered time-
intervals. This would mean that for web pages which change
very frequently, we would do server polls every 4 hours and
for web pages which do not change very often, servers poll
every 2 days [13]. For other web pages in which changes
occur somewhere in the middle the poll time could be between
4 hours and 2 days (48 hours). These are the minimum and
maximum time limits of the algorithm. Assignment of this
time to a new web page would be done within the first day
and after that it would be added to the scheduler. Fig. 1
explains how the above change frequency detection process
helps in the process of scheduling web sites to detect changes.

Fig. 1. Optimization of scheduling based on change frequency

Given below is the terminology used for Fig. 1
 ‘A’ – A web page in which significant changes occur

only in long time intervals.
 ‘B’ – A web page which changes frequently.

 ‘C’– A web page which is changing in a moderate
manner. The frequency of changes occurring is
between web page ‘A’ and web page ‘B’.

 ‘D’ – A web page in which changes occur very slowly.
Changes occur in a manner slower than ‘A’.

 Normal Server-side scheduler – Case 1
 Optimized server-side scheduler – Case 2

In the first case of the above scenario, the four web pages
would run cyclically, where each web page is polled once in
every cycle. However, the four web pages are not of the same
type and the amount of changes occurring in each of them is
different. Hence it does not make sense to crawl those pages
like in case 1. With prior change frequency detection as in the
proposed algorithm, the schedule can be optimized as shown
in case 2. For example, the web page D, which does not
change often, crawled just once during the considered entire
time period. The web page B crawled often, thus frequent
changes can be identified in a timely manner. Hence, the
proposed system facilitates the change frequency detection
process in a resource constrained environment.

Fig. 2. Flow diagram for change frequency detection

Further, by applying the proposed algorithm to the
schedule, the time taken to query and the total time taken to
poll web pages do not change; Only the order in which the
web pages are polled changes. This ensures that the proposed
algorithm does not affect the efficiency of the scheduler.

168 Detection of Change Frequency in Web Pages to Optimize Server-based Scheduling

07th & 08th September 2017 2017 International Conference on Advances in ICT for Emerging Regions (ICTer)

Fig. 2, shows the simplified scenario of the change
frequency detection. As shown here, when the input to the
algorithm is a new web page, the output would be the change
frequency (the loop-time basket to which the particular web
page would belong).

C. Pseudocode for frequency detection
 Algorithm 1 describes the pseudocode of the frequency

detection algorithm. When user input a new web page to
track changes, this algorithm will determine the initial crawl
interval, which could be used later by a change detection
system.
Algorithm 1 Frequency Detection Algorithm
Require: URL to find the frequency
Ensure: Find a new perfect frequency to poll the web page
1. input: url
2. w3>w2>w1
3. threshold
4. changeList = {}
5. max_cycle_length = 24hr
6. current_cycle_length, min_cycle_length = 4hr
7. initial_version = crawl(url)
8. while (current_cycle_length < max_cycle_length)
9. delay(current_cycle_length)
10. current_version = crawl(url)
11. new_elements, changed_elements, missing_elements

= diff (initial_version, current_version)
12. change_value = w1*new_elements + w2*

changed_elements + w3 * missing_elements
13. changeList.add(change_value)
14. current_cycle_length = round(current_cycle_length *

1.5)
15. mapped_cycle_length = map_time(changeList)
16. output: mapped_cycle_length

Given below is the terminology of Algorithm 1.
 Weights (w1, w2, w3) = prioritize the changes by

assigning weight to each type of change.
 change_value = numeric representation of the change
 threshold = accepted change
 max_cycle_length = Maximum cycle length (gap)

between two consecutive crawls
 min_cycle_length = Minimum cycle length (gap)

between two consecutive crawls
 current_cycle_length = Time gap between the two

crawls for which the change is determined
 new_elements = Number of new tags appeared in the

current version.
 changed_elements = Number of changed tags appeared

in the current version.
 missing_elements = Number of absent tags in the

current version
 initial_version = Initial version of the web content
 current_version = Most recent version of the content
 crawl(url) = Grab the web content through the internet
 diff (version_1, version_2) = This function will find

the difference between two versions of the same web
content over time. This will return the number if newly
added element count (new_elements), changed element

count (changed_elements) and missing element count
(missing_elements)

 map_time(changeList) = calls the machine learning
model which assigns an inter-poll time for a given web
page.

The algorithm will execute until the current_cycle_length
exceeds its upper limit. In each iteration, the crawler will be
delayed by current_cycle_length in order to get a newer
version of the web content with respect to the initial version.
Although the algorithm has given higher priority to the
missing content and lesser priority to the newly added content,
these priorities can be manipulated by changing the weights
(w1, w2 and w3) that were defined initially in the algorithm;
hence, the algorithm is flexible to change.
 After exiting the while loop, the loop-time of the web page
would be mapped to the schedulers time scale using the
machine learning based mapping function called map_time
and the answer would be returned as the output from the
algorithm. This map_time function puts the web site into a
basket out of 5, where each basket has a loop-time assigned to
it. The loop-time values for each basket in hours are 4, 12, 24,
36 and 48 hours. Hence after the change values are sent to the
machine learning based map_time function, frequently
changing web pages would get a small loop-time compared to
non-frequently changing web pages which would get a higher
loop-time.
 The mapped_cycle_length could be used as the input to a
change detection system in scheduling the list of web pages to
crawl to detect changes. At the runtime of the scheduler, if
change detection system detects a mismatch between the input
given from Frequency Detection Algorithm and the actual
behaviour of the web page, it will notify the frequency
detection system to recalculate the mapped_cycle_length. This
kind of situations could arise when abnormal behaviours are
shown by web pages during the time when frequency
detection system crawls the web page.

IV. METHODOLOGY
We implemented two java programs to simulate the

optimized server-side scheduler (implementation of the
scheduler for the change detection systems using the proposed
methodology) and the normal server-side scheduler (an
implementation similar to existing change detection
methodologies).

The normal server-side scheduler is simulated by
implementing a scheduler, which has a collection of websites
to detect changes. The scheduler would take one by one of its
web pages and crawl for changes. Each website in the
collection would get exactly one chance in every cycle to
detect any changes. The optimized server-side scheduler is
implemented with the use of mapped_cycle_length values for
each of the web pages in the list of web pages to crawl in the
change detection system. Within a lower bound
(min_cycle_length) and an upper bound (max_cycle_length)
of interval, each web page is given a value for its change
detection frequency. For each cycle of the server, it would
detect each website according to the frequency value given to
that particular web page.

For simulation purposes of the optimized server-side
scheduler, we set min_cycle_length and max_cycle_length
values in Algorithm 1, to 4 hours and 24 hours, respectively.
Then we set the threshold for change detection to a low value,
so that web pages we selected would have more probability to

Lakmal Meegahapola, Roshan Alwis, Eranga Nimalarathna, Vijini Mallawaarachchi, Dulani Meedeniya,Sampath Jayarathna 169

2017 International Conference on Advances in ICT for Emerging Regions (ICTer) 07th & 08th September 2017

change within that time interval. Note that when the
simulation is running, we ensure that there is at least one
website from each, which would take less than
min_cycle_length to change, more than max_cycle_length to
change and which would change within those two values.

The experimental study of this research has used 240 web
pages to simulate the normal scheduler and the optimized
scheduler with frequency related data. The data set consists of
all types of web pages from frequently changing to static
websites that change rarely. The simulation environment was
a virtual server hosted in Microsoft Azure private cloud. The
virtual server was running 64-bit IntelTM Intel Xeon E7-4809
v4 (Sandy Bridge) which operates at 2.70GHz. It had two
CPU sockets, with 8 cores. The sizes of L1(d/i) and L2 caches
were 32KB and 4096KB respectively. It had 16GB RAM with
one 64GB hard disk. Virtual server was installed with Linux
Ubuntu (kernel 4.4.0-66-generic). The two java programs
were run with Oracle JDK (jdk1.8.0_121). At the initiation of
each simulation, we ran Java Flight Recorder [14] for 7 days
to measure performance of the JVM which simulates running
on virtual server.

For the training and testing of the machine learning based
classifier we used H2O.ai machine learning API [15] with
Random Forest Classifier [16] and used 1179 web pages [17].
When training the machine learning model, 943 (i.e. 1179 x
80%) different web sites were manually collected over a
period of 2 months. These websites were carefully chosen to
represent web sites ranging from frequently changing to ones
which do not change frequently. These 943 websites were
categorised into 5 groups according to the frequency in which
they change. In order to determine the frequency group, we
collected data regarding changes happening in each of those
websites for 24 hours (in intervals of 4, 6, 9, 14, 21 hours
from the initial crawl) and categorized them into those 5
groups giving them loop-times of 4, 12, 24, 36 and 48 hours.
For this categorization, we used human perception regarding
websites in addition to the change values.

Then the accuracy of this machine learning classifier is
measured using another 236 (i.e. 1179 x 20%) new websites,
by putting them in one of the 5 baskets based on the change
occurrences in each of the time intervals. Hence, each of the
236 web pages were analysed using the proposed algorithm
and sent to the machine learning based classifier. All these
236 web pages were manually categorized into the 5
categories considering the change values for 5 time intervals
and the type of web page, without looking at the
categorization.The obtained results from the classifier are
described in Section V.

V. RESULTS ANALYSIS
This this study, the network usage of each simulation is

measured for more than 7 days and the results are shown in
Fig. 3 – Fig. 6. Here, a spike in the graph indicates the server
polling a web page to get content and detect any changes.

Fig. 3, shows the network usage for detecting changes of a
particular web page in normal server-side scheduler, similar
to existing approaches. Here, the scheduler cycles through its
web page collection of 240 web pages every 24 hours. Hence,
each web page would be crawled exactly once in every 24
hours in the normal scheduler.

In Fig. 4, it clearly shows how a frequently changing web
page is crawled in optimized server-side scheduling with the

loop-time of 12 hours for the particular web page. After the
first crawl, the server crawls again that site in 4 hours
(min_cycle_length) and checks whether the threshold is
exceeded. Then it multiplies that value (4 hours) by the factor
of 1.5 and crawls again in 6 hours from the beginning of time.
Similarly, it keeps multiplying the time by the factor 1.5 and
waits until the threshold gets exceeded. It sends all the change
values of the particular web page for each of the time intervals
to the machine learning based mapping function and get a
suitable time basket for the particular web page. If any site
changes more frequently than 4 hours (min_cycle_length),
then it will crawl once in every 4 hours.

Fig. 5, shows how optimized server-side scheduler crawls
a web page which does not change often. Here the website
takes more than 24 hours of time (max_cycle_length) to make
any changes, which exceed the threshold. Beginning from 4
hours’ interval, server multiplies the interval of crawling for
the web page in the factor of 1.5 and detects changes. When
the interval exceeds 24 hours, server stops multiplying the
interval further and goes through the process of getting a
suitable time using machine learning model. Since the web
site is not changing frequently, its loop-time is 48 hours
according to the model.

Fig. 6, represents the total network usage of optimized
server-side scheduler when detecting changes of a collection
of web pages. The network usage graph for normal server-
side detection, which is similar to existing methodologies,
would almost be the same. Each scheduler continues to crawl
for the next website in line as soon as the current website is
finished checking for changes. Hence, both schedulers have
the same graph for total network usage of their own website
collection.

Although the total network usage of both systems looks
alike, frequently changing web pages are crawled in a higher
frequency in the optimized server-side scheduler than the
existing normal server-side architecture. Rarely changing web
pages are not checked for changes often, in the optimized
server-side scheduler compared to the normal server-side
schedulers. Hence, change detection is optimized. It is clear
that with the proposed new frequency detection mechanism
for changes in web pages, with the same resource utilization
and network usage, servers perform the change detection
process in a more meaningful way by scheduling in an
optimum manner. Further, this mechanism has been
experimented and prepared in a manner such that the entire
process is flexible and scalable.

The crucial process of this methodology is the machine
learning based classifier, which is used to classify web pages
into one of the 5 baskets. This classifier is tested to analyse its
accuracy in determining a basket and the results are shown in
Fig.7.

In this analysis, for each web page in the test set, we
consider the term b1 as the loop-time basket determined by
the machine learning algorithm and the term b2 as the loop-
time basket determined by the manual process. For each of the
web pages the difference between b1 and b2, which is the
error (E) for each web page, was calculated. As shown in Fig.
7, the x-axis gives the error E and the y-axis gives the
frequency (number) of web pages with that E.

170 Detection of Change Frequency in Web Pages to Optimize Server-based Scheduling

07th & 08th September 2017 2017 International Conference on Advances in ICT for Emerging Regions (ICTer)

With this error values, we have defined two terms,
Information gain (IG) and Processing gain (PG). Information
Gain is a scenario where, for a web page which needs to be
checked for changes in a period of T1 time, the machine
learning algorithm would suggest a time basket T2 for that
web page such that T2<T1. Hence in this scenario the web
page would be polled more frequently than it should normally
be polled; hence a positive IG. However, it would require
more processing. In this scenario, PG (which would be
explained in the next paragraph) would be negative as it
requires more processing in the server to have the information
gain.

Processing gain in a scenario where for a web page, which
needs to be checked for changes in a period of time T1, the
machine learning algorithm would suggest a time basket of
time T2 for that web page such that T2>T1. In this scenario,
the web page would not be polled sufficiently to detect all the
changes. Here, the processing power of the server would be
saved; hence can be considered a positive PG. On the other

hand, this is a negative IG because it will lose the crucial
information about frequent changes.

Fig. 7. Frequency against E for the test data set of machine learning algorithm.

Fig. 3. Change detection of any web page in normal server-side scheduler (Period for every web page would be the same)

Fig. 4. Change detection of a frequently changing web page in optimized server-side scheduler

Fig. 5. Change detection of a non-frequently changing web page in optimized server-side scheduler

Fig. 6. Change detection of a web page collection in normal / optimized server-side scheduler

Lakmal Meegahapola, Roshan Alwis, Eranga Nimalarathna, Vijini Mallawaarachchi, Dulani Meedeniya,Sampath Jayarathna 171

2017 International Conference on Advances in ICT for Emerging Regions (ICTer) 07th & 08th September 2017

According to the results shown in Fig. 7, more than 85.1%
of the web pages (201 out of 236) have reported an E value of
0, which means that there is no deviation from the machine
learning based algorithm. In these scenarios, no IGs or PGs
can be observed as both the values are 0. In 17 cases, we
observed an E value of 40, which means b1, is greater than b2.
All these cases have positive IGs because more information is
collected than normally needed.

However, negative PGs are visible, because they consume
more processing power from the server. 7 cases showed an E
of 40, which means b1, is less than b2. These cases have
positive PGs because they are not checked as frequently as
they should be, but they might lead to information losses or
negative IGs. Apart from 3 cases, which have 1 case each with
E values of -440, 320 and +440, rest of the cases yield E
values close to 0.

According to the above results, it can be seen that the
proposed algorithm works accurately when IG and PG both
are zero; i.e. the point in which error E becomes 0. Hence, the
machine learning model is 85.1% accurate and could be
improved further with the increase of the dataset used in the
model.

VI. CONCLUSION
Change Detection and Notification (CDN) systems play a

significant role on the modern area of information retrieval by
automating the process of change detection in web pages.
These systems have made the process of keeping track of web
pages much easier and less tedious to users. However, still
there are opportunities for improvement on the current
implementations of CDN systems, when considering
performance and speed of detection. This paper is proposed a
mechanism to detect the change frequency of web
pages,which as a result will optimize the server-side
scheduling of change detection and notification services.

An experimental study that has been carried out to
compare the performance of the proposed optimized server-
side scheduler and the existing normal server-side scheduler is
presented in this paper. The experimental results indicate that
there is a significant improvement in the performance of
change detection using the proposed server-side scheduler
with the optimization for the change detection frequency. The
change detection process can be performed expressively by
identifying the approximate frequency at which changes occur
in web pages. Here, the crawlers execute efficiently with
optimised resources; thus save computational resources, cost
and time. Further, this study has depicted the importance of
efficient server-side scheduling in the process of change
detection in order to detect changes in a timelier manner, with
minimum wastage of computational resources.

This research can be extended for distributed servers as
well, where frequency detection is done in multiple servers. It
would be beneficial if there is a flexible methodology that can
be applied to various scenarios considering the number of
servers used in the distributed network. Further research work
can be done on the machine learning model, by increasing the
dataset and using more parameters for the classification.

REFERENCES
[1] Google Alerts. (2017) Monitor the Web for interesting new content.

[Online]. Available: http://www.google.com/alerts
[2] ChangeDetection. (2017) Know when any web page changes.

[Online]. Available: https://www.changedetection.com/
[3] Follow That Page. (2017) Web monitor: we send you an email when

your favourite page has changed. [Online]. Available:
https://www.followthatpage.com.

[4] S. Jayarathna and F. Poursardar, "Change Detection and Classification
of Digital Collections," in Proceedings of 2016 IEEE International
Conference on Big Data, Washington D.C., USA, 2016, pp. 1750-
1759.

[5] D. Yadav and A. K. Sharma, "Change Detection in Web Pages," in
Proceedings of 10th International Conference on Information
Technology, India, 2007, pp. 265-270.

[6] C. Castillo, M. Marin, A. Rodriguez and R. Baeza-Yates, "Scheduling
Algorithms for Web Crawling," in Proceedings of Latin American
Web Conference (WebMedia/LA-WEB), 2004, Brazil, IEEE CS Press,
pp. 10-17.

[7] L. Page, S. Brin, R. Motwani and T. Winograd, "The PageRank
Citation Ranking: Bringing Order to the Web," Stanford University,
Stanford, California, USA, Technical Report, 1998.

[8] K. Filipowski, "Comparison of Scheduling Algorithms for Domain
Specific Web Crawler," in Proceedings of European Network
Intelligence Conference, Poland, 2014, IEEE Explorer, pp. 69-74.

[9] S. Nadaraj, "Distributed Content Aggregation & Content Change
Detection using Bloom Filters," International Journal of Computer
Science and Information Technologies, vol. 7, no. 2, pp. 745-748,
2016.

[10] D. Fetterly, M. Manasse, M. Najork and J. Wiener, "A large-scale
study of the evolution of web pages," Software: Practice and
Experience, vol. 34, no. 2, p. 213–237, 2004,

[11] C. Grimes and S. O’Brien, "Microscale Evolution of Web Pages," in
Proceedings of 17th International World Wide Web Conference,
China, 2008, pp. 1149-1150.

[12] ChangeDetect. (2017) Web page monitoring. [Online]. Available:
https://www.changedetect.com/

[13] V. M. Prieto, M. A. lvarez, V. Carneiro and F. Cacheda, "Distributed
and Collaborative Web Change Detection System," Computer Science
and Information Systems, vol. 12, no. 1, pp. 91-114, 2015.

[14] ORACLE. (2017) Java Flight Recorder Runtime Guide. [Online].
Available: https://docs.oracle.com/javacomponents/jmc-5-4/jfr-
runtime-guide/run.htm#JFRUH164

[15] D. Cook, Practical Machine Learning with H2O, 1st ed., O'Reilly
Media Incorporated., 2016.

[16] H2O.ai. (2017) Distributed Random Forest (DRF) - H2O 3.12.0.1
documentation. [Online]. Available: http://docs.h2o.ai/h2o/latest-
stable/h2o-docs/data-science/drf.html

[17] Dropbox. (2017) List of websites. [Online]. Available:
https://www.dropbox.com/s/1izg9qlsjk90pxl/List%20of%20websites.
xlsx?dl=0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

