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Abstract—The Internet at present has become vast and dynamic 
with the ever increasing number of web pages. These web pages 
change when more content is added to them. With the 
availability of change detection and notification systems, 
keeping track of the changes occurring in web pages has become 
more simple and straightforward. However, most of these 
change detection and notification systems work based on 
predefined crawling schedules with static time intervals. This 
can become inefficient if there are no relevant changes being 
made to the web pages, resulting in the wastage of both 
temporal and computational resources. If the web pages are not 
crawled frequently, some of the important changes may be 
missed and there may be delays in notifying the subscribed 
users. This paper proposes a methodology to detect the 
frequency of change in web pages to optimize server-side 
scheduling of change detection and notification systems. The 
proposed method is based on a dynamic detection process, 
where the crawling schedule will be adjusted accordingly in 
order to result in a more efficient server-based scheduler to 
detect changes in web pages. 
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I.  INTRODUCTION 
The World Wide Web (WWW) is expanding at a rapid 

rate with the availability of various tools and services to create 
and update web content. Keeping track of the changes 
occurring in web content has become a challenge, as there is a 
vast number of web pages and these web pages keep on 
changing frequently. If people are interested in certain web 
pages and have the need to know when changes occur, they 
have to manually refresh pages periodically to see whether 
any changes have occurred. This is a time consuming and 
tedious process. As a result, users may miss certain changes if 
they were unable to check the web pages frequently as 
required. 

With the introduction of change detection and notification 
systems, the process of keeping track of changes to web pages 
has become less time consuming. Some of the most popular 
and widely used change detection and notification services 
include Google Alerts [1], ChangeDetection [2] and Follow 
That Page [3]. These automated change detection systems can 
identify changes by providing the user the option to provide 
his or her email address and the list of Uniform Resource 
Locators (URLs) of the web pages, which they want to 
keeping track of. These systems send email notifications to 
users when changes occur to the web pages in which the users 
have an interest. The monitoring process of these applications 

varies from service to service and ranges from monitoring a 
single web page at a time to collections. The content 
monitored can include text, links, images, documents and 
layouts. 

There are many issues related to current tracking systems 
due to the increasing number of web pages being registered to 
track. For example, performance issues related to change 
detection and tracking system architectures have arisen [4], 
[5]. Some change detection systems keep track of websites 
based on static time intervals and therefore, certain critical 
changes to web pages may not be notified to users as soon as 
they occur. On the other hand, if change detection systems 
check web pages frequently, this might cause for wastage of 
computational and temporal resources of the system. 

One of the important research problems at present is the 
scheduling process of the visits to un-visited pages within the 
hierarchy of links. Different web pages updated at different 
temporal schedules and the change frequency may differ from 
web page to web page. Some web pages (e.g., news sites and 
blogs) may update frequently, whereas some web pages may 
update rarely (e.g., wiki pages). Hence, there is a need for a 
dynamic mechanism to detect the frequency at which the 
changes occur in web pages and create checking schedules, so 
that the web pages are crawled efficiently. Users will be able 
to get updates immediately after the changes occur and this 
will enable them to receive notifications as soon as they occur. 
This will ensure the optimum usage of computational 
resources and time without any wastage. 

This paper presents a mechanism to detect the change 
frequency of web pages and to optimize the server-side 
scheduling of change detection and notification services. 
Section II outlines the related work carried out in the area of 
interest. Section III describes the proposed design and the 
architecture of the solution. Section IV explains the 
methodology which we carried out and Section V presents the 
obtained experiment results. Finally, Section VI concludes the 
paper with the inferences obtained from the results, 
emphasizes on the importance of the research being conducted 
and discusses some of the future research directions. 

II. BACKGROUND  
A wide range of related literature is available on web 

crawler scheduling [6], [8], [9]. A comparative study of 
scheduling strategies for web crawling is described in [6]. 
Here, the authors have crawled 3.5 million pages from over 
50,000 web sites. Using the data collected, they have created a 
web graph and run a simulator using different scheduling 
policies. A heap priority queue has been used to represent 
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sites as nodes. For each site-node there is another heap 
representing the web pages in each site. The scheduling 
process has been divided in to two parts: ordering the queue of 
web sites (long-term scheduling) and ordering the queues of 
web pages (short-term scheduling). The authors have 
considered five long term scheduling strategies, namely 
optimal, depth, length, batch and partial. In optimum strategy, 
the crawler visits the web pages according to the order of their 
PageRank [7] value. In depth strategy, the crawler visits web 
pages according to their breath-first ordering. Length strategy 
sorts the web pages according to their depth and priority is 
given according to the number of pages. Where as in batch 
strategy, the crawler downloads web pages as batches and the 
PageRank algorithm is run on these batches to sort the pages 
according to the PageRank value. Moreover, partial strategy 
is somewhat similar to the batch strategy but new pages are 
given a temporary PageRank value after the algorithm is run 
for each batch. Results have shown that simple crawling 
strategies are sufficient to retrieve web pages with better 
bandwidth utilization. However, these strategies lack the 
ability to determine how often web pages change. 

An interesting work related to the comparison of 
scheduling algorithms for domain specific web crawling is 
described in [8]. The authors have concentrated on scheduling 
algorithms which determines the order of crawling URLs 
collected by the crawler. Four different algorithms, depth first 
search, breadth first search, best first search and best n-first 
search are compared using several metrics. The algorithms 
have been evaluated based on how much relevant links were 
found compared to the iteration number of algorithm in the 
early phase of crawling. The algorithm is considered as better, 
if it returns more relevant links. However, algorithms may 
affect by issues such as efficiency as they keep on crawling 
even though any changes have not occurred in the web pages 
being crawled. 

An approach for distributed content aggregation and 
change detection for web content using Bloom Filters is 
described in [9]. In this work, consumers get the templates and 
start URL to crawl from a queue, which are updated by a 
scheduler on a periodic basis and run the crawler on the 
working machine. Once crawled, the web crawlers will load 
the content to another queue and this process is repeated. This 
method distributes the work among consumers running 
crawlers in parallel and finally the results are aggregated by 
improving the efficiency of the crawling mechanism. This 
also claims to reduce the coupling of spiders to machines 
allowing them to operate in distributed networks. Hash key for 
each visited URL will be loaded to the bloom filter and when 
a new URL is found, it is checked with the bloom filter entry. 
This ensures that the crawling mechanism will not repeat in a 
loop. However, certain limitations can be caused by the use of 
bloom filters. Users may not know size of the available 
storage space and lookup times can be inconvenient when 
many web pages are crawled. Furthermore, the crawlers keep 
on crawling without an extract track of the change frequency 
of web pages, which can impact on the performance of the 
system. 

In several related studies [10], [11], the Poisson model has 
been identified as an important element for the estimation of 
web page changes in a given time interval. The work done in 
[11], states that the number of updates that occurs within a 
certain time satisfies a Poisson distribution. Simhash 
technique has been used to identify changes occurred in a web 

page, where the distance between simhash values are 
considered to measure similar content. A model has been 
proposed to compute the rate of change of a given web site 
using a simple estimator (dividing the total number of changes 
observed by the total time observed). However, the question 
of whether all the changes that have occurred are useful to the 
users is still unanswered. If changes have not occurred or the 
occurred changes are not relevant, the crawling effort will be 
useless. Hence, more vigorous methods are necessary to detect 
the frequency of relevant change occurrences in web pages. 

Most of the currently available change detection and 
notification systems have pre-defined intervals to check web 
pages, which is not optimal as the user has no clear indicator 
on the change frequency of web pages. Follow That Page [3] 
is one of the widely used online web page monitoring 
services. It provides 20 daily checks and one hour check per 
each user. The premium account provides users with 1000 
daily checks, 20 hourly checks, five 10-minute checks and 
100 weekly checks. The free account is limited to 1 hourly 
check per each user and this is a disadvantage, if the user has 
to track more than one frequently changing web page. 
Moreover, ChangeDetect [12] is another popular online web 
page monitoring service where users can monitor relevant 
changes. Saved web pages are automatically checked once a 
week and additionally users can request on demand web page 
change detection with a limited number of requests (one 
request per day). Change detection for registered users can be 
scheduled to check every 24 hours or every 12 hours and on 
demand detection is available without any limitation. The 
major drawback of these systems is that users have no idea on 
how often web pages change. Thus, they randomly specify the 
checking interval out of the pre-defined set of checking 
intervals, which can result in crawls, even though no changes 
have occurred. Furthermore, these systems have no 
mechanism to evaluate how often web pages change and they 
keep on crawling according to the pre-defines static schedule. 
This results in inefficient use of temporal and computational 
resources of the change detection systems. 

As discussed above, researches have been carried out 
regarding how to increase the overall efficiency of the change 
detection process of web pages using efficient algorithms for 
server-side change detection. Many tools are available to 
provide change detection and notification services as well. An 
improved scheduling mechanism can provide better results in 
improving the change detection of web pages in server-side 
architectures. In order to address the above discussed issues, 
this paper proposes a mechanism to detect the change 
frequency of web pages in order to make server-side change 
detection process more efficient and robust. 

III. SYSTEM ARCHITECTURE 

A. Overview 
This section describes the architecture of the change 

frequency detection algorithm for server-side change detection 
systems to optimize the scheduling of web pages. The 
proposed architecture is based on the content and layout 
changes of web sites as they are the main types that change 
frequently in web pages that are relevant to the users. The 
solution is designed in a scalable manner to cater many web 
pages. 
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B. Frequency Detection 
 This system contains a web application with a web 
service, where users can enter the websites that they want to 
keep track of and the multi-threaded server, which crawls web 
pages to detect changes.  
 Consider the following example. When a new user uses 
this web application, he or she includes a web site named x to 
the change detection process. If x is a web page which is 
already tracked by the servers, priority of the web site would 
increase and the new user will be associated with x, so that the 
user would get notifications when x is changed.  However, in 
case if x is not in the system, the change frequency detection 
process starts which takes up to 1 day. Initially servers poll the 
web site within 4 hours and depending on the occurrence of 
number of changes within the time period, server increases the 
time period to do the next poll by multiplying the time by a 
factor of 1.5. Hence the times from the initial poll would be 4 
hours, 6 hours, 9 hours, 14 hours and 21 hours.  

The reason behind using 1.5 as the multiplication factor is 
the necessity to have changes detected in uneven time 
intervals. Using change values for uneven time intervals is 
useful in obtaining accurate results from the machine learning 
model. Although we have used 4 hours and 48 hours as the 
minimum and maximum time limits, respectively and 1.5 as 
the multiplication factor in the experimental setup, these 
values could be changed according to the necessities when 
integrating the proposed methodology with a currently 
available change detection system. These necessities could be 
factors such as the required minimum change detection time, 
processing power of the server and the change frequency 
prediction accuracy of the proposed system. 
 By increasing the time interval, the server polls the web 
page several times in the first day to identify whether it is a 
frequently changing page or not. This classification is 
performed by a machine learning based model, which assigns 
a time between 4 hours and 2 days for the new web page 
based on the changes occurred in each of the considered time-
intervals. This would mean that for web pages which change 
very frequently, we would do server polls every 4 hours and 
for web pages which do not change very often, servers poll 
every 2 days [13]. For other web pages in which changes 
occur somewhere in the middle the poll time could be between 
4 hours and 2 days (48 hours). These are the minimum and 
maximum time limits of the algorithm.  Assignment of this 
time to a new web page would be done within the first day 
and after that it would be added to the scheduler. Fig. 1 
explains how the above change frequency detection process 
helps in the process of scheduling web sites to detect changes. 
 

 
Fig. 1. Optimization of scheduling based on change frequency 

Given below is the terminology used for Fig. 1 
 ‘A’ – A web page in which significant changes occur 

only in long time intervals.  
 ‘B’ – A web page which changes frequently. 

 ‘C’– A web page which is changing in a moderate 
manner. The frequency of changes occurring is 
between web page ‘A’ and web page ‘B’. 

 ‘D’ – A web page in which changes occur very slowly. 
Changes occur in a manner slower than ‘A’.  

 Normal Server-side scheduler – Case 1 
 Optimized server-side scheduler – Case 2 

In the first case of the above scenario, the four web pages 
would run cyclically, where each web page is polled once in 
every cycle. However, the four web pages are not of the same 
type and the amount of changes occurring in each of them is 
different. Hence it does not make sense to crawl those pages 
like in case 1. With prior change frequency detection as in the 
proposed algorithm, the schedule can be optimized as shown 
in case 2. For example, the web page D, which does not 
change often, crawled just once during the considered entire 
time period. The web page B crawled often, thus frequent 
changes can be identified in a timely manner. Hence, the 
proposed system facilitates the change frequency detection 
process in a resource constrained environment. 
  

 
Fig. 2. Flow diagram for change frequency detection 

Further, by applying the proposed algorithm to the 
schedule, the time taken to query and the total time taken to 
poll web pages do not change; Only the order in which the 
web pages are polled changes. This ensures that the proposed 
algorithm does not affect the efficiency of the scheduler.  
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Fig. 2, shows the simplified scenario of the change 
frequency detection. As shown here, when the input to the 
algorithm is a new web page, the output would be the change 
frequency (the loop-time basket to which the particular web 
page would belong). 

C. Pseudocode for frequency detection 
 Algorithm 1 describes the pseudocode of the frequency 

detection algorithm. When user input a new web page to 
track changes, this algorithm will determine the initial crawl 
interval, which could be used later by a change detection 
system. 
Algorithm 1 Frequency Detection Algorithm 
Require: URL to find the frequency 
Ensure: Find a new perfect frequency to poll the web page 
1. input: url 
2. w3>w2>w1 
3. threshold 
4. changeList = {} 
5. max_cycle_length = 24hr 
6. current_cycle_length, min_cycle_length = 4hr 
7. initial_version = crawl(url) 
8. while (current_cycle_length < max_cycle_length) 
9.       delay(current_cycle_length) 
10.       current_version = crawl(url) 
11.       new_elements, changed_elements, missing_elements 

= diff (initial_version, current_version) 
12.       change_value = w1*new_elements + w2* 

changed_elements + w3 * missing_elements 
13.       changeList.add(change_value) 
14.       current_cycle_length = round(current_cycle_length * 

1.5) 
15.   mapped_cycle_length = map_time(changeList) 
16.   output: mapped_cycle_length 

Given below is the terminology of Algorithm 1.  
 Weights (w1, w2, w3) = prioritize the changes by 

assigning weight to each type of change.  
 change_value = numeric representation of the change 
 threshold = accepted change  
 max_cycle_length = Maximum cycle length (gap) 

between two consecutive crawls 
 min_cycle_length = Minimum cycle length (gap) 

between two consecutive crawls 
 current_cycle_length = Time gap between the two 

crawls for which the change is determined  
 new_elements = Number of new tags appeared in the 

current version. 
 changed_elements = Number of changed tags appeared 

in the current version. 
 missing_elements = Number of absent tags in the 

current version  
 initial_version = Initial version of the web content 
 current_version = Most recent version of the content 
 crawl(url) = Grab the web content through the internet 
 diff (version_1, version_2) = This function will find 

the difference between two versions of the same web 
content over time. This will return the number if newly 
added element count (new_elements), changed element 

count (changed_elements) and missing element count 
(missing_elements) 

 map_time(changeList) = calls the machine learning 
model which assigns an inter-poll time for a given web 
page.  

The algorithm will execute until the current_cycle_length 
exceeds its upper limit. In each iteration, the crawler will be 
delayed by current_cycle_length in order to get a newer 
version of the web content with respect to the initial version. 
Although the algorithm has given higher priority to the 
missing content and lesser priority to the newly added content, 
these priorities can be manipulated by changing the weights 
(w1, w2 and w3) that were defined initially in the algorithm; 
hence, the algorithm is flexible to change.  
 After exiting the while loop, the loop-time of the web page 
would be mapped to the schedulers time scale using the 
machine learning based mapping function called map_time 
and the answer would be returned as the output from the 
algorithm. This map_time function puts the web site into a 
basket out of 5, where each basket has a loop-time assigned to 
it. The loop-time values for each basket in hours are 4, 12, 24, 
36 and 48 hours.  Hence after the change values are sent to the 
machine learning based map_time function, frequently 
changing web pages would get a small loop-time compared to 
non-frequently changing web pages which would get a higher 
loop-time.  
 The mapped_cycle_length could be used as the input to a 
change detection system in scheduling the list of web pages to 
crawl to detect changes. At the runtime of the scheduler, if 
change detection system detects a mismatch between the input 
given from Frequency Detection Algorithm and the actual 
behaviour of the web page, it will notify the frequency 
detection system to recalculate the mapped_cycle_length. This 
kind of situations could arise when abnormal behaviours are 
shown by web pages during the time when frequency 
detection system crawls the web page.  

IV. METHODOLOGY 
We implemented two java programs to simulate the 

optimized server-side scheduler (implementation of the 
scheduler for the change detection systems using the proposed 
methodology) and the normal server-side scheduler (an 
implementation similar to existing change detection 
methodologies).  

The normal server-side scheduler is simulated by 
implementing a scheduler, which has a collection of websites 
to detect changes. The scheduler would take one by one of its 
web pages and crawl for changes. Each website in the 
collection would get exactly one chance in every cycle to 
detect any changes. The optimized server-side scheduler is 
implemented with the use of mapped_cycle_length values for 
each of the web pages in the list of web pages to crawl in the 
change detection system. Within a lower bound 
(min_cycle_length) and an upper bound (max_cycle_length) 
of interval, each web page is given a value for its change 
detection frequency. For each cycle of the server, it would 
detect each website according to the frequency value given to 
that particular web page. 

For simulation purposes of the optimized server-side 
scheduler, we set min_cycle_length and max_cycle_length 
values in Algorithm 1, to 4 hours and 24 hours, respectively. 
Then we set the threshold for change detection to a low value, 
so that web pages we selected would have more probability to 
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change within that time interval. Note that when the 
simulation is running, we ensure that there is at least one 
website from each, which would take less than 
min_cycle_length to change, more than max_cycle_length to 
change and which would change within those two values. 

The experimental study of this research has used 240 web 
pages to simulate the normal scheduler and the optimized 
scheduler with frequency related data. The data set consists of 
all types of web pages from frequently changing to static 
websites that change rarely. The simulation environment was 
a virtual server hosted in Microsoft Azure private cloud. The 
virtual server was running 64-bit IntelTM Intel Xeon E7-4809 
v4 (Sandy Bridge) which operates at 2.70GHz. It had two 
CPU sockets, with 8 cores. The sizes of L1(d/i) and L2 caches 
were 32KB and 4096KB respectively. It had 16GB RAM with 
one 64GB hard disk. Virtual server was installed with Linux 
Ubuntu (kernel 4.4.0-66-generic). The two java programs 
were run with Oracle JDK (jdk1.8.0_121). At the initiation of 
each simulation, we ran Java Flight Recorder [14] for 7 days 
to measure performance of the JVM which simulates running 
on virtual server. 

For the training and testing of the machine learning based 
classifier we used H2O.ai machine learning API [15] with 
Random Forest Classifier [16] and used 1179 web pages [17]. 
When training the machine learning model, 943 (i.e. 1179 x 
80%) different web sites were manually collected over a 
period of 2 months. These websites were carefully chosen to 
represent web sites ranging from frequently changing to ones 
which do not change frequently. These 943 websites were 
categorised into 5 groups according to the frequency in which 
they change. In order to determine the frequency group, we 
collected data regarding changes happening in each of those 
websites for 24 hours (in intervals of 4, 6, 9, 14, 21 hours 
from the initial crawl) and categorized them into those 5 
groups giving them loop-times of 4, 12, 24, 36 and 48 hours. 
For this categorization, we used human perception regarding 
websites in addition to the change values.  

Then the accuracy of this machine learning classifier is 
measured using another 236 (i.e. 1179 x 20%) new websites, 
by putting them in one of the 5 baskets based on the change 
occurrences in each of the time intervals.  Hence, each of the 
236 web pages were analysed using the proposed algorithm 
and sent to the machine learning based classifier. All these 
236 web pages were manually categorized into the 5 
categories considering the change values for 5 time intervals 
and the type of web page, without looking at the 
categorization.The obtained results from the classifier are 
described in Section V.  

V. RESULTS ANALYSIS 
This this study, the network usage of each simulation is 

measured for more than 7 days and the results are shown in 
Fig. 3 – Fig. 6. Here, a spike in the graph indicates the server 
polling a web page to get content and detect any changes.  

Fig. 3, shows the network usage for detecting changes of a 
particular web page in normal server-side scheduler, similar 
to existing approaches. Here, the scheduler cycles through its 
web page collection of 240 web pages every 24 hours. Hence, 
each web page would be crawled exactly once in every 24 
hours in the normal scheduler.  

In Fig. 4, it clearly shows how a frequently changing web 
page is crawled in optimized server-side scheduling with the 

loop-time of 12 hours for the particular web page. After the 
first crawl, the server crawls again that site in 4 hours 
(min_cycle_length) and checks whether the threshold is 
exceeded. Then it multiplies that value (4 hours) by the factor 
of 1.5 and crawls again in 6 hours from the beginning of time. 
Similarly, it keeps multiplying the time by the factor 1.5 and 
waits until the threshold gets exceeded. It sends all the change 
values of the particular web page for each of the time intervals 
to the machine learning based mapping function and get a 
suitable time basket for the particular web page. If any site 
changes more frequently than 4 hours (min_cycle_length), 
then it will crawl once in every 4 hours.  

Fig. 5, shows how optimized server-side scheduler crawls 
a web page which does not change often. Here the website 
takes more than 24 hours of time (max_cycle_length) to make 
any changes, which exceed the threshold. Beginning from 4 
hours’ interval, server multiplies the interval of crawling for 
the web page in the factor of 1.5 and detects changes. When 
the interval exceeds 24 hours, server stops multiplying the 
interval further and goes through the process of getting a 
suitable time using machine learning model. Since the web 
site is not changing frequently, its loop-time is 48 hours 
according to the model.  

Fig. 6, represents the total network usage of optimized 
server-side scheduler when detecting changes of a collection 
of web pages. The network usage graph for normal server-
side detection, which is similar to existing methodologies, 
would almost be the same. Each scheduler continues to crawl 
for the next website in line as soon as the current website is 
finished checking for changes. Hence, both schedulers have 
the same graph for total network usage of their own website 
collection. 

Although the total network usage of both systems looks 
alike, frequently changing web pages are crawled in a higher 
frequency in the optimized server-side scheduler than the 
existing normal server-side architecture. Rarely changing web 
pages are not checked for changes often, in the optimized 
server-side scheduler compared to the normal server-side 
schedulers. Hence, change detection is optimized. It is clear 
that with the proposed new frequency detection mechanism 
for changes in web pages, with the same resource utilization 
and network usage, servers perform the change detection 
process in a more meaningful way by scheduling in an 
optimum manner. Further, this mechanism has been 
experimented and prepared in a manner such that the entire 
process is flexible and scalable. 

The crucial process of this methodology is the machine 
learning based classifier, which is used to classify web pages 
into one of the 5 baskets. This classifier is tested to analyse its 
accuracy in determining a basket and the results are shown in 
Fig.7. 

In this analysis, for each web page in the test set, we 
consider the term b1 as the loop-time basket determined by 
the machine learning algorithm and the term b2 as the loop-
time basket determined by the manual process. For each of the 
web pages the difference between b1 and b2, which is the 
error (E) for each web page, was calculated. As shown in Fig. 
7, the x-axis gives the error E and the y-axis gives the 
frequency (number) of web pages with that E.   
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With this error values, we have defined two terms, 
Information gain (IG) and Processing gain (PG). Information 
Gain is a scenario where, for a web page which needs to be 
checked for changes in a period of T1 time, the machine 
learning algorithm would suggest a time basket T2 for that 
web page such that T2<T1. Hence in this scenario the web 
page would be polled more frequently than it should normally 
be polled; hence a positive IG. However, it would require 
more processing. In this scenario, PG (which would be 
explained in the next paragraph) would be negative as it 
requires more processing in the server to have the information 
gain.  

Processing gain in a scenario where for a web page, which 
needs to be checked for changes in a period of time T1, the 
machine learning algorithm would suggest a time basket of 
time T2 for that web page such that T2>T1. In this scenario, 
the web page would not be polled sufficiently to detect all the 
changes. Here, the processing power of the server would be 
saved; hence can be considered a positive PG. On the other 

hand, this is a negative IG because it will lose the crucial 
information about frequent changes. 

 
Fig. 7. Frequency against E for the test data set of machine learning algorithm. 

 

Fig. 3. Change detection of any web page in normal server-side scheduler (Period for every web page would be the same) 

Fig. 4. Change detection of a frequently changing web page in optimized server-side scheduler 

Fig. 5. Change detection of a non-frequently changing web page in optimized server-side scheduler 

Fig. 6. Change detection of a web page collection in normal / optimized server-side scheduler 
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According to the results shown in Fig. 7, more than 85.1% 
of the web pages (201 out of 236) have reported an E value of 
0, which means that there is no deviation from the machine 
learning based algorithm. In these scenarios, no IGs or PGs 
can be observed as both the values are 0. In 17 cases, we 
observed an E value of 40, which means b1, is greater than b2. 
All these cases have positive IGs because more information is 
collected than normally needed. 

However, negative PGs are visible, because they consume 
more processing power from the server. 7 cases showed an E 
of 40, which means b1, is less than b2. These cases have 
positive PGs because they are not checked as frequently as 
they should be, but they might lead to information losses or 
negative IGs. Apart from 3 cases, which have 1 case each with 
E values of -440, 320 and +440, rest of the cases yield E 
values close to 0.  

According to the above results, it can be seen that the 
proposed algorithm works accurately when IG and PG both 
are zero; i.e. the point in which error E becomes 0. Hence, the 
machine learning model is 85.1% accurate and could be 
improved further with the increase of the dataset used in the 
model.   

VI. CONCLUSION 
Change Detection and Notification (CDN) systems play a 

significant role on the modern area of information retrieval by 
automating the process of change detection in web pages. 
These systems have made the process of keeping track of web 
pages much easier and less tedious to users. However, still 
there are opportunities for improvement on the current 
implementations of CDN systems, when considering 
performance and speed of detection. This paper is proposed a 
mechanism to detect the change frequency of web 
pages,which as a result will optimize the server-side 
scheduling of change detection and notification services. 

An experimental study that has been carried out to 
compare the performance of the proposed optimized server-
side scheduler and the existing normal server-side scheduler is 
presented in this paper. The experimental results indicate that 
there is a significant improvement in the performance of 
change detection using the proposed server-side scheduler 
with the optimization for the change detection frequency. The 
change detection process can be performed expressively by 
identifying the approximate frequency at which changes occur 
in web pages. Here, the crawlers execute efficiently with 
optimised resources; thus save computational resources, cost 
and time. Further, this study has depicted the importance of 
efficient server-side scheduling in the process of change 
detection in order to detect changes in a timelier manner, with 
minimum wastage of computational resources. 

This research can be extended for distributed servers as 
well, where frequency detection is done in multiple servers. It 
would be beneficial if there is a flexible methodology that can 
be applied to various scenarios considering the number of 
servers used in the distributed network. Further research work 
can be done on the machine learning model, by increasing the 
dataset and using more parameters for the classification.  
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