
Adaptive Technique for Web Page Change Detection
using Multi-threaded Crawlers

Lakmal Meegahapola, Roshan Alwis,
Eranga Heshan, Vijini Mallawaarachchi,

Dulani Meedeniya
Department of Computer Science & Engineering,

University of Moratuwa, Sri Lanka
{lakmalbuddikalucky.13, alwisroshan.13, eranga.13, vijini.13,

dulanim}@cse.mrt.ac.lk

Abstract— World Wide Web is getting dense as many new

web pages and resources are created on a daily basis. Keeping

track of the changes in the web content has become an immense

challenge and is a research problem with a great significance.

Even the search engines require to detect changes in the web to

keep search indexes up to date. Numerous researches have been

carried out on optimizing the change detection algorithms. This

paper presents a methodology named Multi-Threaded Crawler

for Change Detection of Web (MTCCDW), which is inspired

from the producer-consumer problem. The suggested change

detection process mainly analyses the performances and suggests

a tread-based implementation process for the optimisation of the

changed detection process. The experimental results show that

the proposed methodology is capable of reducing the effective

time to detect changes in a web page by 93.51%.

Keywords— web page change detection, web crawling, multi-

threading; producer-consumer problem; change detection;

I. INTRODUCTION

The World Wide Web (WWW) keeps on expanding
frequently as many tools and services become available to
create and maintain web content. Various websites, including
news websites and different themed blogs are created in order
to share knowledge and educate the general public about
current affairs. Keeping track of the changes occurring in this
web content has shown many challenges, as there are numerous
web pages keep on changing frequently. Change Detection and
Notification (CDN) systems have made the process of keeping
track of changes to web pages more efficient and less tedious
[1]. Furthermore, navigating through the different web pages
and finding the required content has become a difficult and
time consuming task. Search engines [2] [3] have made the
task of searching for web content easier and less tedious as they
search the WWW for relevant [4] web pages and content. The
major component of all of these systems is the web crawler,
which goes through all the web pages and downloads them to
detect whether changes have occurred. This information will be
used for the indexing process [5]. A web crawler mainly
identifies whether the changes have occurred in the crawled
web pages. Further, with the large datasets, the need for
analysing the performance and power consumption arises [6].

Sampath Jayarathna
Department of Computer Science,

California State Polytechnic University
Pomona, CA 91768

ukjayarathna@cpp.edu

In many existing change detection mechanisms, all the
tasks including retrieval of current versions of web pages and
comparing with saved versions to detect changes are carried
out as a single process. This can affect the efficiency and
performance of the process. This paper addresses this issue
from an architectural perspective. We divide the change
detection process in to sub-tasks and assign them to different
threads, rather than having a single bulk process, which will
result in a multi-threaded solution. Since there are many
threads reading and writing to a common location, the well-
known producer-consumer problem [7] can be incorporated to
the process of change detection.

Many parallel threads can be used to rapidly solve large
problems [8]. In this paper, we model the crawler thread as the
producer, which fetches the current version of the web page
and saves them in a queue. The thread with the change
detection module can be modelled as the consumer, which
consumes the fetched web pages in order to detect changes by
comparing with the existing version. Even though we keep on
increasing the number of threads, the process will reach a
certain limit where no significant improvement will be shown.
Hence, it is necessary to ensure that the optimum number of
threads will run in order to produce an efficient change
detection process. However, it is a challenge to schedule tasks
for threads during parallelization [9].

This paper presents a methodology named Multi-Threaded
Crawler for Change Detection of Web (MTCCDW) to detect
the change frequency of web pages efficiently. Section II
outlines the related work in the field of consideration. Section
III describes the design and methodology. Section IV explains
the experimental study which we have carried out and Section
V presents the obtained experimental results. Finally, Section
VI concludes the paper with the inferences obtained from the
results and emphasizes on the importance of the research.

II. BACKGROUND

Many studies have been carried out to improve the
efficiency of the change detection process by proposing many
improved algorithms and techniques. Nadaraj [10], has
described an approach for distributed content aggregation and
change detection for web content using client resources. In this

978-1-5090-3989-0/17/$31.00 ©2017 IEEE

The Seventh International Conference on Innovative Computing Technology (INTECH 2017)

120

approach, the consumers obtain the data from a queue and run
the web crawlers on the working machine. It distributes the
work among consumers and the results will be aggregated,
improving the efficiency of the crawling mechanism. It also
reduces the coupling of web crawlers to a particular machine,
allowing them to operate in a distributed network. It can be
considered as a scalable content classification approach. Bloom
filters have been used to find the duplicate URLs and content
in the site. However, bloom filters only confirm that the URL
was not visited before. Furthermore, still the process of change
detection can be delayed as the bottleneck becomes the
retrieval of the current versions by crawling. Another
interesting work on detecting changes in distributed and
collaborative web data collections and notification method is
presented in [11]. This is mainly used by search engines to
determine the schedule to crawl the web pages and build the
indexes. PageRank values using shash tool is considered to
detect the near duplicates. This provides fast change detection
with a low maintenance cost. However, if there are many
requests at a given time, due to heavy usage, the system may
not be able to process those in real time.

Kausar et al. [12], propose a system based on parallel web
crawling using mobile agents. The web crawler is considered to
be mobile as it can migrate to the data source before starting
the crawling process. As indicated, the main advantage of a
parallel web crawler based on mobile agents is that it reduces
network load and traffic as the analysis part of the crawling
process is done locally. However, issues such as running out of
space in a server due to overloading of crawlers can arise and
this may affect the synchronization of the crawling process. An
architecture for a parallel crawling of the web pages using
multiple machines and integrating the trivial issues of crawling
is presented in [13]. The authors have provided a three-step
algorithm for detecting web page changes. The server has a
unique method for distribution of URLs to clients after
determination of their priority index. However, the clients are
server nodes themselves. Hence the number of server nodes has
to increase when scaling the system that results in high cost.

Shkapenyuk and Suel [14], describe the design and
implementation of a high-performance distributed web crawler,
which runs on workstations. It can be adapted to various
crawling applications. This system is partitioned in to two main
components; crawling system and crawling application. The
crawling system consists of a crawl manager, one or more
downloaders, and one or more DNS resolvers. The change
detection process is being carried out by the crawling
application. It parses each downloaded page for hyperlinks and
checks whether these URLs have already been encountered
before. However, the system parses for hyperlinks and not for
indexed terms and this can be conflicting when detecting
content changes of web pages. Furthermore, the authors have
highlighted the need for highly efficient crawling systems.

Another distributed web crawler model based on cloud
computing and parallel implementation has been proposed in
[15]. The model is based on the master-slave architecture and
consists of several components including a cloud storage
system, scheduling system, distributed processing system and
multiple crawling systems. The web pages fetched by the
crawling systems are processed in the distributed processing

system. The authors have implemented the crawling system to
crawl in parallel, which in term reduces the network usage and
CPU resources. However, there exists the limitation of load
balancing between different nodes during the crawling process.

Mali and Meshram [16], propose a focused web crawler
with a page change detection policy. They have focused on the
page selection policy and page revisit policy. The crawler first
explores the relevance of the page and checks whether the
structure or the content has changed. Then, the crawler updates
the URL repository. Structural changes are detected by using
changes for the HTML tags, while text changes are identified
by converting the text to a particular code and comparing it
with a previously saved version. However, still the process of
change detection can be delayed as the bottleneck becomes the
retrieval of the web pages by the crawling process.

Furthermore, Sebastian [17] proposes another focused web
crawler for information retrieval. The specialty of this crawler
is that it uses genetic algorithms. This web crawler focusses on
obtaining information regarding a specific subject. As it
retrieves only the required data and learn from the past
traversal experiences, it can save sufficient time and resources
as irrelevant data are not processed. An advantage of this
adaptive mechanism is that the process can be left
unsupervised as the crawlers have the ability to learn. The
author has mentioned the importance of having a central
control mechanism to coordinate the crawlers running in
parallel and to pre-vent redundancy. However, if this crawler
was used in commercial web search engines, issues may arise
as there are web pages belonging to a vast number of subjects.

As discussed above, a wide range of research has been
carried out to enhance the web page change detection by
addressing many aspects of the process such as the crawler
scheduling, change detection algorithms and the architecture
itself. Furthermore, most of the researches regarding web
crawler efficiency have been focused around parallelizing the
crawling process (parallel web crawlers). However, only a
limited amount of research has been carried out regarding the
use of a multi-threaded approach to be incorporated in the web
page change detection process.

III. SYSTEM DESIGN AND METHODOLOGY

Fig. 1, shows a high level view of a server in a general
change detection system. This process is sequential with
respect to the web pages in the browsing list and a schedule is
prepared to crawl and detect changes. From the schedule, each
web page is crawled, fetched and compared with its old version
using the Change Detector. The process consists of three main
steps as shown in Fig. 2.

1. Crawling - Retrieving the current version of the web
page from WWW.

2. Fetching - Retrieving the old version of the web page
from Version Repository where old versions of the
web page are stored.

3. Change Detection - Comparing the two versions using
a suitable comparison mechanism.

121

In step 1, the system retrieves the web page in which
changes are required to be tracked. This requires the internet
connection of the system and depends on the network usage of
the machine. The time taken to complete this step is higher
compared to the time taken for other steps as shown in Fig. 2.
In step 2, the previous version of the fetched web page is
retrieved from the database and consumes less time compared
to step 1. The speed of this process mainly depends on the type
of the database and whether the server is remote or local. As
the change detection process is running locally on a server, the
database would be local to the program. Hence, the time taken
in this step will be less. In step 3, the two versions are checked
for changes.

Fig. 1. High level view of an existing change detection system.

Fig. 2. Three main parts of detecting changes of a web page

Most of the current research is focused on this step and
various implementations and algorithms are available to
increase the efficiency and accuracy of this step. Although step
3 is optimized in the best possible manner, still the entire
process of change detection mainly depends on the time taken
by step 1. Hence it is clear that to keep the entire process of
change detection of a web page at a certain pace, step 1 has to
be completed in a high pace compared to step 2 and step 3.

The solution to the problem discussed above, lies in the
MTCCDW methodology, which divides the change detection
process into three separate sections. Each section carries out
the task performed in a step in the normal change detection

procedure. However, the difference between the existing
change detection mechanism and the MTCCDW methodology
is that each of the sections uses a number of threads to perform
the task as shown in Fig. 3. Following terms are used here.

1. Section 1 – carries out the process of retrieving current
versions of the web pages.

2. Section 2 – carries out the process of retrieving old
versions from the version repository.

3. Section 3 – compares the two versions and detects the
changes.

Consider a scenario where, section 1 uses N number of
threads, section 2 uses M number of threads and section 3 uses
K number of threads. N, M and K are non-zero positive
integers. These 3 numbers can be chosen in an optimum
manner to make the entire process of detecting changes in web
pages more efficient.

Fig. 3. Multi-threading usage for optimising change detection in MTCCDW.

As shown in Fig. 3, three sections and two queues were
used in the initial implementation. Section 1 fetches the web
page, creates an object together with web page ID and puts it in
the thread-safe queue, Queue 1. Section 2 runs M number of
threads and each of these threads fetch objects from the queue,
fetch the required previous version from the version repository,
create a new object with the two versions of the web page and
push it into the thread-safe queue, Queue 2. Sections 3 which is
implemented with K threads, fetches objects from the Queue 2
and does the comparison to detect changes. With sufficiently
large N, this system ensures that the Virtual Machine in which
the server runs is working optimally without being idle.

Fig. 4. Multi-threading implementation for an optimised MTCCDW.

Considering the obtained performance measures (explained
in Section IV), this structure can be further optimized as shown

122

in Fig. 4. It was observed that the optimized version is obtained
in a scenario where M is equal in value to K. In the optimized
version, section 2 and section 3 of the previous version is
combined to create section 2. Here there is only one thread-safe
queue and section 2 handles both fetching web pages from the
version repository and detecting changes. This version of
MTCCDW removes the overhead of objects moving between
two queues and hence the whole process is optimized.

IV. EXPERIMENTAL STUDY

A. Implementation

Initially, the experiment was performed with a single
thread and obtained the results using the average of 5
iterations to complete detecting changes of 6540 web pages.
Then we used the thread configurations shown in Fig. 3, and
Fig 4, using variables N, M and K. From the results of the
configuration in Fig. 3, the best results were obtained when
M=K, as shown in Table II. Hence, section 2 and section 3 of
Fig. 3, were combined for the 3rd configuration as in Fig. 4.

This change detection process is based on the producer-
consumer problem [7], which is a well-known example of a
multi-process synchronization problem. This consists of two
processes, the producer and the consumer, which share a
common, fixed-sized buffer. The producer produces data and
feeds to the buffer and continues the production process.
Simultaneously, the consumer consumes the data from the
buffer. In such a scenario, it is a challenge to ensure that the
producer will not add data to the buffer if it is full and the
consumer will not try to consume data when the buffer is
empty. The change detection process modelled this scenario.

While changing the number of producer threads (N)
against the number of consumer threads (M), we tried to find
the optimum N and M values which will result the lowest
completion time of detecting changes of 6540 different
webpages. Since detecting changes (consumer’s job) takes less
time than crawling (producer’s job), two more conditions to N
and M such that M <= N/4 and M <= 15.

 These conditions were included to ensure that the
consumers would not starve. The value of N was limited to
N<=100, by considering the network usage for the process of
crawling and available data rate in the virtual machine. For all
the N and M values, the experiment is continued for 5
iterations. We used 5 iterations to be within a confidence level
of 95% with a standard deviation of 3.21. Hence, following
three configurations were simulated during the experiment
study.

1. Configuration 1: Single threaded crawler

2. Configuration 2: Multi-threaded crawler with different
values for variables N, M and K. (As in Fig. 3.)

3. Configuration 3: Multi-threaded crawler with different
values for variables N and M. (As in Fig. 4.)

 Here, we tested how currently available implementations
of change detection systems work against MTCCDW in the
initial version as in Fig. 3, and the optimized version as in Fig.
4, using 6540 different web pages. Effective time to carry out

the process of change detection of a web page was measured
in each configuration and shown in Eq. (1).

 !!"#$%&"'(%)" *

+,-.'/,00.1.23.'40'56716'72/'.2/'40'38729.'/.6.36,42

:;-<.1'40'=.<'>79.5
 (1)

The experiments were carried out on a virtual server
hosted in Azure private cloud. It had Linux Ubuntu (kernel
16.04 amd64) and was running on 64-bit IntelTM Intel Xeon
E312xx (Sandy Bridge) which operates at 2.70GHz. It had 4
CPU sockets, with 2 cores each. L1(d/i) and L2 caches were
512KB 0200and 4MB respectively. Its primary memory
(RAM) was 16GB and secondary memory (HDD) was
100GB.

B. Pseudo Codes of Algorithms in MTCCDW

The pseudocode given in Algorithm 1 explains the
MTCCDW process. This indicates the basic initialization
required for both producer and consumer algorithms.
Following are the terminology used for the initialization.
• linkQueue: Contains URLs which were not crawled
• documentQueue: Contains crawled documents
• producerLock: A lock to manage producer threads
• consumerLock: A lock to manage consumer threads
• capacity: Maximum capacity of the document queue

(producers will not exceed the production more than this
limit. When producer reach this limit, it waits until
consumers to consume.)

• producerCount: Number of concurrent producers

Algorithm 1 Initialization

1. linkQueue = Queue(String)
2. documentQueue = Queue(Document)
3. producerLock = Lock()
4. consumerLock = Lock()
5. capacity = 500
6. producerCount = 100

The linkQueue is a queue of strings that contains URLs. It

is only used among producers for fetching URLs to crawl the
relevant web content. The documenQueue is shared among
both producers and consumers. Producers will store crawled
documents in the documentQueue, while consumers will
consume the produced documents from the same queue. Since
the crawling process is an expensive operation, this queue has
a limited size that will prevent producers from excess
production. The capacity parameter decides this maximum
size of the documentQueue. The producerLock will manage
the concurrent access of producers and consumerLock will
handle the concurrent access of consumers.
 Algorithm 2 explains the work carried out by one producer
thread in parallel crawling. Here, the term link refers a URL to
crawl and document is the returning document by the crawler.
Producer function takes a link from the linkQueue and feeds
that link to the crawling process. The crawled document will
be stored in the documentQueue. The producerLock is used to
handle the concurrent access to the linkQueue, which is a

123

shared resource among producer threads. Moreover,
producerLock works with consumerLock when updating the
documentQueue, which is shared between producers and
consumers. If the linkQueue is empty, producers will wait
until it fills. If the documentQueue is filled, the producers will
wait untill consumers to consume. Since the crawling part is
the slowest process, we have not synchronized that process
which can block other producer threads and consumers.
Finally, when documentQueue is updated, it will notify
consumer threads, which can be waiting on the empty
documentQueue.

Algorithm 2 Producer Algorithm

Require: URLs to crawl
Ensure:
1. Producer():
2. while(True):
3. link = NIL
4. document = NIL
5. producerLock.acquire()
6. if linkQueue is empty:
7. producerLock.acquire()
8. if documentQueue.size() < capacity - producerCount + 1:
9. link = documentQueue.dequeue()
10. else:
11. producerLock.acquire()
12. producerLock.release()
13. if link is not NIL:
14. document = crawl(link)
15. producerLock.acquire()
16. if document is not NIL:
17. productQueue.enqueue(document)
18. consumerLock.release()
19. producerLock.release()

Algorithm 3 explains the behaviour of a consumer thread
in a multi-threaded environment. Consumer threads are
working on detecting changes for the documents available in
the documentQueue. If the documentQueue is empty, then
consumer threads wait for the producer threads to produce. If a
consumer consumes a document, it notifies the producer
threads which is waiting on the filled document queue.

Algorithm 3 Consumer Algorithm

Require: Documents to detect changes
Ensure:

1. Consumer():
2. document;
3. while(True):
4. document = NIL
5. consumerLock.acquire()
6. while documentQueue is empty:
7. consumerLock.acquire()
8. producerLock.acquire()
9. document = documentQueue.dequeue()
10. producerLock.release()
11. if document is not NIL:
12. process(document)

V. RESULTS AND DISCUSSION

Here, we have considered the minimum effective time and
the optimum effective time. In minimum effective time, the
effective times will be calculated for each N by varying M and

K. Minimum effective time would be the minimum time out of
the set of times we get by varying M and K for a particular N.
Optimum effective time is the minimum out of the set of
minimum effective times, where there is a minimum effective
time for each N. As shown in Table 1, the effective time for
crawling a web page using a single thread was 911.05 ms in
configuration 1. It is extremely high compared to the values
obtained using multi-threaded crawling in other configurations.

TABLE I. OPTIMUM EFFECTIVE TIME FOR CHANGE DETECTION IN
EACH OF THE 3 CONFIGURATIONS

Configuration
1

Configuration
2

Configuration
3

Effective time for
detecting changes of a
web page in the
optimum scenario

911.05ms

60.05ms
(N = 78, M =

6, K = 6)

59.19ms
(N = 78, M =

11)

We obtained the minimum average/ effective time for

change detection by varying M and K values, for each N from
1 to 100. These minimum effective times were plotted against
N as shown in Fig. 5. For each of the minimum times, we
observed how M varies with K. As shown in Table 2, M and K
had equal values for 73% of the times. The difference between
M and K was just 2 threads or less in 16% of the instances.

Fig. 5. Variation of effective time with N in the configuration 2 (MTCCDW

without optimization)

TABLE II. VARIATION OF M & K IN INSTANCES WHERE MINIMUM
EFFECTIVE TIME WAS OBTAINED FOR EACH N

 M<<K M<=K+2 M=K M>=K-2 K>>M

% of cases 4% 5% 73% 11% 7%

According to the results shown in Table II, the minimum
effective times were obtained when M is closer to K. Hence,
the number of threads used in section 2 and section 3 of the
configuration 2 given in Fig. 3. can be merged because the
number of threads M and K are equal. Configuration 3 was
obtained with this merging. In configuration 3, the minimum
effective time out of the values for various M was plotted for
each N, as shown in Fig. 6. From the effective times obtained
in configuration 3, a clear optimization of effective times could
be seen for each N. Let’s consider the following terminology in
regard to both configuration 2 and configuration 3. We

124

observed the relationship between minimum effective times for
all N in both configurations 2 and 3.

Tconfig_2 – Effective time in configuration 2 for a given N

Tconfig_3 – Effective time in configuration 3 for a given N
Sasa

Fig. 6. Variation of Effective time with N in the configuration 3 (MTCCDW

with optimization)

TABLE III. VARIATION OF M IN INSTANCES WHERE MINIMUM EFFECTIVE
TIME WAS OBTAINED FOR EACH N

Tconfig_2 <
Tconfig_3

Tconfig_2 =
Tconfig_3

Tconfig_2 >
Tconfig_3

% of cases 4% 0% 96%

In 96% of the cases, the time for change detection with
each N was less in configuration 3 than in configuration 2.
Further from configuration 2 to 3, an effective time reduction
of 1.43% was observed as shown in Table 1 considering the
optimum cases. If the effective time differences for all the N
values are considered for both configurations, still an effective
time reduction 0.1727% could be obtained. Compared to
configuration 1, the effective time in configuration 3 has been
reduced by 93.51%. From all these facts it could be concluded
that MTCCDW with 2 sections, is an efficient way in which
multi-threaded crawling can be used for change detection.

VI. CONCLUSION

This paper proposes a multi-threaded crawler for change
detection of web to optimize change detection of web pages
using multi-threading. An efficient change detection system
could be useful in creating programs which use existing high
performance servers in an optimum manner. The experimental
study ascertains the importance of using multi-threading for the
optimisation of the change detection process. The proposed
methodology separates the entire process into two main
sections, web crawling and change detection; where multi-
threading is used in both processes. Further, the results show
that when the number of threads for web crawling increases,
the effective time for change detection gets reduced and
saturates at a certain level after a particular number of threads.
This could be mainly due to the network usage limitations of
the experimental environment. Another limiting factor which
affects the change detection process is the thread-safe queue,
which is used in between web crawling and detecting changes.
This research can be extended to have multiple thread-safe

queues replacing the single thread-safe queue, which is used
currently and observe how performance can be improved
without allowing any threads to starve.

REFERENCES

[1] S. Chakravarthy and S. Hara, "Automating Change Detection
and Notification of Web Pages (Invited Paper)," in 17th
International Workshop on Database and Expert Systems
Applications, Krakow, Poland, 2006, pp. 465-469.

[2] A. Cho et al., "Searching the Web," ACM Transactions
on Internet Technology, vol. 1, no. 1, pp. 2-43, 2001.

[3] L. Hung and C. Y. Lin, "Efficient parallelised search
engine based on virtual cluster," International Journal of
Computational Science and Engineering, vol. 12, no. 1,
pp. 53-57, 2016.

[4] M. Kheira et al., "Collection and Selection Based Relevant
Degrees Of Documents," Journal of Digital Information
Management, vol. 13, no. 2, pp. 110-119, 2015.

[5] V. M. Prieto, M. Álvarez and F. Cacheda, "Soft-404 Pages, A
Crawling Problem," Journal of Digital Information
Management, vol. 12, no. 2, pp. 73-92, 2014.

[6] Y. Khaliq et al., "Calculation of CPU performance, power and
cost using Hadoop," in 6th International Conference on
Innovative Computing Technology, 2016, pp. 122-127.

[7] A. Hamroush and H. Tawfik, "Synchronized Information in the
Producer-Consumer Problem," Journal of Socioeconomic
Engineering, no. 2, pp. 25-30, 2014.

[8] C. Wu et al., "Adjusting Thread Parallelism Dynamically to
Accelerate Dynamic Programming with Irregular Workload
Distribution on GPGPUs," Journal of Grid and High
Performance Computing, vol. 6, no. 1, pp. 1-20, 2014.

[9] S. K. Singh and D. P. Vidyarthi, "Independent Tasks
Scheduling using Parallel PSO in Multiprocessor Systems,"
Journal of Grid and High Performance Computing, vol. 7, no.
2, pp. 1-17, 2015.

[10] S. Nadaraj, "Distributed Content Aggregation& Content
Change Detection using Bloom Filters," Journal of Computer
Science and Information Technologies, vol. 7, no. 2, pp. 745-
748, 2016.

[11] V. M. Prieto et al., "Distributed and Collaborative Web Change
Detection System," Computer Science and Information
Systems, vol. 12, no. 1, pp. 91-114, 2015.

[12] M. Kausar et al., "An Effective Parallel Web Crawler based on
Mobile Agent and Incremental Crawling," Journal of Industrial
and Intelligent Information, vol. 1, no. 2, pp. 86-90, 2013.

[13] D. Yadav et al., "Architecture for Parallel Crawling and
Algorithm for Change Detection in Web Pages," in 10th
International Conference on Information Technology, 2007, pp.
258-264.

[14] V. Shkapenyuk and T. Suel, "Design and Implementation of a
High-Performance Distributed Web Crawler," in 18th
International Conference on Data Engineering (ICDE), San
Jose, CA, USA, 2002, pp. 357-368.

[15] J. Yu et al., "A Distributed Web Crawler Model based on
Cloud Computing," in 2nd Information Technology and
Mechatronics Engineering Conference, 2016, pp. 276-279.

[16] S. Mali and B. Meshram, "Focused Web Crawler with Page
Change Detection Policy," in 2nd International Conference and
workshop on Emerging Trends in Technology, 2011, pp. 51-57.

[17] K. Sebastian, "A Framework for adaptive focused web crawling
and information retrieval using genetic algorithms," Journal for
Computer Technology & Applications, vol. 6, no. 5, pp. 770-
778, 2015.

125

