2018 IEEE International Conference on Information Reuse and Integration for Data Science

Automated Playlist Generation from Personal Music Libraries

Diana Lin and Sampath Jayarathna

Department of Computer Science
California State Polytechnic University
Pomona, CA 91768, USA
(delin, ukjayarathna)@cpp.edu

Abstract—Manual creation of music playlists is a time
consuming task that is typically characterized by an individual
listening for similar audio features among a number of songs.
The goal of this project is to reduce the time spent in
performing this task by achieving the following: given an
arbitrary collection of digital music recordings, automatically
sort songs with similar musical qualities into playlists. This
problem statement can essentially be reduced to a clustering
problem, and this is the approach that we take. In this project,
we accomplish the automatic generation of playlists by
combining the use of music analysis tools and clustering
algorithms from the field of machine learning. Additionally,
we incorporate various visualization tools into the application
user interface in order to give users an intuitive representation
of the resultant playlists.

Keywords-Music Clustering; K-Means; Affinity Propagation;
DBSCAN

L

Since the early 2000s, digital music libraries and music
streaming services has seen a dramatic rise in popularity.
The increase in available platforms for downloading and
streaming music led digital music to generate forty-five
percent of the music industry’s total revenue in 2016 and
overtake physical formats for the very first time [8]. This
rapid growth in digital distribution of music has had both
positive and negative implications for the music listening
community. On one hand, the growth in distribution has
made songs much more widely accessible than ever before.
Emerging artists now have the opportunity to expose their
recordings to the world at the click of a button. On the other
hand, the sudden widespread availability has led to an
overabundance in musical selection which has made it more
difficult for some users to decide what to listen to [15].
Because of this, many music listeners have turned to
platforms such as Spotify, Pandora, and iTunes to more
easily manage and sort through large collections of digital
recordings.

As individuals obtain rapidly growing collections of
music, many music services are now delving into research to
meet the increasing need for accurate retrieval of songs that
are relevant to a user’s personal preferences. This has
prompted several recent developments in the emerging field
of Music Information Retrieval (MIR) technology, from

INTRODUCTION

978-1-5386-2659-7/18/$31.00 ©2018 IEEE
DOI 10.1109/IR1.2018.00039

217

which two major approaches have risen [12]. The first
approach primarily makes use of meta-data of digital
recordings along with tagging information. The second
approach considers user-related data and incorporates
recommendation techniques such as collaborative filtering to
generate relevant responses to user queries. Many platforms
make combined use of these methods in order to offer a
variety of features that allow users to easily curate and
stream their favorite songs. Such features include, and are
by no means limited to, the creation of personal playlists,
access to precompiled playlists, and even personalized music
recommendations.

Manually compiled playlists and auto-generated radio
stations are oftentimes comprised of tracks that share similar
musical qualities or that may be classified into the same
genre. In Spotify, playlists are much like mixtapes which are
compiled by individual users and may be shared with the
public for universal consumption and enjoyment. On the
other hand, radio stations offered by services such as Spotify
and Pandora are constructed automatically through the use of
machine learning algorithms applied towards musical
analysis. Radio stations from these platforms take a single
input parameter from the user in the form of a music track,
artist, album, or music genre, and use it to generate a
collection of songs that have similar characteristics. For
instance, a Classical Music Radio Station may contain works
from composers such as Beethoven and Mozart and a Classic
Rock Radio Station may contain recordings from The
Rolling Stones and Led Zepplin. An additional factor that
distinguishes playlists from radio stations is that the music in
a playlist is drawn from a user’s personal music library,
while the music included in a radio station is drawn from the
service provider’s music catalogue.

This project aims to incorporate the best features of
personalized playlists and auto-generated radio stations.
Personalized playlists have the benefit of containing only the
music which a user enjoys. In particular, since a playlist is
comprised of songs from a user’s personal music library,
each song has already been screened and approved by the
user. This is extremely valuable due to the fact that it is
often difficult to find music that fits the unique taste of any
given individual. On the other hand, auto-generated radio
stations have the convenience of saving users a substantial
amount of time through the use of machine learning

IEEE
(@ computer

soclety

algorithms. The algorithms that are used to make
recommendations are designed to be scalable and are thus
readily applicable to large collections of music.

IL

Today’s digital music service providers have made
extraordinary advances in a short amount of time. The
ability to make recommendations for music, which is a
highly subjective task, is a great feat in itself. However,
there is still room for improvement in the midst of these
great developments. Auto-generated radio stations are great
for saving listeners time and effort, but oftentimes these
stations may still contain songs which do not suit a listener’s
taste. Although it is possible for individual users to compile
their own playlists filled with their favorite songs, doing so is
no trivial task. Organizing music into playlists requires
consideration of several aspects of a song such as tempo,
acousticness, and loudness and music with similar features
and styles are usually grouped into the same playlist. Since
today’s technology has made it easy for people to store
hundreds or even thousands of audio recordings, combing
through large collections to create playlists consumes a
considerable amount of time and effort. A probable solution
to this is a service that automatically compiles playlists from
a user’s personal music library. Creating playlists from a
user’s existing library will guarantee a higher level of user
satisfaction since each individual’s library is known to be
comprised of music which he or she enjoys.

MOTIVATION

III. CHALLENGES

A. Objective Analysis of Subjective Items

The classification and analysis of music is a relatively
subjective task due to its dynamic nature and the emotion
that it expresses — a song may start out quiet and somber but
later build up to a dramatic climax. Although songs contain
some measurable features such as tempo or the key that it is
in, there are several other features, such as liveliness, that are
not easily extracted. These subtle nuances that are inherent
in musical pieces are more easily detected by a human than a
machine. Because of this, the initial method of classification
was primarily manual inspection by human experts, with the
most notable and comprehensive effort being the Music
Genome Project spearheaded by Pandora [3]. Ascribing
measurements to subjective features remains a difficult task
for the field of music information retrieval today. For
instance, an adequate solution to the longstanding challenge
of automated genre classification remains elusive to
researchers even after years of advancement in the field. The
quantization of many musical features face this similar
challenge because they are not measurable nor do they fit
into binary classifications. As such, the challenge at hand is
to extract various musical features which are traditionally
subjective and to quantify them via track analysis.

B. Large Collections of Music Recordings

Undeniable advancements in technology have led many
of the world’s industries to transition into the digital age, and
the music industry is no exception. The growth of the

218

Internet has made music recordings more accessible than
ever before and users now have numerous options to
download or purchase their favorite songs for their personal
collection. The revenue from digital music has steadily
overtaken physical formats (e.g. CDs, cassette tapes, vinyl
records) on a global level [8]. Knowing this, it is reasonable
to suggest that such an increase in revenue is linked with an
overall increase in the size of music collections. Since music
libraries can easily contain up to hundreds or thousands of
songs, the methods used in this project face the challenge of
being effective and scalable.

C. Usability for Non-technical and Advanced Users

Classification of music requires in-depth analysis of
several aspects of a musical piece and the algorithms that are
used in this process are complex and involve much
mathematical, statistical, and computational theory. Most
users are casual music listeners and do not have much
technical knowledge concerning music or the inner workings
of clustering algorithms. Therefore, special attention must
be paid to the interface design. Studies have shown that
there is a negative correlation between visual complexity and
overall perception [13]. Therefore it is important to abstract
away unnecessary complexities to give users a more pleasant
experience. Although some advanced users may appreciate
having the ability to fine tune the parameters of an algorithm,
exposing too many options may disorient the average user.
Thus, we are faced with the challenge of achieving a balance
between a simple and intuitive interface while providing
more advanced users options to control finer details.

Iv.

In response to the challenges involved in creating
playlists from large music libraries, this project incorporates
clustering algorithms and musical analysis tools into an
intuitive web application. The features of this project are
built upon the open-source tool Organize Your Music which
was designed by Paul Lamere, the Director of Developer
Platform for The Echo Nest at Spotify.

SOLUTION

A. Analysis of Quantifiable Features

The Echo Nest is a “music intelligence platform [that]
synthesizes billions of data points and transforms it into
musical understanding to power smarter music applications”
[19]. Together with Spotify, they have worked to analyze
music and make the information available to the public via
the Spotify Developer Web API. One great contribution is
the large scale analysis and quantization of subjective audio
features into integer or float values for tracks in the Spotify
catalogue. Table 1 displays a few of the available audio
features along with a brief description of each.

The mapping of these features into numerical values is
extremely valuable because it allows for clustering analysis
based on Euclidean distance. Fig. 1 demonstrates the
visualization of audio features in three-dimensional
Euclidean space. When using Euclidean space as the
distance measure in clustering algorithms, a collection of
points may be characterized by its average. The average

TABLE 1. QUANTIFIED AUDIO FEATURES FROM THE SPOTIFY WEB

DEVELOPER API [20].

Feature Description

Danceability Danceability describes how suitable a track is for
dancing based on a combination of musical elements
including tempo, rhythm stability, beat strength, and

overall regularity. A value of 0.0 is least danceable and

1.0 is most danceable.

Energy Energy is a measure from 0.0 to 1.0 and represents a
perceptual measure of intensity and activity. Typically,

energetic tracks feel fast, loud, and noisy.

Valence A measure from 0.0 to 1.0 describing the musical
positiveness conveyed by a track. Tracks with high
valence sound more positive (e.g. happy, cheerful,

euphoric), while tracks with low valence sound more

negative (e.g. sad, depressed, angry).

represents what is known as the centroid [11]. Without the
ability to map data into such a space, one must find an
alternative means of summarizing clusters.

Many of these features are subjective and difficult to
incorporate into analysis since there had previously been no
standard way to quantify them. Excluding these features
meant that a big part of important information was missing
from analysis. Now that they are available, this project
incorporates these features as the measurement for clustering
algorithms. For example, a user may select which of these
audio features that the creation of playlists is based on. So if
“danceability” and “energy” are chosen, then the clusters
will be formed based on songs that have similar measures of
“danceability” and “energy”.

Xaxis: ¥ axis Zaxis:

valence

energy acousticness

Figure 1. Three-dimensional visualization of musical tracks with various
audio features from the Organize Your Music 2.0 application.

B. Application of Machine Learning and Clustering
Algorithms

To accommodate the increasing size of music collections,
we chose to use machine learning algorithms due to their
efficiency and scalability. For this project we use K-Means
Clustering, Affinity Propagation, and DBSCAN Clustering.
A sample dataset of approximately seventy songs from four

219

Number of Clusters

Clustering Algorithm:

Figure 2. Example of resultant clusters from the K-Means Clustering
Algorithm.

different genres are used to show the resultant clusters of
these three algorithms — they are shown in Fig. 2, Fig. 3, and
Fig. 4.

K-Means clustering is one of the most widely used
clustering methods in data mining due to its simplicity and
scalability [21]. It is an unsupervised method of machine
learning that can be broken down into two major steps. The
algorithm begins with a random set of initial centers where
each data point is assigned to its closest center. Secondly,
each center is repeatedly recomputed until each data point
converges to a fixed cluster [2]. K-Means clustering has
been applied to several different fields such as segmentation
and information retrieval, and this project brings this widely
used algorithm into music clustering to test its effectiveness
when applied to personal music libraries. Fig. 2 shows the
output of K-Means clustering when applied to the sample
dataset. Clustering is based on the audio features provided
by the Spotify Developer Web API and the user is allowed to
specify the number of clusters that he or she would like the
algorithm to produce.

Although the K-Means algorithm is intuitive and widely
used, it is sometimes seen more as of a partitioning method
than a clustering method. In other words, it partitions the
data set into k groups rather than identifying naturally
occurring clusters and placing less emphasis on outliers.
Additionally, the need to specify the initial number of
clusters may not always be desirable. A well-known
clustering algorithm that addresses some of the shortcomings
of K-Means clustering is Affinity Propagation, which was
developed and published by Frey and Duek in 2007. This is
one of the favored algorithms among the various methods

Figure 3. Example of resultant clusters from the Affinity Propagation
Algorithm

Clustering Algorithm: Minimum Number of Songs:

DBSCAN Clustering

Epsilon:

Figure 4. Example of resultant clusters from the DBSCAN algorithm.

because it maintains high performance and, unlike K-Means
clustering, it does not require the specification of number of
clusters. ~ Affinity Propagation uses a message passing
network and recursively transmits messages between all data
points. This is done until a promising set of centroids begin
to naturally appear with their corresponding clusters [7]. The
output of Affinity Propagation for the sample dataset is
shown in Fig. 3. The centroids for each of the resultant
clusters are also shown in the plot and can be identified as
the node which shares a connection with all other nodes in
that cluster.

Both K-Means clustering and Affinity Propagation have
better performance when clusters within the data are
globular. However, globular clusters may not always be
naturally occurring. Thus we turn to density-based spacial
clustering of applications with noise, otherwise known as
DBSCAN. This algorithm is highly scalable and excels in
discovering clusters with arbitrary shape due to its ability to
classify sparse areas as background noise and hone in on
denser regions [5]. To determine whether a region is dense,
“each point of a cluster in the neighborhood of a given radius
has to contain at least a minimum number of points, i.e. the
density in the neighborhood has to exceed some threshold”
[5]. The radius used to determine the neighborhood is a
user-specified parameter, epsilon. Intuitively, the larger the
value of epsilon, the more data points a cluster will
encompass. An additional input parameter that can be tuned
in this project is the minimum number of points that is in
each set. This can help users enforce the generation of
playlists of at least a certain size. Although it has been
shown that DBSCAN has the potential to generate better
results than K-Means clustering and Affinity Propagation, it
comes with a few shortcomings. Among them is that the
tuning of the epsilon and minimum samples parameter may
prove to be difficult for less technical users, since the
algorithm is quite sensitive to them. A sample output using
DBSCAN is shown in Fig. 4 with the colored clusters
representing playlists and the black data points representing
regions of data that are too sparse to be included in a cluster.

C. User-Friendly Interface

The Organize Your Music 2.0 application faces a
challenge of bringing together technical tools for the use of
non-technical users. This issue is important to address
because studies have shown that a user’s overall impression
of a site is very influential in determining whether he or she

will continue interacting with the it or move on to another
site [18]. The main obstacle is to abstract away the
complexities of clustering algorithms for the average user
and simultaneously give advanced users the control and the
ability to fine tune various parameters for each algorithm.
This is handled through specific design choices and the use
of web tools.

To reduce some complexities, we remove the need for
users to make many initial decisions by setting a few default
choices. In particular, we set the default algorithm as the K-
means clustering algorithm. This choice was made because
the concept behind K-means is more simple to grasp than
Affinity Propagation and DBSCAN. Additionally, we
change the input parameter to be more relevant to the needs
of the application’s target audience. Traditionally, the input
parameter is a value k£ which determines the number of
clusters to produce from the dataset. However, this
application takes as input the approximate number of songs
desired in each resultant playlist. The reasoning behind this
design choice is that it is more natural to think of the average
number of songs that one desires in a playlist than to think of
the number of playlists one wishes to have.

Development tools were also used to help accustom users
to the unique features of this application. One such tool is
Intro.js, a product tour creation library. This library is used
to give a simple introduction to the basic features that the
application provides and integrate helpful tips throughout the
webpage. A welcome tour automatically starts when a user
first visits the site and the user can opt out of the tour at any
time. To resume the tour from any particular feature page,
the user simply selects the ‘Help’ icon. The ‘Help’ icon is
strategically placed in the top-right corner of every page so
that it is unobtrusive and easily accessible to the user. Fig. 5
depicts the welcome tour that the user is greeted with and the
‘Help’ icon is highlighted in the top right corner.

Lastly we make use of an ‘Info’ icon that produces a
modal dialogue when clicked. The modal dialogue is shown
in Fig. 6 and displays basic information regarding the current
selected clustering algorithm including details about its input
parameters. It also has an additional link to an online

reference that contains more information regarding the
specific algorithm. This feature helps non-technical users
gain a better understanding of each algorithm and also
provides insight into the meaning of each parameter.

220

Figure 5. Application welcome tour and 'Help' icon.

K-means Clustering

Figure 6. Modal dialogue displaying basic information regarding the K-
means Clustering algorithm with a link t o an online resource for further
information.

V. DEVELOPMENT TECHNIQUES

The Organize Your Music 2.0 application is designed to
be a web service that is available to all Spotify users. Its
foundation is based on the work of Paul Lamere, the Director
of Developer Platform for the Echo Nest at Spotify, who
developed the original Organize Your Music application and
graciously made it open-source on GitHub. This project
adds several components to the existing code base that allow
users to automate the sorting of their music library into
playlists and simultaneously visualize the results. Organize
Your Music 2.0 is composed of a client-side and server-side
framework that can be hosted and modified on a local
machine or actively running on a remote server such as an
Amazon Elastic Cloud Compute (EC2) instance. The client
side is primarily comprised of HTML and Javascript
functions that are able to perform some basic manipulations
to music data. The client side also communicates with the
server side through routing methods to access the Spotify
Web Developer API and carry out complex computations.
The server makes extensive use of Node.js in order to
incorporate the features of this project that are more
computationally heavy. Most notably, it runs Python scripts
which make calls to Python libraries designed for machine
learning, clustering, and data visualization.

A. Authentication and Information Gathering

To access user-specific data, the Organize Your Music 2.0
application must first pass two forms of authorization:
application authorization and user authorization. Application
authorization allows the application to access the tools that
are made available by Spotify, such as APIs, SDKs, and
Widgets, and it is granted by Spotify once the application is
registered [1]. User authorization is granted by the Spotify
user and this allows Organize Your Music 2.0 to access a
user’s data, such as personal playlists.

After a user grants authorization to the application, it can
begin to retrieve the information that is needed to perform
clustering. The metadata for each music track is obtained by
sending a GET request to the RESTful Spotify Web API
which returns the data in JSON format. To analyze and
cluster songs, the application requests the audio features of
each track. Some of these features include tempo,
danceability, energy, acousticness, and liveness. After

221

analyzing this data either manually or with one of the
available clustering algorithms, a user has the option to
create a new playlist with the selected songs. This last step is
accomplished through a POST request to the API.

B. Data Visualization

The visualization of music data focuses on the audio
features that have gone through analysis via The Echo Nest’s
music audio analysis tool called “Analyze”. This tool “uses
proprietary machine listening techniques to simulate how
people perceive music” and in turn produces a breakdown of
musical attributes of a given recording [9]. The metadata for
each track is queried from the Spotify Developer Web API in
the manner described in the previous section.

After the data is acquired, the user-specified features are
extracted and used to form a visual representation via Plotly.
Plotly is an open-source tool that is designed to aid in
interactive data visualization and is available for use with
both Javascript and Python. This library is designed to be
easily incorporated into web applications and it makes heavy
use of the JSON objects for the customization of charts as
the primary input format for data. The Plotly toolbox has
numerous charting options available that range from basic
charts such as scatter plots and bar charts, to statistical charts
such as histograms. For this project, we choose to display
the music data with two-dimensional and three-dimensional
scatter plots. Scatter plots are a suitable choice for this
application due to their simplicity and the ease with which
they can intuitively represent multiple dimensions.

C. Machine Learning and Clustering Tools

The computational tools used on the server side of
Organize Your Music 2.0 primarily consist of resources
from Python libraries. The clustering of music data was
accomplished using the Scikit-learn machine learning
library which is built on top of Scipy, another Python library
that has many applications in mathematics, science, and
engineering. Scikit-learn offers tools for classification,
regression, clustering, and preprocessing and this project
makes use of the K-Means, Affinity Propagation, and
DBSCAN algorithms which were discussed in the Section
Iv.

For each of the three algorithms, a Python script takes
the music metadata as input along with any tuning
parameters and produces clusters using the corresponding
cluster method. These inputs are passed from the client-side
to the server-side using routing methods with the Node.js
Express framework. Express provides a simple framework
that allows applications to respond to POST and GET
requests from the client-side [6]. To retrieve music
metadata and other input parameters for the clustering
algorithms, Organize Your Music 2.0 sends a POST request
with the data in a JSON format, allowing the Python script
to easily extract the necessary fields.

VL

Since it is difficult to give a direct measure of how
similar auto-generated playlists are to playlists compiled by
individual users, the results of this application were
evaluated based on user sentiment. This was accomplished
through a questionnaire which users completed a prior to
and following the use of the application. There were six
respondents to these surveys, three male and three female,
that ranged from twenty-three years of age to thirty-six
years of age. All of the participants have been Spotify users
for at least one year.

EMPIRICAL RESULTS

A. Pre-Questionnaire: Determining User Sentiment

The questionnaire that was given prior to using the
Organize Your Music 2.0 application is designed to help
determine the general sentiment about manual playlist
creation and whether there is a need for the application. The
survey questions and responses are shown in Table 2 and the
results show that the average music listener does not spend
much time creating their own playlists nor is it a highly
enjoyable task.

The majority of respondents expressed that time was the
primary reason they do not create their own playlists very
often. The second most common reasons are that they have
too many songs to sift through and that it requires too much
effort. These results support the motivations behind creating
the application.

TABLE IL. QUESTIONNAIRE AND RESULTS GATHERED PRIOR TO USING
THE ORGANIZE YOUR MUSIC 2.0 APPLICATION.
Questions Responses
Do you enjoy making your own Yes: | 16.67%
playlists? No:| 50.00%
Sometimes: | 33.33%
On average, how often do you create Once every few
your own playlists? months: | 0.00%
Twice a year: | 33.33%
Once a year: | 50.00%
Never: | 16.67%
Briefly give some reasons why you Too much time: | 83.33%
don't make playlists very often (e.g. Too many songs to
too time consuming, too much effort, go through: | 33.33%
too many songs to go through, etc). Takes too much
You may give more than one reason. effort: | 33.33%
Other playlists are
provided: | 16.67%
Would you rather create your own Rather create their
playlist or have songs automatically own: | 33.33%
sorted into playlists for you? Rather automatically
sort: | 66.67%

B. Post-Questionnaire: Evaluating Performance

The questionnaire that was completed by users after
using the Organize Your Music 2.0 application is designed
to determine the quality of the resultant playlists and how

222

TABLE III. QUESTIONNAIRE AND RESULTS GATHERED AFTER USING
THE ORGANIZE YOUR MUSIC 2.0 APPLICATION.
Questions Responses
Did the auto-generated playlists (Notatall) 1:| 0.00%
resemble playlists that you would 2:| 16.67%
create yourself? 3:] 50.00%
4:1 33.33%
(Yes, it was spot on)
5:1 0.00%
In the auto-generated playlists, 50%: | 16.67%
roughly what percentage of the songs 60%: | 16.67%
were appropriately grouped? 70%: | 50.00%
80%: | 16.67%
Would you use this site to create Yes:| 16.67%
playlists from your music library in No, I would rather
the future? make my own: | 0.00%
No, I would rather
listen to
Spotify’s playlists: | 50.00%
Maybe once in a
while: | 33.33%

well they represented playlists that they might have
generated themselves. Table 3 demonstrates that the overall
performance of the application was positive although there
are still areas that can be improved.

When asked to rate the generated playlists on a scale
from 1 to 5, with 1 being least similar and 5 being most
similar to playlists that they would compile, half of the users
responded with a 3 and one-third responded with a 4. The
survey respondents were also asked to give the percentage
of songs that were appropriately grouped into a playlist, and
all participants indicated that fifty percent or more of the
songs belonged. However, two-thirds of these responses
were in the fifty percent to sixty percent range which
suggests that alternative clustering algorithms, or perhaps
even alternative methods altogether, may need to be
considered in the future. Lastly, users were asked whether
or not they would use the application again to organize their
music library. There were mixed sentiments with half of the
users indicating that they would use it again (either
frequently or infrequently) and the remaining half indicating
that they would rather use playlists from within Spotify’s
collection. The fifty percent of users that indicated they
would use the application again support the concept of this
project. Although the remaining fifty percent of the
respondents indicated that they would rather use playlists
generated by Spotify, this result shows that there is still a
need for automated playlist generation. The combined
results of this last question encourage further investigation
into the general field of automatic music playlist generation.
In regards to this project, it suggests that alternative
algorithms may need to be considered to increase
effectiveness.

VIL

Several additional methods of music clustering exist and
two popular approaches are collaborative filtering and genre-

RELATED WORK

based clustering, both of which are incorporated in the
recommendation systems of Spotify and Pandora.
Collaborative filtering can be further classified into two main
types: user-based and item-based. As the names suggest,
user-based collaborative filtering makes recommendations
on the basis of user behaviour and takes into consideration
the likes and dislikes of other users that have similar
behaviour patterns [22]. On the other hand, item-based
collaborative filtering makes recommendations based on
shared characteristics between items that users have
expressed either positive or negative sentiment towards [14].

For this particular application, user-based collaborative
filtering may not be as appropriate since we consider
personal music libraries independent of other users.
However, there may be some aspects of item-based
collaborative filtering which we may draw from to improve
the current implementation of the clustering algorithms.

Genre-based clustering seeks to separate songs into
groups that are each comprised of a single genre [17]. This
form of clustering is an ideal candidate for this application
since music within the same genre share many similar
musical characteristics. ~ However this approach relies
heavily on the accuracy of genre classification, which is an
area that is still undergoing development. Once genre
classification is more developed and reliable, this may be a
good alternative to the current method of clustering based on
audio features.

VIIL

Our preliminary results confirm that there is a need for
automated playlist generation in the music listening
community. After conducting a general survey, it is clear
that listeners find the manual creation of playlists to be too
time consuming and requiring too much effort. This
application relieves some of these needs by making use of
machine learning algorithms to analyze large collections of
music and to sort them into playlists. Additionally, it serves
as visual analysis tool for audio features of music tracks.
After testing the application, user responses indicated that
our solution is useful but requires some modifications to
remain competitive with existing alternatives.

To improve upon the current implementation, additional
information, such as a song’s album and artist, can be
incorporated to increase the likelihood that songs with these
shared fields will be in the same cluster. Future work may
also include the use of alternative machine learning
algorithms that work more as clustering algorithms rather
than partitioning algorithms. Ideally, we would like to add a
one-click feature that generates playlists without the need
for user input and the ability to make the visualization
aspect optional. As development in this application
continues, we also seek to incorporate continuous feedback
regarding user interface design in order to maintain ease-of-
use for the average music listener.

CONCLUSION AND FUTURE WORK

223

(1

[2]

[3]

[4]

[3]

(6]

(7

(8]

9]

[10]

(1

[12]

[13]

[14]

[15]

REFERENCES

Authorization Guide (n.d.). Retrieved March 03, 2018, from
https://beta.developer.spotify.com/documentation/ge
neral/guides/authorization-guide/

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., &
Vassilvitskii, S. (2012). Scalable k-means++. Proceedings of
the VLDB Endowment, 5(7), 622-633.

Castelluccio, M. (2006). The music genome project. Strategic
Finance, 88(6), 57.

Cunha, R. L., Caldeira, E., & Fujii, L. (2017). Determining
Song Similarity via Machine Learning Techniques and
Tagging Information. arXiv preprint arXiv:1704.03844.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August).
A density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-
231).

Express — 4.16.1 (n.d.). Retrieved March 03, 2018, from
https://expressjs.com/

Frey, B. J., & Dueck, D. (2007). Clustering by passing
messages between data points. Science, 315(5814), 972-976.

IFPL, 1. (2016). IFPI Global Music Report 2016. [Online]

Ifpi.org. Available at: http:/www.ifpi.org/mews/IFPI-
GLOBAL-MUSIC-REPORT-2016 [Accessed 26 February
2018].

Jehan, T. DesRoches, D. (2014, January 7). Analyzer
documentation (analyzer version 3.2). Retrieved March 3,

2018, from http://docs.echonest.com.s3-website-us-east-
l.amazonaws.com/_static/AnalyzeDocumentation.pdf

Lamere, P. (2013, September 22). Music Popcorn — A
visualization of the music genre space [Web log post].
Retrieved March 2, 2018, from

https://musicmachinery.com/2013/09/22/5025/

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining
of massive datasets. Cambridge university press.

McFee, B. (2012). More like this: machine learning
approaches to music similarity. Ph.D. Dissertation, University
of California, San Diego.

Pandir, M., & Knight, J. (2006). Homepage aesthetics: The
search for preference factors and the challenges of
subjectivity. Interacting with Computers, 18(6), 1351-1370.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April).
Item-based collaborative filtering ~ recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web (pp. 285-295). ACM.

Schwartz, B. (2004) The Paradox of Choice: Why More Is
Less. New York, NY: HarperCollins.

[16]

[17]

[18]

Slaney, M., Weinberger, K., & White, W. (2008). Learning a
metric for music similarity. International Symposium on
Music Information Retrieval (ISMIR).

Tsai, W. H., & Bao, D. F. (2010, April). Clustering music
recordings based on genres. In Information Science and
Applications (ICISA), 2010 International Conference on (pp.
1-5). IEEE.

Tuch, A. N., Presslaber, E. E., StoCklin, M., Opwis, K., &
Bargas-Avila, J. A. (2012). The role of visual complexity and
prototypicality regarding first impression of websites:
Working towards understanding aesthetic judgments.
International Journal of Human-Computer Studies, 70(11),
794-811.

224

[19]

[20]

[21]

[22]

We Know Music... (n.d.). Retrieved March 02, 2018, from
http://the.echonest.com/

Web API Object Model (n.d.). Retrieved March 02, 2018,
from https://developer.spotify.com/web-api/object-model/

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q.,
Motoda, H., ... & Zhou, Z. H. (2008). Top 10 algorithms in
data mining. Knowledge and information systems, 14(1), 1-
37.

Zhao, Z. D., & Shang, M. S. (2010, January). User-based
collaborative-filtering recommendation algorithms on hadoop.
In Knowledge Discovery and Data Mining, 2010. WKDD'10.
Third International Conference on (pp. 478-481). IEEE.

