
Optimizing Change Detection in Distributed Digital
Collections

An Architectural Perspective of Change Detection

Lakmal Meegahapola, Roshan Alwis,
Eranga Nimalarathna, Vijini Mallawaarachchi,

Dulani Meedeniya
Department of Computer Science & Engineering,

University of Moratuwa, Sri Lanka
{lakmalbuddikalucky.13, alwisroshan.13, eranga.13,

vijini.13, dulanim}@cse.mrt.ac.lk

 Sampath Jayarathna
Department of Computer Science,

California State Polytechnic University
Pomona, CA 91768

ukjayarathna@cpp.edu

Abstract— Digital documents are likely to have problems
associated with the persistence of links, especially when dealing
with references to external resources. People keep track of
various webpages of their interest using distributed digital
collections and without possession of these documents; the
curator cannot control how they change. In the current context,
managing these distributed digital collections and getting
notifications about various changes have become a significant
challenge. In this paper, we address the architectural aspects of
change detection systems and present optimized change detection
architecture, including a web service and a browser plugin, along
with an email notification service. We have performed an
experimental study on our hybrid architecture for change
detection in a distributed digital collection. The proposed method
introduces a preliminary framework that can serve as a useful
tool to mitigate the impact of unexpected change in documents
stored in decentralized collections in the future.

Keywords— Change detection; change notification; distributed
digital collections;

I. INTRODUCTION

Change detection and notification (CDN) refers to the
automated process of detecting changes made to webpages and
notifying interested users [1]. Prior to the introduction of this
concept, users had to manually check for changes by refreshing
frequently. With the introduction of CDN systems, users could
monitor webpages and easily detect changes occurred. Google
Alerts [2] and Follow That Page [3] are two of the most
popular change detection services being used at present.
Google Alerts is a popular CDN service which monitors the
Web for new content. Follow That Page is another widely used
CDN service where users can keep track of changes occurred
in their favorite webpages. However, many performance issues
have arisen within current change detection systems due to the
increasing number of websites being tracked and vast number
of users being registered every day [4] [5] [6].

Change detection in web pages can be classified into two
parts based on the architecture of the detection system. Namely
they are Server side detection and Client side detection. In the
change detection architecture where server side detection is

used, the processing load for the server increases when there is
a vast number of web pages. This is because the server has to
crawl each and every web page and detect any changes that
have been occurred. Additionally, the detection frequency for a
web page may decrease due to the large number of new web
pages which the server has to track. Scaling of server based
change detection solutions has become tedious and expensive
as it requires more computational power and resources.

The client side architectural approach uses client machines
to poll the web pages and track their changes. When
considering existing change detection systems which run with
client side detection, the users with the spare computing
resources may detect frequent changes to web pages whereas,
the rest of the users might not detect these changes. There is a
challenge on how to improve client side detection without
increasing the load to the client machines because these kind of
detection processes run in background. Therefore, with the
availability of web browser plugins, client side detection can be
improved. Further, the system will consist of a large number of
clients crawling web pages across distributed networks every
day and they have to be managed efficiently. Hence load
balancing mechanisms need to be implemented as well [7].

Each of these different architectures has their own merits
and limitations when considering factors such as performance,
computational power and speed of detection. There is a need
for a solution which optimizes change detection and combines
the advantages of client-based and server-based change
detection systems while eliminating their weaknesses. Our
current efforts continue to study the limitations of the existing
change detection systems and propose an efficient solution.

 This paper presents a solution with an optimized change
detection system via novel hybrid architecture. Section II
outlines the related work that has been carried out in the area of
interest. Section III describes the proposed system architecture
and Section IV explains the change detection and notification
methodology and the experiments we carried out. Section V
presents the experimental results. Finally, Section VI concludes
the paper with possible future research directions.

978-1-5090-5504-3/17/$31.00 ©2017 IEEE
SNPD 2017, June 26-28, 2017, Kanazawa, Japan

277

II. BACKGROUND
Among many related literature, [8] has discussed how

information retrieval has become crucial in web services.
Furthermore, Nadaraj [5], has described an approach for
distributed content aggregation and change detection for web
content using client resources. In that approach, the consumers
get the data from a queue and run the crawler on the working
machine. It distributes the work among consumers and the
results will be aggregated, improving the efficiency of the
crawling mechanism. It also reduces the coupling of spiders to
machines, allowing them to operate in a distributed network
and consider as a scalable content classification approach.
Bloom filters have been used to find the duplicate URLs and
content in the site. However, bloom filters only confirm that
the URL was not visited before.

An interesting work has presented in [6], that focuses on
classifying webpages in a digital collection and detecting the
changes occurred to them. This method records the differences
between two versions of a resource in a digital collection to
detect the changes in research conference web sites. A layered
architecture for a mobile web based application is proposed in
[9]. This has described the importance of reducing client side
resource utilization. Another approach for real time scheduling
based on multi-agent technologies and multithreading
application is described in [10]. This approach allows to obtain
efficient and fast solutions to complex problems in real-time.

Prieto et al. [11], present a web change detection system for
distributed and collaborative web sites. Mainly search engines
use this method to decide when to crawl web pages and build
their indexes. Another approach for parallel crawling of the
web sites using multiple machines is presented in [12]. They
have provided a three-step algorithm to detect changes in a web
page. However, the clients are not users of the system but are
server nodes. Hence to scale the system, the number of server
nodes need to be increased, which will result in high costs.

ChangeDetection.com [13] and ‘Follow That Page’ [3] are
free web services that provide change detection and monitoring
facilities for Internet users. Users can register to these services
by entering the page URL and email address to which

notifications are to be sent. However, if the user has a large
number of webpages to track, certain performance issues may
occur and users will not get notified frequently.

Distill Web Monitor [14] (formerly known as AlertBox) is
a Firefox plugin, which monitors web pages for changes and
sends notifications by email and SMS. However, with this
plugin, certain users may not detect the changes as frequently
as the rest of the users. Another popular desktop application
for change detection is Copernic Tracker [15] which keeps
track of web pages. This application facilitates to keep track of
any number of web pages. This allows keeping track of
changes done to words, links or images. There are four pre-set
tracking schedules available in this application, namely,
multiple times per day, on a daily basis, on a weekly basis and
on a monthly basis. Here, alerts can be customized based on
tray icons, desktop alerts, SMS notifications and email reports.

Website Watcher [16] is a commercial desktop application
which can track unlimited number of pages. It also provides the
option to ignore HTML tags, images/banners, numbers and
dates. Pages can be checked once a day, once a week, or on a
specified day or days of the week. It also allows specifying the
checking frequency during a day either in hours or minutes.
This is an advantage as the user can adjust the checking
frequency. However, allowing the user to adjust the checking
frequency could be a limitation, as some changes may be
missed due to the wrong judgment by the user.

In this work, we have conducted an initial survey [17] to
identify the participants who are interested in detecting
webpage changes. Following are the survey questions:

1. Have you ever had the need to track a webpage for a
change?

2. Have you ever kept refreshing a page for a long time,
expecting a change to occur?

3. Have you ever used any webpage change detection
tool like "Google Alerts" or "Follow that Page"?

4. Would you like to have an efficient tool to track
changes in a webpage?

Fig. 1. Answer analysisof the survey questions.

83%

17%

Yes No
(b) Question 2

70%

30%

Yes No
(c) Question 3

76%

17%

7%

Yes I don't care No
(d) Question 4

82%

18%

Yes No
(a) Question 1

278

The sample contains 200 randomly selected users. The
results [18] show that out of the sample, 82% had the need to
track changes in web sites as given in Fig. 1 (a), 83% of them
kept refreshing some page expecting a change to occur, as
shown in Fig. 1 (b). Only 70% of the participants were
actually used a tool to track the changes, which is depicted in
Fig. 1 (c). According to Fig. 1 (d), 76% of the sample liked to
have an efficient tool to track changes in web pages.

III. SYSTEM ARCHITECTURE

A. Overview
The efficiency of change detection of web pages and

related algorithms can be increased using methods such as tree
comparison techniques [19] and diff algorithms [20] . It is clear
that currently researchers have reached a level where further
improvements done to algorithms are not quite sufficient to
create a significant impact. Hence in our methodology, we shift
our focus from the traditional approach of improving
algorithms to the architectural aspects of change detection
systems. We have implemented a hybrid solution, combining
server side and client side change detection using available
change detection algorithms. With this hybrid architecture, the
change detection mechanism could be made efficient as most
of the changes in the web can be detected almost immediately.

B. Hybrid Architecture
Fig. 2, shows our hybrid solution considered for this

research. It comprises of 3 main components.

• Web application with a web service.
• Web browser plugin for client side change detection.
• Email notification service.

Fig. 2. High level view of the hybrid architecture.

According to the hybrid architecture server has a list of
web pages that it has to crawl. When a client comes to our web
application and include a new web page for the server to track,
it initially run an algorithm to identify the frequency [21] at
which changes occur in that particular web page. Once this is
done, the web page is added to the list of web pages the server
has to poll. But when this list grows further, the server cannot
handle the load. It either has to scale up which of course has
the issues mentioned in the previous sections. Hence the client
side detection comes into help.

The server needs to prepare a new schedule for the clients
who have already requested to monitor this particular page by
including the new client in the schedule. Server prepares the

new schedule and let the clients know about the new polling
times and intervals. Fig. 2, presents this stage where server has
a schedule and the clients who have subscribed for a particular
web page have their own schedule. During scheduling, the
server detect changes in web sites in the list using the Machine
Learning based algorithm [6], where it directly tries to identify
both relevant, irrelevant changes and type of changes as well. If
a relevant change is detected, all the clients are notified about
the change through an email.

At the same time the clients go on polling the particular
web pages they wanted to track according to the predefined
schedule. Clients run a light weight algorithm to detect the
changes and when a change is detected by a particular client, it
directly notifies the server about the change. Then the server
run the machine learning based algorithm on that particular
web page to identify relevancy of the changes occurred. If
relevant changes are more than the threshold, it goes through
the routine and notifies all the clients through an email. With
this new architecture, the time between two server polls is
divided between the clients according to a scheduling
algorithm, which makes sure that all the clients would get
updates about any new changes almost as soon as they occur.

C. Change Detection

Fig. 3. Server side change detection mechanism.

Fig. 3, presents the work flow of the server side change
detection mechanism. It describes how the components
including Scheduler, Web Crawler, Parser and Notifier work as
a single unit showing relationships between each component as
well. Given below is the terminology used in Fig. 3.

• Browsing List: Storage of URLs which users have
requested to monitor. A URL maps to set of clients
who are interested in particular URL

• Scheduler: Generate a timetable for individual clients
to process.

• Web Crawler: Retrieve web contents via internet.
• Version Controller: Manage versions of web archives

in the system (handle CRUD operations)

279

• Version Storage: Collection of versions of web
archives.

• Algorithm Loader: Collection of algorithms to detect
changes.

• Machine Learner: Machine learning model which can
classify the type of the change occurred.

• Comparison System: Compare different versions of
same web contents and evaluate the change.

• Notifier: Notify clients who are interested in a
particular change.

 Initially system has an empty browsing list (Linked List).
Server will wait until client requests to occur. If Browsing List
is not empty Scheduler will process in regular intervals.
Scheduler is responsible for allocating time to run the change
detection algorithm among different clients who are interested
in the same source. If a client detects a change, client will
notify the server and add client request to the user generated
linked list.

 Apart from the client schedule, server has a separate
schedule to process linked list and user generated linked list. In
a single iteration server, will process one instance from each
list. Using the Web Crawler, server loads the Web content of
particular URL to the server environment. Contents will then
parse into a HashMap using the Parser and generate the current
version. Then old version for particular URL will retrieved
from the version storage via version controller. Both versions
then submit to the comparison system. If server detects a
change exceeding particular threshold, it will use machine
learner component to classify the type of change that occurred.
Finally, notifier will notify relevant clients about the change.

IV. METHODOLOGY
As shown in Algorithm 1, the process consists of change

detection and classification of the websites using the hybrid
architecture. There are two main process queues linked list
(usual crawling queue by server) and user generated linked list
(links of websites detected as ‘changed’, by clients). In each
cycle, server will be operated on each queue for one instance.
We then selected 20 frequently changing websites. For a
particular web page, we first run a lightweight algorithm (O(n)
time complexity) to detect whether there is any change. If there
is, then we run a more complex and sophisticated, machine
learning based algorithm (O(n2) time complexity) to get more
knowledge on the type and relevancy of the change happened.

The light weight algorithm which we used to detect
changes generates a hash value for each leaf node in html tree
structure of the particular web page. Then it compares the
changes of hash values of leaves in older tree version with the
newer version. From this comparison, it could obtain the
changed nodes, unchanged nodes, new nodes and missing
nodes. Note that we do not describe the change detection
algorithms that get executed once a change is detected in this
research paper, since our research area is on the architectural
aspect of change detection. A detailed description of the
change detection algorithms employed is beyond the scope of
this paper and can be found in [6] [20].

Using two change detection algorithms, we tested the
performance of server-side change detection architecture
(SSA) and client-side change detection architecture (CSA).
Then we compared those performance figures with proposed
hybrid architecture (HA).

Algorithm 1 Change Detection and Notification
Require: Dataset of links
Ensure: Changes in Web pages and notify
1. Function mlClassifier(link, new_version, old_version)
2. set X = extractFeatures(new_version, old_version)
3. Y = MLClassificationModel(X)
4. client_list = getClients(link)
5. setNewVersion(link, new_version)
6. notify(client_list, Y)
7. Function isDifference(link, new_version, old_version,)
8. threshold = getThreshold(link)
9. diff = difference(new_version, old_version)
10. return threshold < diff ? True : False
11. while True do
12. link = getNextFromLinkList()
13. new_version, old_version = getVersions(link)
14. if isDifference(link, new_version, old_version) then
15. mlClassifier(link, new_version, old_version)
16. end if
17. link = getNextFromUserGeneratedLinkList()
18. new_version, old_version = getVersions(link)
19. mlClassifier(link, new_version, old_version)
20. end while

The experiments were conducted on a cluster of 11 Virtual
Machines (VMs) which were running in Azure private cloud.
Each VM had Linux Ubuntu (kernel 3.13.0-36-generic). 10 of
the VMs (acted as clients) were running 64-bit IntelTM Intel
Xeon E312xx (Sandy Bridge) which operates at 2.70GHz.
They had one CPU socket, with 2 cores each. L1(d/i) and L2
caches were 32KB and 4096KB respectively. Each client had
4GB RAM with one 40GB hard disk. Server VM was running
64-bit IntelTM Intel Xeon E312xx (Sandy Bridge) which
operates at 3.4GHz. It had four CPU sockets, with 2 cores
each. L1(d/i) and L2 caches were 64KB and 8192KB
respectively and RAM was 16GB. In each test, we collected
Java Flight Recorder [22] dumps to analyze CPU, memory and
network usage.

V. RESULTS AND DISCUSSION
In the client side architecture, since each client has to crawl

and detect changes on its own and it requires more CPU and
memory than the proposed hybrid architecture (See Table 1).
Further from the spike pattern shown in Fig. 4 (a), (b) and (c);
in the proposed HA system, when the number of clients who
are subscribed for a particular web site doubled from 5 to 10,
the detection frequency of a client got halved without
affecting the overall change detection frequency. In fact the
overall detection frequency got higher when more clients were
added because the time between two server polls were divided
between more clients to poll that particular website.

280

Fig. 4. CPU usage in CSA, SSA and HA Models

According to the results in Table 2 and Fig. 4 (d), (e) and
(f); resource utilization is not much different in the server of
both SSA and HA even when the number of webpages to track
is doubled. The reason for that is regardless of the number of
web sites, server needs to crawl through its web page list
repeatedly anyway.

TABLE I. AVERAGE RESOURCE UTILAZATION OF A CLIENT IN CLIENT
SIDE ARCHITECTURE VS. HYBRID ARCHITECTURE

Average
usage

Any
Number of
Clients
(CSA)

5 Clients
(HA)

10 Clients
(HA)

CPU 3.84% 1.64% 0.966%

Memory 45MiB 39.4Mib 31MiB

Note that the details of a server with 20 web pages in SSA is
not shown here because in SSA, regardless of the number of
web pages it has, the server need to continue crawling and
detecting changes. Hence the spike pattern and resource
consumption would be same regardless of the number of web
pages it has to track. However, the change detection
frequency of a particular web site is still much higher in HA
since its clients crawl for changes in parallel to the server.

Also note that with the proposed HA, the server doesn’t have
to scale up in order to make the detection process faster and to
reduce the overall time taken to complete one round of the
web page list.

TABLE II. AVERAGE RESOURCE UTILIZATION OF THE SERVER IN SERVER
SIDE ARCHITECTURE VS. HYBRID ARCHITECTURE

Average
usage

10 Web
Pages (SSA)

10 Web
Pages (HA)

20 Web Pages
(HA)

CPU 31.1% 34.2% 32.1%

Memory 234MiB 234MiB 236MiB

In a real-world scenario, this advantage could be crucial,
since the number of web pages a server has to track could be
more than 100,000. According to the results it is clearly
visible that even incase all the clients are not online which
means in the worst-case scenario, still the system would
behave as good as the server side detection system. But in
scaling with many clients getting into the system, it is highly
unlikely the worst-case scenario may occur. Hence, we can
always expect the system to work in a very high efficiency
compared to currently available systems. Even though these
results are for a set of 20 web pages and 11 Azure VMs, the
solution can be scaled to cater a large number of web pages

(a) A client in CSA (b) A client from 5 clients in HA

(c) A client from 10 clients in HA

(d) Server with 10 web pages in SSA

(e) Server with 10 web pages in HA (f) Server with 20 web pages in HA

CSA – Client Side Architecture SSA – Server Side Architecture HA – Hybrid Architecture

C
PU

 U
sa

ge
 (%

)

Time

C
PU

 U
sa

ge
 (%

)

Time

C
PU

 U
sa

ge
 (%

)

Time

C
PU

 U
sa

ge
 (%

)

Time
C

PU
 U

sa
ge

 (%
)

Time
C

PU
 U

sa
ge

 (%
)

Time

281

and computing devices as scheduling and architecture were
developed giving priority to scalability.

Another rare case which causes worst-case would be clients
with different web pages to track. This means if there are 10
clients, all of them have 10 different web pages to track and
altogether there are 100 web pages without any overlaps. In
that case, the server would still consume the same resource
limit as a server in SSA crawling and detecting changes. Since
there is at least one client for each page the change detection
frequency would be better in HA than SSA. In this scenario,
the clients in HA would have to crawl and detect changes in
same interval as the server. However in HA, clients do not use
a complex algorithm like server hence the resource utilization
of a client would still be lower than a client in CSA. Hence
HA performs well in these kind of worst cases scenarios..

VI. CONCLUSION
Currently there is a clear need for people to keep track of

changes occurred in webpages and much efficient solutions
are needed. Change Detection and Notification (CDN)
systems have made a huge impact on the area of information
retrieval by automating the process of change detection.
However, still there are opportunities for improvement on the
current implementations of CDN systems when considering
performance and speed of detection. This paper proposed a
hybrid architecture that supports the optimization of current
change detection systems. This novel approach can make a
significant impact in the field of change detection and
notification of web pages.

We have performed an experimental study for a hybrid
architecture combining client side architecture and server side
architecture for change detection in web content. The
experimental results show that there is a significant
performance improvement in the process of change detection
using the proposed HA compared to traditional CSA and SSA
models. This work can be extended by using this hybrid
architecture for cases where there are multiple distributed
servers instead of the single server which we have considered
during this work. Further improvements in the scheduling
algorithm can be done in the future in order to enhance the
efficiency of the scheduler which is used currently.

REFERENCES
[1] S. Chakravarthy and S. Hara, "Automating Change Detection and

Notification of Web Pages (Invited Paper)," in 17th International
Workshop on Database and Expert Systems Applications, Krakow,
Poland, 2006.

[2] "Google Alerts - Monitor the Web for interesting new content,"
[Online]. [Accessed 8 February 2017].

[3] "Follow That Page - web monitor: we send you an email when your
favorite page has changed," [Online]. Available:
https://www.followthatpage.com. [Accessed 8 February 2017].

[4] D. Yadav and A. K. Sharma, "Change Detection in Web Pages," in
10th International Conference on Information Technology, Rourkela,
India, 2007.

[5] S. Nadaraj, "Distributed Content Aggregation& Content Change
Detection using Bloom Filters," International Journal of Computer
Science and Information Technologies,, vol. 7, no. 2, pp. 745-748,
2016.

[6] S. Jayarathna and F. Poursardar, "Change Detection and Classification
of Digital Collections," in 2016 IEEE International Conference on Big
Data, Washington D.C., USA, 2016.

[7] S. Fujita, "Load Balancing of Peer-to-Peer MMORPG Systems with
Hierarchical Area-of-Interest Management," International Journal of
Networked and Distributed Computing, vol. 3, no. 3, pp. 177-184,
2015.

[8] M. S. Cha, S. Y. Kim, J. H. Ha, M.-J. Lee, Y.-J. Choi and K.-A. Sohn,
"Topic Model based Approach for Improved Indexing in Content based
Document Retrieval," International Journal of Networked and
Distributed Computing, vol. 4, no. 1, pp. 55-64, 2016.

[9] B. A. Kumar, "Layered Architecture for Mobile Web Based
Application: A Case Study of FNU Student Registration System,"
International Journal of Software Innovation, vol. 4, no. 3, pp. 51 - 64,
2016.

[10] Y. Shepilov, D. Pavlova and D. Kazanskaia, "Multithreading MAS
Platform for Real-Time Scheduling," International Journal of Software
Innovation, vol. 4, no. 1, pp. 48 - 60, 2016.

[11] V. M. Prieto, M. A. lvarez, V. Carneiro and F. Cacheda, "Distributed
and Collaborative Web Change Detection System," Computer Science
and Information Systems, vol. 12, no. 1, pp. 91-114, 2015.

[12] D. Yadav, A. Sharma, J. Gupta, N. Garg and A. Mahajan, "Architecture
for Parallel Crawling and Algorithm for Change Detection in Web
Pages," in 10th International Conference on Information Technology,
Orissa, India, 2007.

[13] "ChangeDetection - Know when any web page changes," [Online].
Available: https://www.changedetection.com/. [Accessed 4 Feburary
2017].

[14] "Distill Web Monitor," [Online]. Available:
https://addons.mozilla.org/en-us/firefox/addon/alertbox/. [Accessed 4
February 2017].

[15] "Copernic - Tool to track changes on web pages," [Online]. Available:
http://www.copernic.com/en/products/tracker/. [Accessed 25 March
2017].

[16] "WebSite-Watcher - Software to check websites for updates and
changes (web page monitoring)," [Online]. Available:
http://aignes.com/. [Accessed 25 March 2017].

[17] "Survey on Change Detection in Webpages," [Online]. Available:
https://vijinim.typeform.com/to/dlnPdY. [Accessed 14 February 2017].

[18] "General report - Survey on Change Detection in Webpages," [Online].
Available: https://vijinim.typeform.com/report/dlnPdY/kcXx.
[Accessed 5 March 2017].

[19] S. D. Jain and H. Khandagale, "A Web Page Change Detection System
For Selected Zone Using Tree Comparison Technique," International
Journal of Computer Applications Technology and Research, vol. 3, no.
4, pp. 254 - 262, 2014.

[20] Y. Wang, D. J. DeWitt and J. Y. Cai, "X-Diff: an effective change
detection algorithm for XML documents," in 19th International
Conference on Data Engineering, Bangalore, India, 2003.

[21] D. Ford, C. Grimes and E. Tassone, "Keeping a Search Engine Index
Fresh: Risk and optimality in estimating refresh rates for web pages," in
Proceedings of the 40th Symposium on the Interface: Computing
Science and Statistics, Durham, NC, USA, 2008.

[22] "Java Flight Recorder Runtime Guide," [Online]. Available:
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-
guide/run.htm#JFRUH164. [Accessed 27 February 2017].

282

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

