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This paper assesses the ability of a two-dimensional linear homeomorphic oculomotor plant mathematical model to simulate normal human 
saccades on a two-dimensional plane. The proposed model is driven by a simplified pulse-step neuronal control signal and makes use of linear 
simplifications to account for the unique characteristics of the eye globe an the extraocular muscles responsible for horizontal and vertical eye 
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and enhanced security in biometric identification systems. The results indicate that the model is capable of produce oblique saccades with 
properties resembling those of normal human saccades, and is capable of deriving muscle constants that are viable as biometric indicators. 
Therefore, we conclude that sacrifice in the anatomical accuracy of the model produces negligible effects on the accuracy of saccadic simulation on 
a 2D plane, and may provide a usable model for applications in computer science, human-computer interaction, and related fields. 
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1. INTRODUCTION

The human oculomotor plant (OP) consists of the eye globe and six extraocular muscles (EOM), the medial rectus, 
lateral rectus, superior rectus, inferior rectus, superior oblique, and inferior oblique. The OP, driven by a neuronal 
control signal, exhibits six primary types of eye movement: fixation, saccade, smooth pursuit, optokinetic reflex, 
vestibular-ocular reflex, and vergence (Leigh and Zee 2006). Each EOM is represented by a complex anatomical 
structure consisting of components that can be considered abstractly through such properties as series elasticity, 
viscosity, active-state tension, length-tension, and force-velocity relationships. 

The physical and neurological characteristics of human eye movements have been a major subject of interest for 
medical professionals for well over a century, being a simplified basis from which to expand knowledge of similar 
muscular systems (Collins 1975). In recent years, a number of models have been proposed by various sources (Bahill 
1980, Clark and Stark 1974, Enderle and Zhou 2010, Komogortsev and Khan 2008, Komogortsev and Khan 2009, 
Martin and Schovanec 1998, Robinson 1973, Westheimer 1954) for the oculomotor plant and its corresponding 
neuronal control signal, generally representing the oculomotor plant linearly in one-dimension (horizontal) or non-
linearly in three-dimensions (horizontal, vertical, torsional) (Quaia and Optican 2003). Linear one-dimensional 
models have thus far failed to reproduce the saccadic trajectories and amplitude-peak velocity relationships present in 
normal human saccades, while non-linear three-dimensional models have received limited testing and are 
computationally complex, making them less suitable for real-time application. 
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The two-dimensional oculomotor plant mathematical model (2D-OP) considered in this paper builds on the one-
dimensional OP model developed by (Komogortsev and Khan 2008), and provides the ability to simulate saccadic 
trajectories with supplied amplitude and onset position. The 2D-OP incorporates several important characteristics of 
the human oculomotor plant: each EOM is modeled individually, maintaining physiological agonist-antagonist 
dynamics; the model of each EOM encapsulates series elasticity, length-tension, viscosity, active-state tension, and 
force-velocity relationships; the model is driven by a pulse-step neuronal control signal, sent by the brain to the 
EOMs. The 2D-OP relies on a number of simplifications, representing a non-linear three-dimensional system as a 
linear two-dimensional system, sacrificing some amount of realistic accuracy (negligible due to the scale) for 
computational efficiency and analytic tractability. 

In this paper, we assess the ability of the two-dimensional linear homeomorphic oculomotor plant mathematical 
model to simulate normal human saccades on a two-dimensional plane. In doing so, we investigate several connected 
issues concerning the viability of the 2D-OP for applications in computer science, human-computer interaction, and 
related fields, specifically: the ability of the 2D-OP to simulate oblique saccades with properties resembling those of 
normal human saccades; the physiological accuracy of component parameters required for such application; and the 
precision of parameters derived for person-specific saccades. As well, we provide an analysis of anatomical 
simplifications employed by the 2D-OP and their impact on saccadic simulation. 

2. HUMAN	  VISUAL	  SYSTEM	  

2.1 The	  Oculomotor	  Plant	  
The human oculomotor plant, shown in Figure 1 with model comparison in Figure 2, consists of the eye globe and six 
extraocular muscles, the lateral rectus, medial rectus, superior rectus, inferior rectus, superior oblique, and inferior 
oblique. The lateral and medial recti are primarily responsible for horizontal rotation, the superior and inferior recti 
are primarily responsible for vertical rotation, and the superior and inferior oblique are responsible for torsional 
rotation of the eye globe. 

Each muscle is represented by a complex anatomical structure, the properties of which can be effectively 
described by: series elasticity – the elastic resistance to rapid changes in muscle length produced by active muscles; 
passive elasticity – the elastic resistance to rapid changes in muscle length produced by inactive muscles; length-
tension relationship – the relationship between the length of a muscle and the force it is capable of exerting during 
activation; force-velocity relationship – the relationship between the velocity of muscle contraction/relaxation and the 
force it is capable of exerting; active-state tension – the tension developed as a result of muscle activation by the 
neuronal control signal. As well, the eye globe and surrounding tissue display passive elastic and viscous properties.  

2.2 The	  Brainstem	  Control	  
The brainstem control involves a neuronal control signal, generated by the brain and sent to the individual extraocular 
muscles, is responsible for the muscle contractions and relaxations that produce the many and varied types of human 
eye movement. According to Sherrington’s law of reciprocal innervation (Ciuffreda and Stark 1975), the neuronal 
control signal is generated and sent to opposing muscles simultaneously, such that when an agonist muscle contracts, 
the opposing antagonist muscle relaxes. Further, the neural signals which control horizontal and vertical eye 
movements are generated in different regions of the brain; specifically, the neuronal control signal responsible for 
activation of the lateral and medial recti is generated in the paramedian pontine and medullary reticular formations, 
while the neuronal control signal responsible for activation of the superior and inferior recti is generated in the medial 
longitudinal fasciculus (Leigh and Zee 2006). 

Figure 1. The Oculomotor Plant. Figure 2. The Oculomotor Plant Model. 



2.3 Eye	  Movements	  
Among the various eye movement types exhibited by the human visual system, fixations, saccades, and smooth 
pursuits are of particular interest. Fixations occur when the eye globe is held in a relatively stable position such that 
the fovea remains centered on an object of interest, providing heightened visual acuity; saccades occur when the eye 
globe rotates quickly between points of fixation, with very little visual acuity being maintained during rotation; and 
smooth pursuits occur when the eye globe rotates relatively slowly to maintain visual acuity on an object moving 
within the visual field. Saccades provide an ideal medium through which to study both the physical and neurological 
components of the oculomotor plant, due to their stereotyped behavior and the ease with which they can be 
reproduced by simple stimuli. 

Saccades of given amplitude produced by an individual tend to show similarities in a number of properties, 
including: reaction time, duration, velocity, acceleration, and waveform. As well, certain relationships exist between 
saccades of varying amplitudes, these include: the amplitude-peak velocity relationship, the amplitude-duration 
relationship, and the velocity waveform. 

The amplitude-peak velocity relationship (Bahill, et al. 1975), also referred to as the main sequence relationship,  
describes the tendency for saccadic peak velocity (VPEAK) to increase with amplitude (A) in an exponential manner 
until saturation begins to occur at a certain velocity maximum (VMAX), with curvature described by a constant (C1), 
according to (1): 

VPEAK = VMAX × (1 – e –|A| / C1) (1) 

The amplitude-duration relationship (Carpenter 1977) describes the tendency for saccade duration (D) to increase 
linearly with amplitude (A) from a base duration (DMIN), with slope described by a constant (C2), following (2): 

D = DMIN + C2 × |A| (2) 

The main sequence and amplitude-duration relationships vary by angle of motion, with differences in the relationships 
exhibited by horizontal, vertical, and oblique saccades. While there has been considerable research into these 
relationships as they relate to purely horizontal and vertical saccades, there is relatively little information on oblique 
saccades. In addition, these relationships have been noted to vary between individuals and may be affected by subject 
age (Fioravanti, et al. 1995, Huaman and Sharpe 1993), recording medium (Yee, et al. 1985), and initial eye position 
(Pelisson and Prablanc 1988). The velocity waveform is another characteristic that remains similar across saccades of 
varying amplitudes (Leigh and Zee 2006). It has been noted that the ratio of peak velocity to average velocity (Q) 
remains nearly constant at 1.6 for horizontal and vertical saccades of all amplitudes. 

Given the fact that the horizontal and vertical components of human saccades are generated by separate areas of 
the brain and display noted differences in duration and peak velocity, oblique trajectories should be curved when 
component durations are unequal (Harwood and Herman 2008). While a substantial percentage of oblique saccades 
do exhibit curved trajectories, similarly substantial percentages exhibit trajectories that are near straight, more so than 
could be explained by the random synchronization of component duration (Bahill and Stark 1977). 

Based on the frequent occurrence of straight oblique trajectories, it is apparent that the neural signals responsible 
for the horizontal and vertical components of oblique saccades in some way influence each other. Whether component 
stretching occurs before or after generation of the neuronal control signal is an area of active research (Sparks 2002). 
To simplify the analysis of our model, we assume that the duration of both components of movement is equal. 

3. OCULOMOTOR	  PLANT	  MODEL	  

3.1 Description	  &	  Equations	  
One of the objectives of the oculomotor plant model presented in this paper is to accurately simulate saccade 
trajectories on the 2D plane. According to Table 9-2, p. 388 (Leigh and Zee 2006), the rotation of the eye globe, with 
mapped gaze position, on a two-dimensional plane can be primarily attributed to four extraocular muscles – the 
lateral, medial, superior, and inferior recti. Based on this information, we simplify the model by not explicitly 
including the contribution of oblique muscles. Figure 2 illustrates the extraocular muscle forces (TLR, TMR, TSR, and 
TIR) responsible for left-downward rotation (Δθ) of the eye globe. Each muscle in the diagram is a simplified Hill-type 
muscle described in detail by (Komogortsev 2007, Komogortsev and Khan 2008, Komogortsev and Khan 2009). 

During two-dimensional eye movement, the dynamics and roles of the extraocular muscles remain essentially the 
same as in one-dimensional movement. That is, the agonist muscles contract and pull the eye globe in the required 
direction, while the antagonist muscles stretch and resist the pull. Detailed mechanics of one-dimensional horizontal 
movement were previously described in detail by (Komogortsev 2007, Komogortsev and Khan 2008, Komogortsev 
and Khan 2009). The torsional component of movement is not included in the 2D-OP model, allowing application of 
the same logic for modeling both components of movement. 



As a result, to simulate two-dimensional movement (Δθ), all participating vector forces can be effectively 
projected into horizontal and vertical component forces, the computation of which includes the horizontal (ΔθHR) and 
vertical (ΔθVR) components of Δθ. Projected force components are exactly the same as their one-dimensional 
counterparts, thereby allowing the simulation of ΔθHR and ΔθVR by equations (17) – (26) of (Komogortsev and Khan 
2008). Then, the two-dimensional oculomotor plant mathematical model can be represented by a combination of two 
one-dimensional oculomotor plant models described by (Komogortsev 2007, Komogortsev and Khan 2008, 
Komogortsev and Khan 2009) and represented by (3) and (4): 

ẋ = Ax + b (3) 

ẏ = Ay + b (4) 

Following Figure 3, (3) represents the system of equations necessary to simulate the horizontal component of 
movement, (4) represents the system of equations necessary to simulate the vertical component of movement, and 
state vectors x and y take the form of w. Model parameters include: elapsed time (Δt), series elasticity (KSE), passive 
elasticity (KP), length tension (KLT), viscosity (BP), force-velocity relationships (B), eye globe inertial mass (J), 
activation time constants (τ), and neural pulse (N). State variables include: eye position (Δθ), eye velocity (Δθ), 
length-tension displacement (ΔθLT), and active-state tension (F). Subscripts: DIM indicates the direction of 
movement; EOM indicates the agonist or antagonist muscle value for the lateral/superior recti of the right eye, or the 
medial/superior recti of the left eye; XOM indicates the agonist or antagonist muscle value for the medial/inferior 
recti of the right eye, or the lateral/inferior recti of the left eye; AG indicates agonist muscle values; ANT indicates 
antagonist muscle values. In their full form, (3) and (4) are defined by 36 parameters with values and relevant sources 
outlined in Sections 4 and 5.  

3.2 Simplifications	  &	  Justification	  
The 2D-OP is not an exact replica of the human oculomotor plant and employs a number of simplifications to 
facilitate modeling, these include: neglect for the effects of the superior and inferior oblique muscles; linear 
representation of typically non-linear anatomical components (Quaia, et al. 2010); and three-dimensional rotations 
modeled as two-dimensional translations. Model simplifications, while substantial, are considered acceptable for its 
intended applications in the fields of computer science and human-computer interaction (Enderle, et al. 1991). 

The superior and inferior oblique muscles are not modeled explicitly by the 2D-OP as they are primarily 
responsible for torsional rotation of the eye globe, and their effect on the two-dimensional plane is largely in the form 
of passive resistance. Linear representation of typically non-linear components (notably the force-velocity 
relationship) is the greatest source of anatomical inaccuracy; however, this is a simplification employed by many one-
dimensional models and considered acceptable due primarily to the minute scale. Modeling of three-dimensional 
rotations as two-dimensional translations is acceptable for saccades to secondary positions, again due to scale, but 
neglects the non-commutativity of rotations when modeling saccades to tertiary positions (Tweed and Vilis 1987). 
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Figure 3. Two-Dimensional Linear Homeomorphic Oculomotor Plant Mathematical Model Equations. 



3.3 Benefits	  &	  Applications	  
The 2D-OP, however simplified, represents the major anatomical components of the human oculomotor plant. The 
2D-OP allows simulation of saccade trajectories in cases where amplitude and onset position are provided to the 
model. According to (3) and (4), the 2D-OP is essentially represented by two separate 1D-OP models, coinciding with 
the separation of those components in the brain, as discussed in Section 2.2.  Computationally this solution is 
attractive, as separate cores of multi-core systems can compute both components of movement.  

Practical applications of the 2D-OP may include: biometric systems, in which individual anatomical components 
represented by the 2D-OP allow for the unique identification of individuals (Komogortsev, et al. 2012b); human-
computer interaction, in which simulated saccadic trajectories allow research into the properties of the eye movement 
signal, providing the capability for developing extremely fast target selection methods, in which selection occurs at 
saccade onset (Komogortsev, et al. 2009); usability, in which individual extraocular muscle forces can be 
approximated by the 2D-OP, providing an opportunity to estimate the physical effort exerted by a user during a 
specific task (Tamir, et al. 2008); eye tracking, in which the linear design of the 2D-OP allows its encapsulation in 
Kalman filter form, providing the means for robust signal recovery, noise reduction, and saccade predication for gaze-
contingent compression (Komogortsev and Khan 2007, Komogortsev and Khan 2008). 

4. METHODOLOGY	  

4.1 Participants	  
Eye movement recordings were collected for 30 subjects (24 male and 6 female), ages 18-40 with average age of 23 
(SD = 5.3). For consistency, all recordings were generated for the right eye. The Texas State University Institutional 
Review Board approved data collection procedures and all subjects provided informed consent. 

4.2 Apparatus	  &	  Software	  
Eye movement were recorded using an EyeLink 1000 eye tracking system running at 1000Hz with an average 
calibration accuracy of 1.31° (SD = 0.88°). A chinrest was employed to improve eye tracking accuracy, and subjects 
were positioned such that the primary eye position corresponded to the center of the screen. Stimuli were presented on 
a flat screen monitor positioned at a distance of approximately 695 millimeters from the subject, with screen 
dimensions of 640 × 400 millimeters and a screen resolution of 2560 × 1600 pixels. Algorithms and data analysis 
were implemented and performed in MATLAB. 

4.3 Procedure	  
The screen was divided into four Cartesian quadrants, with the center of the screen as the origin. Eye movement 
recordings were generated under two experiment paradigms. In both cases, saccades were evoked by a white jumping-
dot stimulus on a black background, and each stimulus point was displayed for 1000 milliseconds. 

For the first experiment paradigm, recordings were generated for centrifugal saccades at different angles within 
the 1st quadrant (upper-right) of the screen. Due to screen dimensions, stimuli evoked saccades of 3°, 6°, 9°, 12°, 15°, 
and 18° amplitude at oblique angles of 0°, 15°, 30°, 45°, and 60°, and stimuli evoked saccades of 3°, 6°, 9°, 12°, and 
15° amplitude at oblique angles of 75° and 90°. This resulted in a total of 40 stimulus-evoked oblique saccades per 
recording, for 1200 saccades across all subjects. A stimulus was presented at the origin before each saccade, and the 
order of stimulus presentation was randomized for each subject according to a uniform distribution. 

For the second experiment paradigm, recordings were generated for random saccades across the screen. This 
allowed a high degree of variability in the saccades produced by each subject.  100 stimulus-evoked oblique saccades 
were generated per recording, with 4 recordings per subject, for 400 saccades per subject and 12000 saccades across 
all subjects. Stimuli were separated by a minimum of 2° amplitude, the stimulus was not restricted to centrifugal 
saccades, and the order of stimulus presentation was randomized for each subject according to a uniform distribution. 

4.4 Processing	  
Eye movement recordings were processed to identify fixations and saccades. A velocity threshold algorithm (I-VT) 
(Komogortsev, et al. 2010) classified individual points with a velocity greater than 25°/sec as saccades, where all 
remaining points were assumed to be fixations, a micro-saccade filter re-classified saccades with amplitude less than 
0.25° as fixations, and a micro-fixation filter re-classified fixations with a duration less than 50 milliseconds as 
saccades. 

To investigate the ability of the 2D-OP to simulate oblique saccades with properties resembling those of normal 
human saccades, an optimization problem was defined to reduce the sum of absolute positional error between 
measured and simulated saccades. That is, Error = Σ |mi – si|, where mi is the measured position at a given time, i, and 
si is the simulated position produced by the 2D-OP model.  



OPC for the horizontal and vertical trajectory of each saccade were optimized separately, according to Algorithm 
1, and all model parameters were allowed to vary, these include (with initial values, based on measured physiological 
values): KSE_AG = 2.5, KSE_ANT = 2.5, KLT_AG = 1.2, KLT_ANT = 1.2, NAG_C = 0.8, NANT_C = 0.3, NFIX_C = 14.0, BP = 0.06, 
BAG = 0.046, BANT = 0.022, J = 0.000046, τAG_AC = 11.7, τANT_AC = 2.4, τAG_DE = 2.0, τANT_DE = 1.9, NAG_SAC = 100.0, 
NANT_SAC = 0.5, and PWAG for each component; where KP = NAG_C – NANT_C in all relevant equations. Optimization 
was performed across all possible pulse widths within the duration of a given saccade using the Nelder-Mead (NM) 
simplex search algorithm (Lagarias, et al. 1998) (MATLAB’s fminsearch implementation) to minimize the absolute 
positional error between the measured and simulated trajectory. The pulse width with the least-error OPC set was 
selected for each saccade component. This resulted in the optimization of 18 OPC per component of each saccade, or 
36 OPC to describe each saccade.  

 For the first experiment paradigm, stimulus-evoked centrifugal saccades were extracted from the recordings 
according to the following criteria: the saccade occurred between 100 and 500 milliseconds after the stimulus was 
displayed; the saccade had duration between 10 and 200 milliseconds; and at least one component of the saccade had 
positive amplitude. Only centrifugal saccades were considered, as it has been found that centrifugal/centripetal 
saccades often exhibit different dynamics. By filtering saccades in this manner, the algorithm was able to identify an 
average of 38 (SD = 2.1) stimulus-evoked saccades per recording. Across all subjects, 1140 of the possible 1200 
stimulus-evoked saccades were identified. 

For the second experiment paradigm, targeting investigation of the biometric potential of the model, we use all 
saccades identified within each recording, with horizontal and vertical saccade components considered separately. 
That is, the horizontal component of an oblique saccade was analyzed without consideration for its vertical 
component, and vice versa. Without additional filtering, an average of 75 (SD = 8.8) horizontal saccades and an 
average of 69 (SD = 15.2) vertical saccades were identified per recording, with a total of 9005 horizontal saccades 
and 8246 vertical saccades identified across all recordings. 

Algorithm 1. OPC Estimation 
1. Perform optimization of all OPC across all pulse widths for each saccade using NM to minimize the absolute 
positional error between the measured and simulated trajectory. This generates an OPC set for each possible pulse 
width of each saccade. 
2. Select initial 3 least-error OPC sets for each saccade. 
3. For each subject, average and fix the least-error values of the following model OPC across all saccades: KSE_AG, 
KSE_ANT, KLT_AG, KLT_ANT, NAG_C, NANT_C, BP, BAG, BANT, J, τANT_AC, τAG_DE, τANT_DE, NFIX_C, NANT_SAC. 
4. Perform optimization on the remaining OPC (τAG_AC, NAG_SAC) across all pulse widths (PWAG) for each saccade 
using NM to minimize the absolute positional error between the measured and simulated trajectory. 
5. Select the 3 least-error OPC subsets for each saccade. 
6. For each subject, fix τAG_AC to the mode of its least-error values. 
7. Perform optimization on the remaining OPC (NAG_SAC) across all pulse widths (PWAG) for each saccade using 
NM to minimize the absolute positional error between the measured and simulated trajectory. 
8. Select the 3 least-error OPC subsets for each saccade. 
9. For each subject, perform exponential regression on the values of NAG_SAC. 
10. Calculate absolute positional error of the various OPC sets across all pulse widths (PWAG) for each saccade. 
11. Select the 3 least-error pulse width for each saccade. 
12. Perform linear regression on the values of PWAG. 

4.5 Analysis	  
To evaluate the ability of the 2D-OP to simulate oblique saccades with properties resembling those of normal human 
saccades, RMSE and R² values were calculated to determine the accuracy of the 2D-OP in simulating positional 
signal, velocity signal, and main sequence relationships. To verify the robustness of OPC estimation, this process was 
repeated for saccade subsets of 0 – 10° amplitude and 0 – 15° amplitude. Recordings from the first experiment 
paradigm were employed for this analysis, as the stimulus provided highly stereotyped and stable saccades.  

OPC estimation was repeated in several stages, with certain OPC being fixed to their average least-error value at 
each stage, with the goal of stabilizing constants first (e.g. KSE, KLT, BP, J, etc.), followed by equations (e.g. NAG_SAC, 
PW, etc.) ordered by increasing complexity. The output from each stage was provided as an input to the subsequent 
stage. At each stage, fixing certain OPC resulted in the formation of more stable and noticeable patterns in the values 
of the remaining OPC, allowing more accuracy in the resulting optimization and subsequent regression of parameter 
values. Several optimization techniques were considered and the heuristic presented in Algorithm 1 was selected 
because it produced OPC that allow the 2D-OP to simulate more accurate trajectories. 



To evaluate the physiological accuracy of component parameters required for such application, we compare 
estimated model parameters from the first experiment paradigm to measured physiological ranges, where available. 
Obtaining physical measurements of these values requires surgery and informed consent in human subjects, and many 
candidates for such surgery elect to do so due to a physical abnormality that requires correction. As such there is a 
very small human subject pool from which to draw conclusions. In many cases, physiological measurements are 
estimated based on available information from humans, monkeys, and cats. 

To evaluate the precision of parameters derived for person-specific saccades, we employ basic biometric 
techniques to differentiate individuals based on model parameters derived from the recordings of the second 
experiment paradigm. Pearson’s correlation coefficient (Rodgers and Nicewander 1988) was averaged for each 
parameter across recording sessions to identify the consistency of parameter estimation between recording sessions. 
Hoteling’s T-square test (Hotelling 1931) is utilized to compare sets of OPC vectors and return a similarity score used 
for acceptance or rejection of claimed identity. Information fusion of horizontal and vertical components is performed 
by a simple weighted mean of similarity scores, with weights selected to minimize equal error rate. False acceptance 
rate and false rejection rate were calculated across all acceptance thresholds, and equal error rate was used to 
determine the biometric viability of the technique (Jain, et al. 2007). Kolmogorov-Smirnov tests for normality and 
uniformity were applied to similarity scores to identify randomness (Massey 1951). 

5. RESULTS	  

5.1 Saccade	  Simulation	  
RMSE is a measure of the difference between predicted and measured values, while the coefficient of determination, 
R², provides a measure of the degree to which predicted values follow measured values; according to (5) and (6), 
where m indicates a measured value, p indicates a predicted value, and n denotes the total number of data points: 

 (5) 

 (6) 

Table 1 presents RMSE and R² correlation between measured and simulated saccade trajectories, Table 2 presents 
RMSE and R² correlation between measured and simulated saccade velocity, and Table 3 provides the average main 
sequence relationships and corresponding R² of regression for each oblique angle. Figures 5-7 provide examples of 
measured and simulated main sequence relationships from several subjects, where each line represents a different 
oblique angle. Figure 8-10 present examples of measured and simulated oblique saccade trajectories, and Figures 11-
13 present the corresponding velocity profiles. 

5.2 Physiological	  Accuracy	  
Model parameters P1 – P2 indicate variables in the equation for PW, according to (7). Percent difference is measured 
as the absolute difference in measured and simulated parameter values over the measured value, according to (8): 

PW = P1 × |A| + P2 (7) 

Percent Difference = |Simulated – Measured| / Measured (8) 

Table 4 presents known/measured parameter ranges, average OPC parameters across all subjects, and the percent 
difference for each parameter. Where available, measured human parameter ranges are given. In many cases where 
exact measurements of individual parameters are not possible, estimations and linear approximations of typically non-
linear components may be provided. 

When considering the neuronal control signal, NAG_SAC, a strict comparison of parameters is impractical. The 
normal firing rate of abducens motor neurons during fixation is between (0 – 300] spikes/second, with firing rates not 
exceeding 750 spikes/second for horizontal saccades of 10° (Sparks 2002). A regression of NAG_SAC values was 
performed across all subjects to provide an accurate representation of the average pulse height equations for 
horizontal and vertical saccade components, (9) and (10) respectively: 

NAG_SAC_HORIZONTAL = 340.2 (1 – e –|A| / 17.7) spikes/second (9) 

NAG_SAC_VERTICAL = 301.5 (1 – e –|A| / 13.8) spikes/second (10) 



 

Figure 5. 0 – 10° amplitude, oblique main 
sequence, subject 8. 

Figure 6. 0 – 15° amplitude, oblique main 
sequence, subject 24. 

Figure 7. All saccades, oblique main 
sequence, subject 24. 

Figure 10. Comparative trajectory of a 15° 
saccade at a 30° angle. 

Figure 13. Comparative velocity of a 15° 
saccade at a 30° angle. 

Figure 8. Comparative trajectory of a 3° 
saccade at a 45° angle. 

Figure 11. Comparative velocity of a 3° 
saccade at a 45° angle. 

Figure 9. Comparative trajectory of a 12° 
saccade at a 60° angle. 

Figure 12. Comparative velocity of a 12° 
saccade at a 60° angle. 



 

Component 

0 – 10° Amplitude 0 – 15° Amplitude All Saccades 
RMSE R² RMSE R² RMSE R² 

µ σ µ σ µ σ µ σ µ σ µ σ 
Horizontal 0.63° 0.61° 0.83 0.25 0.72° 0.64° 0.85 0.25 0.81° 0.96° 0.86 0.24 
Vertical 0.64° 0.58° 0.84 0.24 0.77° 0.82° 0.85 0.24 0.87° 0.96° 0.85 0.25 
Oblique 0.64° 0.60° 0.84 0.25 0.75° 0.73° 0.85 0.24 0.84° 0.96° 0.85 0.24 

Table 1. Positional Accuracy. 

Component 

0 – 10° Amplitude 0 – 15° Amplitude All Saccades 
RMSE R² RMSE R² RMSE R² 

µ σ µ σ µ σ µ σ µ σ µ σ 
Horizontal 98°/s 283°/s 0.47 0.29 103°/s 309°/s 0.49 0.29 116°/s 367°/s 0.51 0.29 
Vertical 100°/s 287°/s 0.39 0.27 103°/s 272°/s 0.40 0.27 116°/s 333°/s 0.39 0.27 
Oblique 118°/s 400°/s 0.55 0.26 124°/s 409°/s 0.59 0.25 141°/s 493°/s 0.59 0.25 

Table 2. Velocity Accuracy. 

Angle 

0 – 10° Amplitude 
Measured Simulated 

VMAX C R² VMAX C R² 
µ σ µ σ µ σ µ σ µ σ µ σ 

0° 539 38 4.32 0.59 0.94 0.06 519 22 5.17 3.10 0.99 0.02 
15° 553 149 4.71 1.90 0.88 0.15 634 212 6.08 3.65 0.94 0.15 
30° 542 125 4.55 1.66 0.81 0.16 572 137 5.85 1.73 0.96 0.09 
45° 587 118 5.22 2.43 0.85 0.19 649 159 6.10 2.00 0.97 0.04 
60° 601 223 5.51 3.32 0.75 0.32 584 171 6.24 2.03 0.96 0.06 
75° 563 125 4.37 2.34 0.78 0.23 575 160 6.93 4.89 0.96 0.04 
90° 586 112 4.75 1.20 0.82 0.14 358 29 4.27 1.11 0.98 0.02 

Angle 

0 – 15° Amplitude 
Measured Simulated 

VMAX C R² VMAX C R² 
µ σ µ σ µ σ µ σ µ σ µ σ 

0° 597 128 5.37 1.92 0.79 0.25 630 156 9.33 2.94 0.94 0.07 
15° 583 128 4.97 3.25 0.82 0.20 675 152 9.33 3.78 0.94 0.17 
30° 627 129 5.38 2.32 0.84 0.14 654 161 8.01 3.17 0.95 0.05 
45° 616 118 5.57 2.54 0.82 0.25 638 158 7.86 2.66 0.96 0.05 
60° 590 175 4.99 2.79 0.59 0.38 579 150 7.19 2.37 0.95 0.06 
75° 557 114 4.59 1.64 0.81 0.18 633 173 9.39 4.37 0.93 0.12 
90° 619 149 6.28 2.43 0.78 0.20 611 319 8.06 5.26 0.99 0.01 

Angle 

All Saccades 
Measured Simulated 

VMAX C R² VMAX C R² 
µ σ µ σ µ σ µ σ µ σ µ σ 

0° 584 108 5.56 1.65 0.82 0.24 633 121 10.38 3.43 0.95 0.07 
15° 602 116 5.37 2.11 0.80 0.18 667 121 9.55 3.32 0.97 0.03 
30° 625 95 5.94 3.05 0.84 0.14 649 155 8.28 3.26 0.95 0.05 
45° 644 131 6.24 2.97 0.84 0.16 680 131 8.88 2.69 0.96 0.05 
60° 615 179 5.16 2.71 0.59 0.35 606 165 8.81 3.79 0.94 0.09 
75° 559 100 4.49 1.56 0.75 0.27 577 136 8.24 3.45 0.93 0.11 
90° 624 152 6.33 2.52 0.76 0.20 447 91 6.03 1.73 0.89 0.23 

Table 3. Measured and Simulated Oblique Main Sequences, VPEAK = VMAX (1 – e–|Amplitude| / C) 

Parameter 

Measured Simulated 

µ Source 
Horizontal Vertical 

µ σ Difference µ σ Difference 
KSE_AG 2.5 (Collins 1975) 2.5 0.3 0% 2.3 0.3 8% 
KSE_ANT 2.5 (Collins 1975) 2.9 0.4 16% 2.6 0.4 4% 
KLT_AG 1.2 (Bahill 1980) 1.3 0.1 8% 1.3 0.1 8% 
KLT_ANT 1.2 (Bahill 1980) 1.4 0.1 17% 1.4 0.1 17% 
KP 0.5 (Collins 1975) 0.4 0.1 20% 0.4 0.0 20% 
BP 0.06 (Bahill, et al. 1980) 0.040 0.007 33% 0.043 0.007 28% 
BAG 0.046 (Bahill, et al. 1980) 0.040 0.004 13% 0.041 0.004 11% 
BANT 0.022 (Bahill, et al. 1980) 0.017 0.003 23% 0.019 0.003 14% 
J 4.3(10-5) (Bahill, et al. 1980) 4.9(10-5) 0.8(10-5) 14% 5.4(10-5) 0.6(10-5) 26% 
τAG_AC 9.7* (Bahill, et al. 1980) 1.5 0.0 85% 1.5 0.0 85% 
τANT_AC 2.0 (Hsu, et al. 1976) 3.1 0.2 55% 3.0 0.2 50% 
τAG_DE 2.4 (Bahill, et al. 1980) 2.4 0.1 0% 2.4 0.1 0% 
τANT_DE 1.9 (Bahill, et al. 1980) 2.1 0.1 11% 2.2 0.1 16% 
NFIX_C 14 (Bahill 1980) 15.9 1.4 14% 14.6 1.6 4% 
NANT_SAC 0.8 (Bahill 1980) 0.51 0.02 36% 0.51 0.03 36% 
P1 1.0 (Collins 1975) 1.7 0.6 70% 1.7 0.8 70% 
P2 10.0 (Collins 1975) 2.3 4.3 77% 1.6 3.0 84% 

* Based on referenced estimation for 10° saccades. 

Table 4. Estimated Oculomotor Plant Characteristics. 



 

5.3 Physiological	  Precision	  
False acceptance rate (FAR) is defined as the rate at which unauthorized individuals are accepted by a biometric 
authentication system as valid users, while false rejection rate (FRR) is defined as the rate at which authorized 
individuals are rejected by the system as invalid users. The detection error tradeoff (DET) curve, shown in Figure 14, 
plots false acceptance rate against false rejection rate at varied acceptance thresholds. The horizontal component 
provided an equal error rate of 25.98%, the vertical component provided an equal error rate of 30.79%, with fusion 
providing an equal error rate of 25.02%, using the following weighting: 0.95 × Horizontal + 0.05 × Vertical. 

Kolmogorov-Smirnov tests for normality (D = 0.5000, p = 0.0000) and uniformity (D = 0.6311, p = 0.0000) of 
fused similarity scores generated by Hoteling’s T-square comparisons of OPC parameters rejected the possibility that 
similarity scores conform to either distribution. Pearson’s correlation coefficient was averaged for each parameter 
across recording sessions to identify the consistency of parameter estimation between recording sessions, with test 
statistics reported in Table 5. 

6. DISCUSSION	  

The model achieves fair accuracy in the simulation of saccades with characteristics resembling those of normal 
humans. The results of our estimation indicate that, during expansion and stretching, components act slightly 
differently (similar to differences in force-velocity relationships). It is very easy to detect when a component is part of 
the agonist or antagonist. Therefore, breaking those components into agonist and antagonist counterparts increases the 
accuracy of the model while keeping the complexity linear. With the exception of NAG_SAC, estimated OPC parameters 
are relatively consistent across the considered intervals (generally varying by less than 10% in both mean and 
standard deviation) and fall within a degree of magnitude from their initial values. High variability in the values of 
NAG_SAC is likely due to major oversimplification of the neural processes that interact to produce muscle innervation, 
reducing an even more complex, interactive system to a single equation without accounting for non-linear interactions 
that may occur at the neural level during pulse generation. 

The positional error of simulated saccades was small (0.63-0.87° on average). As the range of saccades included 
in OPC estimation increases, both RMSE and R² of the simulated trajectory increase. That is, as the data set increases, 
the average positional error of simulated saccades increases, but the average correlation between measured and 
simulated saccades also increases. This is likely due to the inclusion of greater amplitude saccades, which contribute 
relatively more error to the RMSE calculation. Such error might occur due to the linear representation of the OP by 
the 2D-OP model, as the linear representation is more accurate toward the primary eye position. 

The accuracy of velocity simulation is similar to that of the positional accuracy, as the range of saccades included 
in OPC estimation increases, both RMSE and R² increase. In addition, it should be noted that the ratio of peak 
velocity to average velocity (Q) of measured saccades had an average value of 2.74 (SD = 3.02), while the simulated 
Q had an average value of 2.01 (SD = 0.66). 

Parameter 
Horizontal Vertical 

r p r p 
KSE_AG 0.0000 0.5084 0.0006 0.4869 
KSE_ANT 0.0006 0.4962 0.0015 0.4961 
KLT_AG 0.0006 0.5013 0.0019 0.5084 
KLT_ANT -0.0009 0.4989 -0.0006 0.5133 
NAG_C 0.0010 0.4997 0.0019 0.4914 
NANT_C 0.0002 0.4993 -0.0004 0.4976 
BP -0.0005 0.4974 -0.0016 0.5019 
BAG -0.0006 0.4984 0.0012 0.4929 
BANT -0.0004 0.4995 -0.0016 0.4917 
J 0.0006 0.5040 -0.0019 0.4899 
τAG_AC 0.0003 0.4942 0.0005 0.5075 
τANT_AC -0.0000 0.5019 0.0003 0.5221 
τAG_DE 0.0018 0.5008 -0.0011 0.4997 
τANT_DE -0.0011 0.5079 0.0002 0.5132 
NFIX_C 0.0018 0.5083 -0.0006 0.5009 
NAG_SAC -0.0014 0.5052 -0.0003 0.5078 
NANT_SAC -0.0003 0.5002 -0.0011 0.4962 
PW -0.0015 0.5051 0.0003 0.4989 

Table V. Pearson’s Correlation Coefficient. 
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Figure 14. Detection Error Tradeoff (DET) Curve. 



The main sequence relationship for the oblique angles of each subject was calculated separately based on the 
available data for both measured and simulated saccades. In some cases, insufficient data for a given angle and 
outliers resulted in unusable fits. To mediate the effect of including this data in the average, relationships were 
excluded based on the following criteria: regression failed for a given data set; R² of the regression was negative; 
VMAX was unrealistically high (>1000°/s). Because of this exclusion, the averaged value for each angle was not 
necessarily drawn from the average data across all subjects, but only a subset of this. Of the oblique angles, 0° and 
90° tended to have the most data loss in this respect. This occurs because purely horizontal/vertical saccades are very 
rare, and even when the eye is programmed for such a saccade, there is a certain amount of drift that occurs in the 
orthogonal component, resulting in a skewed oblique angle. 

As expected from the literature, the simulated values of VMAX produced for all angles (358 ~ 680°/s) are within a 
realistic range (400 ~ 800°/s), as is the curvature. The average R² for regressions of measured saccades are often 
lower than the average R² for simulated saccades, suggesting that the model provides a stricter adherence to the main 
sequence relationship than is found in normal human saccades, possibly due to noise or measurement inaccuracy. 

The physiological accuracy of model parameters is tentatively confirmed to fall within normal human ranges, due 
primarily to the relatively low availability of measurable human data. With the exception of activation time constants 
and neural pulse width, all estimated model parameters are relatively close to measured values, and the neuronal 
control signal falls within a realistic output of spikes/second, well below measured limitations. A constant with initial 
value 0.5 was assigned to NANT_SAC based on early experiments with parameter estimation that showed that NANT_SAC 
assumes a non-zero value at saccades of low amplitude and rapidly decreases in an asymptotic manner, approaching 
zero as saccade amplitude increases. 

The precision of model parameters and parameter estimation is largely confirmed by the results of biometric 
analysis. Pearson’s correlation coefficient failed to identify linear dependence or independence of parameter 
estimation between sessions. This is not entirely unexpected, as parameter estimation is performed across a large 
number of variables using a local minimization algorithm. The Kolmogorov-Smirnov tests for normality (p = 0.00) 
and uniformity (p = 0.00) indicate that the similarity scores generated by Hoteling’s T-square are non-random, and the 
equal error rate of 25.02% indicates that OPC parameters constitute viable biometric indicators, far from the chance 
value of 50%. It should be noted that, in biometric applications, fatigued or otherwise abnormal saccades would be 
treated in the same manner as smudged fingerprints. While OPC parameters do not present enough biometric 
accuracy to replace existing biometric authentication methods (possibly due to the linear nature of the model, or 
inaccuracy in parameter estimation), the OPC is immediately applicable as a component of multi-biometric systems. 
In a related study (Komogortsev, et al. 2012a), the combination of iris recognition, OPC parameters, and eye 
movement analysis in an ocular multi-biometric system reduced error by 13.4% over purely iris recognition-based 
authentication, for an equal error rate of 4.8%. 

7. CONCLUSION	  

To assess the performance of the two-dimensional linear homeomorphic oculomotor plant mathematical model, 
approximately 1200 centrifugal oblique saccades and 12000 uniformly random oblique saccades were recorded from 
30 human subjects. The results suggest that the two-dimensional linear homeomorphic oculomotor plant mathematical 
model is capable of simulating saccadic eye movements with characteristics resembling those of normal humans, with 
model parameters within feasible physiological ranges, and with parameter estimation precise enough to uniquely 
identify individuals based solely on estimated model parameters. 

The most accurate simulation results were obtained for saccades with amplitudes between 0-10° amplitude; 
however, larger saccades were simulated relatively accurately, with average positional error not exceeding 0.87° and 
141°/s respectively. Oblique main sequences generated by the two-dimensional linear homeomorphic oculomotor 
plant mathematical model resulted in a better fit to the stereotyped exponential form than recorded human data. As 
well, biometric application of the oculomotor plant model yielded an equal error rate of 25.02%, far from the random 
chance value of 50%, with Kolmogorov-Smirnov tests confirming non-random distribution of biometric match scores. 

The results indicate that the model is capable of producing oblique saccades with properties resembling those of 
normal human saccades, and is capable of deriving muscle constants that are viable as biometric indicators. Therefore, 
we conclude that sacrifice in the anatomical accuracy of the model produces negligible effects on the accuracy of 
saccadic simulation on a 2D plane, and may provide a usable model for applications in computer science, human-
computer interaction, and related fields. 
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