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Abstract—In an effort toward standardization, this paper eval-
uates the performance of five eye-movement classification algo-
rithms in terms of their assessment of oculomotor fixation and
saccadic behavior. The results indicate that performance of these
five commonly used algorithms vary dramatically, even in the case
of a simple stimulus-evoked task using a single, common threshold
value. The important contributions of this paper are: evaluation
and comparison of performance of five algorithms to classify spe-
cific oculomotor behavior; introduction and comparison of new
standardized scores to provide more reliable classification perfor-
mance; logic for a reasonable threshold-value selection for any
eye-movement classification algorithm based on the standardized
scores; and logic for establishing a criterion-based baseline for
performance comparison between any eye-movement classification
algorithms. Proposed techniques enable efficient and objective clin-
ical applications providing means to assure meaningful automated
eye-movement classification.

Index Terms—Analysis, baseline, eye-movement classification,
oculomotor behavior.

1. INTRODUCTION

OMPUTERIZED eye-tracking technology is increasingly

being used for the examination of human visual systems
(HVSs) in several medical settings, i.e., ophthalmology, cogni-
tive psychology, and neuroscience. These systems allow mea-
surement of oculomotor responses to multiple factors, such as
psychological state, disease, aging, and the environment [1].
Two primary eye movements, fixation and saccadic function,
are essential to these studies of oculomotor behavior. Oculo-
motor fixation is defined as the ability to suppress ocular drifts
while maintaining a steady retinal image of a single target of
interest, while saccadic behavior describes eye movements used
to produce rapid changes in fixation on different targets within
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the visual field [2]. Although these measurements are univer-
sally known and used, a frustrating concern continues due to
the lack of consistency for classification of these oculomotor
behaviors across various settings [1], [3].

Although studies of HVSs are of great value in the study
of neurophysical phenomena [4], clinical studies relating to ad-
vancements in patient care remain challenging when using com-
puterized eye-tracking systems [3]. For instance, oculomotor be-
havior is used in the differential diagnosis of several disorders,
including mild traumatic brain injury (mTBI) [5], Parkinson’s
versus Alzheimer’s disease [6], Schizophrenia [3], functional
deficits relating to macular degeneration [7],attentional deficit
disorders [8], and Meniere’s disease [9]. Fixation and saccadic
behavior are described in the aforementioned studies; however,
there remains disagreement in how to best classify eye move-
ments in terms of various metrics used to characterize “fixa-
tion” and “saccadic” behaviors. For instance, Crevits et al. [10]
used computerized video eye-tracking systems to demonstrate
that persons with mTBI are able to perform normal antisac-
cadic control. Therefore, they advised that this type of measure-
ment does not have any diagnostic capability. However, Heitger
et al. [5] recently used a different form of classification algo-
rithm for the same type of eye-tracking system to demonstrate
that persons with mTBI do in fact demonstrate significant dif-
ferences in antisaccadic behaviors. Other laboratories have also
supported this finding [11]. Several other discrepancies exist for
other disorders that lead one to conclude that eye-movement
classifications have been very dependent on local measurement
technique and subjective interpretation.

Documentation and assessment of fixation or saccadic eye
movements provide information about patient impairments and
response to medication or improvements in functional tasks dur-
ing activities of daily living such as reading [7]. Therefore, it is
crucial that sensitive and accurate methods can be employed
with the use of eye-tracking systems, especially in clinical
settings.

Recent interest has increased in the use of mathematical mod-
els to standardize classification of components relating to normal
eye behavior in response to external stimuli or impairments re-
lating to pathology or aging. However, the challenge continues
to exist because analyses techniques used to track oculomotor
movements continue to be highly variable and without universal
standardization for system identification of specific eye behav-
iors [3]. This ongoing problem has led to a preference in tedious
manual techniques and reluctance to adopt automatic analysis
systems with limited capacity for comparisons across settings.

In this paper, we will describe a standardized approach to
specifically assess fixation and saccadic eye movements. In
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Fig. 1. Illustration of classification flow for five eye-movement classification algorithms: I-VT, I-HMM, I-KF, I-DT, and I-MST.

doing so, we will provide a review and comparison of five of
the most popular eye-movement classification algorithms.

Specific objectives of this paper are to: 1) provide a review
and comparison of five eye-movement classification algorithms
to automate classification of fixation and saccadic response to
a simple standardized stimulus-evoked task; 2) provide a stan-
dardized scoring system to allow an in-depth quantitative and
qualitative analysis of oculomotor behavior; 3) provide logic for
a reasonable threshold-value selection based on a standardized
scoring system; and 4) provide logic for developing a mean-
ingful baseline comparison of classification algorithms’ perfor-
mance in terms of simple and possibly complex oculomotor
plant metrics for future studies. A preliminary summary of this
paper is available [12]; however, this paper will provide a more
detailed and in-depth analysis of automated classification algo-
rithms with standardized scoring for the objectives 1) and 2) and
new material to accomplish objectives 3) and 4).

Standardization of the scoring and baseline selection will
benefit researchers outside the medical field and provide tools
for meaningful threshold selection. It will also allow valida-
tion of classification results via baseline comparisons. Specif-
ically, some other areas that might benefit are research efforts
pertaining to human—computer interaction [13]-[18], psychol-
ogy [19]-[21], and usability [22]-[24].

II. AUTOMATIC ANALYSIS OF OCULOMOTOR BEHAVIOR

Both oculomotor fixation and saccades are typically assessed
with the use of several clinical tools, including manual visual in-
spection, nystagmography, and computerized infrared pupillary
tracking devices [3], [25], [26]. Several methods are available to
automate the analysis and classification process of oculomotor
data, including the velocity threshold identification (I-VT), hid-
den Markov model identification (I-HMM), minimum spanning
tree identification (I-MST) [27], and Kalman filter identification
(I-KF) [16], [28]. Potentially, the use of these algorithms proves
helpful to expedite the analysis process; however, little work
has been done to compare each method in terms of reliability or
robustness of the data-analysis process.

A. Eye-Movement Classification Algorithms

Two groups of the eye-movement classification algorithms
are discussed in this paper. The first group is represented by the
algorithms that analyze the velocity component of the movement
signal. The I-VT, I-HMM, and I-KF belong to this group. The
second group contains algorithms that analyze positional proper-
ties of the signal. The dispersion threshold identification (I-DT)
and [-MST belong to this group. Fig. 1 illustrates diagrammati-
cal representation of all algorithms. The implementation of the
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algorithms presented in this paper slightly differs from the pre-
viously described versions [27]-[29]; therefore, a brief verbal
description for each algorithm is provided. All algorithms pre-
sented in this paper were designed for the offline process of
eye-movement data. Detailed description of the pseudocode for
each algorithm is available [30].

B. Description of Eye-Movement Classification Algorithms

Every algorithm presented here can be described in the fol-
lowing general form. The input to an algorithm is provided as
a sequence of the eye-gaze position tuples (x., y.,t) where z,
and y, are horizontal and vertical coordinates of the eye posi-
tion sample, respectively, and 7 is the time when the sample was
taken. A threshold value is provided to allow classification of
each eye position sample as a fixation or a saccade, according
to the classification criteria implemented in the algorithm. Next,
the “merge function” is employed to perform classification of
consecutive eye position points as a part of fixation, and then,
collapsed into a single fixation segment with center coordinates
computed as a centroid of the fixation segment. Classified fix-
ations are subsequently merged into larger fixation segments
using criteria based on two parameters: length of the time in-
terval between two fixation groups and the Euclidian distance
between these groups. The length of the time interval between
two fixation groups serves as a filter for blinks. Evinger er al. [31]
reported maximum blink duration in the range of 75-425 ms;
therefore, 75 ms was employed in the merge function. The Eu-
clidian distance between two fixation groups serves as a filter
for microsaccades (saccades with amplitude of less than 0.5°).
The center of the merged fixation segment is calculated as a
“centroid.” The onset of the first fixation group becomes the
onset or the beginning of the resulting fixation. The offset of the
second fixation group becomes the offset (end point) of the fix-
ation segment. Fixations with duration less than the minimum
fixation duration (100 ms) are then discarded from the analysis.
On another note, consecutive eye position points that are classi-
fied as saccades are collapsed into a single saccade with specific
onset and offset coordinates. Microsaccades and saccades that
contain eye positions not detected by an eye-tracker device as a
result of blinks or any other reason are discarded. The “merge
function” is the same for every algorithm and provides the final
output as a sequence of fixations and saccades.

The approach where each individual eye position is first clas-
sified as a part of a fixation or a saccade, and second, processed
by the “merge function,” allows for a more standardized clas-
sification behavior, when compared to approaches in which the
merging logic is incorporated into the initial classification stage
(e.g., I-DT implementation in [27]).

Specific classification criteria that classifies each eye position
sample as a fixation or saccade is described in the following
sections.

1) I-VT Model: In the I-VT model, the velocity value is
computed for every eye position sample. The velocity value is
then compared to the threshold. If the sampled velocity is less
than the threshold, the corresponding eye-position sample is
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marked as part of a fixation, otherwise it is marked as a part of
a saccade.

2) I-HMM Model: The hidden Markov algorithm (I-HMM)
is a more sophisticated version of the I-VT model that is aug-
mented by the probabilistic representation of the HVS. The
I-HMM presented in this paper has two states, fixation and sac-
cade. Each state is characterized by a velocity distribution of
saccade and fixation points.

There are three important process stages utilized in the
I-HMM. The first stage of the I-HMM is identical to the I-VT,
where each eye position sample is classified either as a fixation
or a saccade, depending on the velocity threshold. The second
stage is defined by the Viterbi sampler [32], where each eye
position is reclassified as part of a fixation or saccade, depend-
ing on the probabilistic parameters (initial state, state transition,
and observation probability distributions) of the model. The
goal of the Viterbi sampler is to maximize the probability of the
state assignment, given probabilistic parameters of the model.
The initial probabilistic parameters assigned to the -HMM are
typically not at optimal levels needing further improvement.
Therefore, the third and last stage of the -HMM is defined by
the Baum—Welch reestimation algorithm [33]. This algorithm
reestimates the initial probabilistic parameters and attempts to
minimize errors in the state assignments. Parameter reestima-
tions can be performed by the Baum—Welch multiple times if
necessary. In the I-HMM defined in this paper, the number of
such reestimations for optimization was four.

3) I-KF Model: The I-KF models an eye as a system with
two states: position and velocity. The acceleration of the eye is
modeled as white noise with fixed maximum acceleration. When
applied to the recorded eye position signal, the I-KF generates
a predicted eye velocity signal. The values of the measured and
predicted eye velocity allow use of the Chi-square test to classify
each eye positional sample as a part of a fixation or saccade

= 5—7 —(9L 2
X2 — Z ( i 52 ) (1)
i=1

where @-’ is the predicted eye velocity computed by the Kalman
filter, and 6; is the observed eye velocity computed with the
eye position signal from the eye tracker. ¢ is standard deviation
of the measured eye velocity, respectively, during the sampling
interval under consideration, while p is the size of the temporal
sampling window. Points above the specified x? threshold are
classified as part of a saccade, while points below the threshold
are classified as part of a fixation.

4) I-MST Model: MST 1is defined as a spanning tree with
a Euclidian distance minimum among all spanning trees in a
given set of nodes. The I-MST algorithm builds an MST taking
a predefined number of eye position points using Prim’s algo-
rithm. Eye fixations are characterized by a set of points that
are enclosed in a relatively small region. With this in mind, the
I-MST traverses group of points and classifies each eye position
point, into a fixation or a saccade based on point-to-point dis-
tance thresholds. Points below threshold are classified as a part
of the fixation, and points above the threshold are classified as a
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part of the saccade. The advantage of using an I-MST is the al-
gorithm’s ability to correctly identify fixation points, even when
a large part of the signal is missing due to noise. For longer eye-
movement recordings, the I-MST requires a sampling window
to build a sequence of nonoverlapping MST trees for meaning-
ful classification results. The length of such a window can be
equivalent to the duration of the largest saccade expected in the
recording. In our experiments, the window size selected was
200 ms.

5) I-DT Model: The fifth and final model, i.e., I-DT algo-
rithm, takes into account the distribution or spatial proximity of
eye position points in the eye-movement trace [27], [29]. The
algorithm defines a temporal window, which moves one point at
a time. The spatial dispersion created by the points within this
window is compared against a threshold. If such dispersion is
below the threshold, the points within the temporal window are
classified as part of a fixation; otherwise, the window is moved
by one sample, and the first sample of the previous window is
classified as a saccade. Starting size of the temporal window
is held to a minimum fixation duration of 100 ms. The disper-
sion of the points in the window is computed with the formula
D = [max(X) — min(X)] + [max(¥Y) — min(Y)], with X and Y
representing eye position sets within the temporal window.

III. QUALITATIVE AND QUANTITATIVE SCORING OF
EYE-MOVEMENT CLASSIFICATION ALGORITHMS

To establish a common basis for comparison between the five
aforementioned classification algorithms, it was important to
define a set of qualitative and quantitative scores for the assess-
ment of classification-algorithm performance. Assuming that
a classification algorithm classifies the eye position trace into
fixation and saccades, the following performance metrics were
considered: average number of fixations (ANF), average fixa-
tion duration (AFD), average number of saccades (ANS), and
average saccade amplitude (ASA). The performance of each
classification algorithms could then be assessed by these metrics
independent of stimulus activity. These metrics are well known
and have been employed by fields interested in documentation
of oculomotor behavior, such as usability sciences [22], psy-
chology [21], and rehabilitation sciences [34].

To complement the aforementioned metrics, we developed
three new metrics to classify quality of measured behavior:
fixation quantitative score (FQnS), fixation qualitative score
(FQIS), and saccade quantitative score (SQnS). Subsequently,
these three metrics are identified as behavior scores.

A. Fixation Quantitative Score

The intuitive idea behind the FQnS is to compare the amount
of detected fixational behavior to the amount of fixational be-
havior encoded in the stimuli.

To calculate the FQnS, the fixation stimulus position sig-
nal is sampled with the same frequency as the recorded eye
position signal. Every resulting coordinate tuple (zs,ys,t) of
fixation stimulus is then compared to the corresponding tuple
(xe,Ye,t) of the eye-position-recorded signal. If the recorded
eye-positional tuple is classified as a fixation with its centroid
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in a spatial proximity of the stimulus fixation (such proximity is
determined by a specified threshold, which was 1/3 of the am-
plitude of a previous stimulus saccade for our purposes), then
the fixation-behavior-detection counter is incremented by one.
The FQnS is calculated by normalizing the resulting fixation-
behavior-detection counter by the total amount of fixation posi-
tional points encoded in the stimulus
fixation_detection_counter

FQnS = 100 - . 2
Qn stimuli_fixation_points @

According to such design, the FQnS compliments the AFD
and ANF metrics, via measuring classified fixational behavior
in regard to the temporal and spatial properties of the stimulus
signal.

It is important to mention that practically speaking, the FQnS
will never reach 100% due to the natural saccadic latency delay
in the central nervous system (CNS) required to send a neuronal
signal to extraocular muscles to execute a saccade [2]. The
average delay of 200 ms is reported in healthy humans [2]. In
addition, the associated saccade duration approximates to

Dsac,dur = (2'2Asac,amp + 21) (3)

where Agac_amyp 1S the saccade’s amplitude measured in degrees
[35]. With this phenomena in mind, the onset of a fixation will
always be delayed by a 200 ms plus the duration time of the
saccade. Therefore, the computation of the ideal FQnS can be
performed as follows:

ms + ?17 Dsac, ur
Ideal_FQnS = 100 <1 _ ! Z/—l dur; ) )

n
Zi:l Dstim _fix_dur;

where n is the number of stimulus fixations, Dstim fix_dur, 1S
duration of the ith stimulus fixation, S; is saccadic latency,
m is the number of the stimulus saccades, and Dsmfdur(] is
the expected duration of a saccade in response to the stimulus
saccade j.

B. Fixation Qualitative Score

The FQIS compares the spatial proximity of the classified
eye-fixation signal to the presented stimulus signal, therefore
indicating the positional accuracy or error of the classified
fixations.

The FQIS calculation is similar to that of the FQnS, i.e., for
every fixation-related point (g, ys) of the presented stimulus,
the check is made for the data point in the eye position trace
(z.,y.). If the data point is classified as a fixation, the Euclidean
distance between the presented fixation coordinates and the cen-
troid of the detected fixation coordinates (z., y.) is computed.
The sum of such distances is normalized by the number of data
points being compared

N
1
FQIS = ~ Z fixation_distance; . 5

i=1

Here, N is the number of stimulus position points where
the stimulus fixation state is matched with each corresponding
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eye-position sample detected as a fixation. fixation_distance; =
V/(h —20)2 + (yi — yi)? represents the distance between
stimulus position and the center of the detected fixation.

Ideally, the FQIS should equal to 0°, which can only happen
in the case of absolute accuracy of the eye-tracking equipment
and assuming that subjects make very accurate saccades to the
fixation position. In practice, the accuracy of modern eye track-
ers remains in the range of <0.5°. Typically, even normal eye-
movement behavior incorporates undershoots/overshoots when
making saccades to fixation targets [2], making the initial seg-
ment of exhibited fixation slightly off-target. Additionally, each
fixation is composed of three submovements: tremor, drift, and
microsaccades [36] with each submovement introducing addi-
tional noise. Therefore, we hypothesize that practical values for
the FQIS should be at best around 0.5°.

C. Saccade Quantitative Score

The SQnS represents the amount of classified saccadic be-
havior, given the amount of saccadic behavior encoded in the
stimuli. The SQnS is an important addition to the ASA and
the ANS metrics, because it correctly quantifies saccadic be-
havior, even in situations where complex oculomotor events
such as undershoots/overshoots, dynamic saccades, express sac-
cades, and compound saccades are present [2]. Such oculomotor
events can skew resulting numbers for the ASA and ANS; how-
ever, they do not directly interfere with computations for the
SQnS.

To calculate the SQnS, two separate quantities are computed.
One represents the amount of stimulus saccadic behavior and
the second represents the amount of classified saccadic be-
havior. To calculate the stimulus-related metric, each jump of
the fixation target to a new location is considered as a stimu-
lus saccade, and the distance difference between targets indi-
cates the stimulus saccade amplitude. The absolute values of
the amplitudes of all stimulus saccades are summed together
to produce “total_stimuli_saccade_amplitude.” Similarly, abso-
lute values of all response saccade amplitudes, detected by a
given classification algorithm, are summed together to represent
the accumulative amplitude for the classified saccadic behav-
ior “total_detected_saccade_amplitude.” The following formula
presents the computation of the ratio score:

total _deteced_saccade_amplitude
total _stimuli_saccade_amplitude -

SQnS = 100 - (6)

The SQnS of 100% indicates that the integral sum of detected
eye saccade amplitudes equals to that of the presented stimuli.
The SQnS can be larger than 100%, which can essentially occur
due to two things: abnormal saccadic behavior of the sample or
the classification algorithm has incorrectly amplified saccadic
behavior, i.e., some fixations classified as saccades. An exam-
ple of abnormal saccadic behavior could occur when a sample
contains a large number of hypermetric saccades (target over-
shoots) followed by glissades (postsaccadic drifts), and possibly,
saccadic intrusions or oscillations (inappropriate movements
that take the eye away from the target during attempted fixa-
tion [2]). In addition, the amplification of the saccadic behavior
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would be caused by the inappropriate selection of a threshold-
classification parameter. The SQnS would be smaller than 100%
in cases of hypometric saccadic behavior (target undershoots)
or damping behavior of the classification algorithm.

In view of the foregoing, we were now able to employ seven
different assessment metrics ANF, AFD, ANS, ASA, SQnS,
FQnS, FQIS, and SQnS to provide a performance comparison
of the five eye-movement classification models of interest.

IV. METHODOLOGY
A. Procedure

Oculomotor behaviors were recorded using the Tobii x120
eye tracker [37], which includes a stand-alone unit connected
to a 24-in flat panel screen with a resolution of 1980 x 1200
pixels. The eye tracker performed binocular tracking with the
following characteristics: accuracy 0.5°, spatial resolution 0.2°,
and drift 0.3°, with eye position sampling frequency of 120 Hz.
A chin rest was used to stabilize the head for higher accuracy
and stability in eye tracings.

B. Participant Data Samples

A total of 22 participants (nine males/13 females), ages 18—
25 years with an average age of 21.2 (4-3.12), volunteered for
the project from the Texas State University campus. Participants
were chosen from a larger data pool from a larger study using
the following inclusion criteria to ensure high-quality data: po-
sitional accuracy during calibration better than 1.70° and invalid
data percentage of the data less than 20%. The resulting data
pool had a calibration error mean of 1.01° £ 0.41 with only a
resulting mean of 3.23% =+ 2.26 for invalid data.

C. Fixation and Saccade Invocation Task

A stimulus was presented as a white, single “jumping point”
on a black background with vertical coordinates fixed to the
middle region of the screen. The size of the point was approxi-
mately 1° of the visual angle with the center marked as a black
dot. The first point was presented in the center of the screen,
then subsequent 14 points moved to the left and right of cen-
ter with a spatial amplitude of 10°-20°. Therefore, the jumping
sequence consisted of 15 total fixation points, including the
original point in the center. The first saccade of 10° and the
13 subsequent saccades of 20°, resulted in an overall ASA of
19.3° to represent all 14 saccades. After each subsequent jump,
the fixation point remained stationary for 1 s before the next
jump.

Considering the simple stimulus behavior and the normal
subject pool, the following metrics introduced in Section III
were set up as ideal metric performance: AFN = 15 fixations,
AFD = 1 s, ANS = 14 saccades, ASA = 19.3°, FQIS = 0°,
FQnS = 73.4%, and SQnS = 100%.

D. Threshold Range Selection

It was important to test the performance of each classification
algorithm over a sensible range of the threshold values. Such
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range was selected based on the research literature recommen-
dations and physiological eye-movement properties.

The range of the threshold values for the velocity-based mod-
els (I-VT and I-HMM) was set from 5°/s [2] to 300°/s [27]. For
the dispersion/position based models (I-MST and I-DT), the
threshold range was set from 0.033° to 2°. Such range was se-
lected to test the performance between two extremities: 0.033°
is the value that represents a minimum common amplitude of
involuntary saccades exhibited during a fixation [36], and 2°
is the value often suggested by the eye-tracking vendors [37].
Various recommendations exist for the threshold values for the
I-KF method: 5 [38], 20.5 [28], and 50 [39]. We selected the
range from 1 to 60 to include suggested values and to investigate
the performance of the I-KF on the boundaries of the suggested
range.

To assess the performance of the selected classification algo-
rithms on the same scale, a range-coefficient (RC) concept is
introduced. Given the value of the RC, the threshold value for a
classification algorithm can be found as follows:

T =RC -Inc+C 7

where T is the threshold, RC is the range coefficient, C is the
initial value of the threshold, Inc is the threshold’s increment.
For the I-VT and I-HMM, C = 5°/s, and Inc = 5°/s. For the
I-MST and I-DT, C = 0.033° and Inc = 0.033°; and for
the I-KF, C = 1 and Inc = 1. RC from 0 to 59 allows for
testing the algorithms over threshold ranges discussed earlier
with sufficient granularity, without introducing too many data
points.

V. RESULTS

Fig. 2 presents classification results.

A. Average Number of Fixations

The trend for each classification algorithm was a low ANF
score at small threshold values with very rapid increase to a
certain threshold level. Afterward, there was a reverse trend in
ANF numbers down to a specific threshold value, where perfor-
mance of all algorithms stabilized. The I-MST method provided
the highest number of fixations (24) and the -HMM the lowest
(12); therefore, there was a two-fold difference between these
two methods. All methods were able to reach the number of
fixations presented by the stimulus signal (15), while some al-
gorithms were able to reach this value twice.

B. Average Fixation Duration

Each classification algorithm trend yielded a low AFD at
small threshold values, and then, rapidly increased in AFD val-
ues up to a certain threshold. After this threshold was reached,
the AFD value increase leveled off or saturated. The difference
between algorithms was significant, even when AFD values
stabilized. The I-KF provided maximized AFD values, while
the I-MST provided values on average reduced by 50%. Only
two algorithms, the I-KF and the I-HMM, were able to achieve
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oculomotor fixation duration values encoded in the presented
stimulus (1 s).

C. Average Number of Saccades

The trend for each classification algorithm indicated a low
ANS with the use of a small threshold values, and then, ex-
hibited peak performance at a specific plateau with a specific
saturation point at the high threshold values, which was close
to the stimulus signal (14 saccades). For the highest threshold
values, the I-DT provided the highest ANS of 17, while the
I[-HMM provided the lowest ANS value of 10 [see Fig. 2(c)].

D. Average Saccade Amplitude

None of the methods indicated ASA at levels presented by the
stimulus signal (19.3°). The highest value of 17° was reached
using the [-HMM model, with the lowest value of 8° provided
by both the I-VT and I-DT models. The saturated ASA value
produced by peak threshold values yielded a difference of more
than 5° [see Fig. 2(d)].

E. Fixation Quantitative Score

The FQnS monotonically increased for all classification algo-
rithms. For all algorithms except the [-DT, there was an imme-
diate jump in values; however, there was a point of saturation
after a certain threshold value or no increase in detected fix-
ational behavior. All algorithms peaked with an FQnS score
of 74%-T77%, which is agreeable with physiological latencies
discussed in Section III. The I-MST algorithm was the outlier
providing the saturated FQnS score of 57%, which was approx-
imately 23% lower than the other algorithm FQnS percentages
[see Fig. 2(e)].

F. Fixation Qualitative Score

The performance of all four (I-VT, I-KF, I-DT, and I-MST)
algorithms was very similar in terms of the positional accuracy
of the detected fixation, with the I-KF model providing a slightly
lower score, thus showing higher accuracy in terms of coordi-
nates of the detected fixation location (previous study supports
this fact showing 10% improvement in accuracy when the I-KF
was compared to the [-VT in a real-time eye-gaze guided sys-
tem [39]). The I-HMM provided the score that was essentially
33% higher than the other models, indicating significantly less
accuracy in fixation coordinate detection [see Fig. 2(f)].

G. Saccade Quantitative Score

Each algorithm had a point of maximum SQnS performance
after which the score values monotonically decreased. After the
SQnS score peak is reached, the amount of saccadic behavior
goes down because a lesser amount of eye position samples
are classified as saccades [see Fig. 2(g)]. This peak value was
highest for the [-HMM algorithm with a value of approximately
110% and lowest for the I-KF with a value of 90%. The per-
formance of the I-MST and I-DT was slightly higher than the
performance of the I-KF. For the upper values for performance,
thresholds of the I-VT, the I-DT, and the -HMM were very close
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Fig. 2.

(c) ANS, (d) ASA, (e) FQnS, (f) FQIS, (g) SQnS, and (h) CV for all metrics/scores.
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Results indicating the aggregate of each oculomotor behavior for 22 human subjects using five automated classification algorithms. (a) ANF, (b) AFD,
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to each other. The I-KF provided the most damping behavior in
terms of detected saccades. The difference in performance be-
tween each individual algorithm did not exceed 22%.

VI. DISCUSSION

A. Advantages of New Qualitative and Quantitative Behavior
Assessment Scores

The FQIS was found to be extremely useful in measuring the
positional accuracy of the classified fixations, given a threshold
value [see Fig. 2(f)].

The FQnS depicted fixational behavior that was much less
“noisy” than that of the data provided by the AFD and ANF.
This was observed for the I-VT, I-DT, I-HMM, and I-KF models
that produced varying behavior in terms of the AFD and ANF
values; however, all are essentially converged in the FQnS as
a summary score. With this in mind, the FQnS ensures the
temporal validity of the sampled fixations by matching them
with the stimulus signal. In doing so, the FQnS is set up to
pick out classification disadvantages of a particular algorithm,
e.g., -lMST’s spurious fixations due to possible overlapping
data.

The SQnS proved helpful in identifying specific input param-
eters (thresholds) that allowed detection of similar saccadicbe-
havior, as presented by the stimulus. This was not entirely pos-
sible with the ANS and ASA metrics. In cases when subjects
required multiple saccades to reach target’s position, the ANS
values were smaller or larger than their ideal values. As a result,
selection of the input threshold based on the ANS and the ASA
alone was quite difficult, but the SQnS actually resolved the
ambiguity by indicating the amount of saccadic behavior, given
a specific threshold value.

Additionally, the SQnS and FQnS values demonstrated much
less variability than computed by the coefficient of variation
(CV) formula: CV = §/u, where p is the mean value be-
tween the values of a metric/score calculated by all classifi-
cation methods computed for a fixed RC, and § is the stan-
dard deviation. Fig. 2(h) represents the CV results computed
for all metrics and thresholds. It is possible to see that after
a certain value (RC = 26), the CV for SQnS and FQnS were
substantially less than the values for the ASN, ANF, ASA, and
AFD metrics. Such behavior indicated that the SQnS and FQnS
were more stable and therefore more suitable in establishing
the baseline comparisons between all five of the classification
methods.

B. Meaningful Threshold Selection via Behavior Scores

Behavior scores allow “calibration” of the performance of
any eye-movement classification algorithm, given the stimu-
lus has preset characteristics, e.g., stimulus type defined in
Section IV-C. We use the term “calibration” in the sense of
a reasonable threshold selection for a specific classification
algorithm and subject/experiment setup. All commercial eye-
tracking equipment requires a calibration procedure in a manner
of step stimulus depicted as a sequence of two or more jumping
points to be able to compute the location of the eye gaze during
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actual recording. We suggest use of the recorded eye positional
data from this already established procedure to “calibrate” the
performance of classification algorithm.

To obtain a reasonable threshold, the meaningful initial
threshold range should be selected. Range selection can be
based on the physiological considerations of the eye-movement
classification method, e.g., logic presented in Section IV-D. In
case physiological considerations are unavailable, the selected
threshold range should result in a wide range of meaningful
SQnS values, e.g., 0%—150%. For the same threshold range,
the FQnS should also result in a range of meaningful values,
e.g., 0%—-100%. Healthy human subjects are expected to have
similar saccadic behavior as encoded in the stimulus; therefore,
the threshold value that yields selection of an ideal SQnS value
(or closest) can be considered as meaningful for a specific algo-
rithm. At the same time, corresponding FQnS and FQIS values
must be meaningful without variance too far from their ideal
values. If the ideal SQnS value is achieved more than once, a
threshold must be selected that provides an FQnS value closer
to the ideal value. If several thresholds result in the same FQnS
value, a threshold must be selected that provides the best FQIS
value.

Following this recommendation and considering that ideal
SQnS = 100% and ideal FQnS = 73.4%, optimal thresholds for
two classification algorithms were identified in our experimental
setup: [-VT—threshold of 70°/s (SQnS = 100%, FQnS = 73%,
and FQIS = 0.64°), and [-HMM—threshold of 70°/s (SQnS =
101%, FQnS = 75%, and FQIS = 0.75°).

Selection of the threshold for the I-KF, I-DT, and I-MST
is more challenging, due to the dampening effect of these al-
gorithms on the classified saccadic performance—none were
able to achieve an SQnS value of 100%. Additionally, maxi-
mum SQnS values achieved did correspond to the FQnS that
is 22%-42% lower than the ideal value. In cases when accu-
rate saccadic classification is not possible, it makes sense to
stabilize fixation behavior by considering first the FQnS that
is not too far from the ideal value (the maximum difference
of up to 15% is reasonable) and matching the threshold with
corresponding SQnS values that are also not too far from the
ideal value (difference of up to 20% is reasonable for saccades).
There might be a case when for all thresholds, within the se-
lected range, the SQnS and the FQnS values are quite far from
their ideal values. In such scenarios, it is important to select
a different threshold range/input parameters or/and classifica-
tion algorithm to ensure meaningful classification performance.
The earlier outlined logicallows for the threshold selections for
the I-KF—threshold of 15 (FQnS = 72%, SQnS = 80%, and
FQIS = 0.61), and the I-DT—threshold of 1.35° (FQnS = 72%,
SQnS = 86%, and FQIS = 0.63). The I-MST presents the case
where the algorithm almost fails to provide meaningful classi-
fication results, i.e., the FQnS is more than 15% smaller than
the ideal FQnS score of 73.4% for the whole threshold range. If
the best threshold has to be selected for the I-MST, one strategy
would be to identify the onset of the FQnS saturation behav-
ior with the associated SQnS value close to ideal, resulting in
the threshold of 0.6° (SQnS = 85.3%, FQnS = 55.2%, and
FQIS = 0.62).
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TABLE I TABLE II
CV WITH ANS = 14° CV WITH SQNS = 84%
Classification Algorithm | Trheshold| RC | SQnS | FQnS | FQIF | ASA | ANF | AFD Method Name Trheshold | RC FQnsS | FQlS | ANS | ASA | ANF | AFD
[ 300 60 68.8 | 775 | 07 [ 132 ] 165 | 08 1T 200 40 76.9 0.6 16.0| 141] 174 08
I-HMM 160 32 877 | 767 | 08 | 167 | 157 | 1.0 I-HMM 195 39 76.9 0.8 13.5| 165 152 09
I-KF 26 26 71.8 | 739 | 06 [ 137 ] 162 | 12 1-KF 13 13 713 07 17.0] 133| 190/ 07
1-DT 0.462 14 725 | 254 | 06 | 134 ] 161 | 02 1-DT 1.551 47 74.1 07 181] 126/ 185 07
I-MST 1.98 60 59.2 [ 571 | 06 [ 11.0 | 23.1 | 06 I-MST 0.66 20 55.4 0.6 203| 11.2] 226 06
Coefficient of Variatit N/A N/A | 0.143 | 0.357 | 0.115 | 0.150 | 0.180 | 0.494 Coefficient of Variation |N/A N/A 0.127| 0.108| 0.149| 0.145| 0.146| 0.146

C. Criterion-Based Baseline for Assessment of
Oculomotor Behavior

We define the baseline as a fixed set of thresholds that al-
low comparison of classification performance between various
eye-movement classification algorithms in a meaningful way.
Conventional metrics such as ANF, AFD, ANS, and ASA do
not provide the means to achieve this goal, e.g., if one of these
metrics is fixed to an ideal value, the amount of the variability
is high in the remaining metrics. To illustrate this argument, we
selected an RC range of 14—60 with relatively stable behavior
across all metrics (CV < 0.5) and fixed the ANS to the ideal
number ANS = 14. Table I presents the results.

The CV exhibited high amount of variability ranging from
0.115 to 0.494.

We propose a heuristic to compute a comparison baseline fol-
lowing similar logic to that used for the threshold selection out-
lined in the previous section. Saccadic behavior represents the
amount of movement (variability) of the eye; therefore, the com-
mon ideal SQnS value between all algorithms must be selected
first. To reduce possible variability of classification results, the
threshold range that yields a CV of SQnS of 0.2 between clas-
sification algorithms is suggested. (Our results indicated an RC
of 14-60 for this range.) As it is stated previously, not all eye-
movement classification algorithms can achieve an ideal SQnS
value. Therefore, we suggest selection of the largest SQnS value
achieved by all the classification algorithms. The largest SQnS
should not exceed 100% for normal subjects. When the largest
SQnS value is selected with corresponding FQnS and FQIS val-
ues must also be meaningful, i.e., not too far from their ideal
values. If the algorithm achieves a maximum SQnS value more
than once, select the threshold that provides the FQnS closer
to the ideal value. If several thresholds result in an ideal FQnS
value, selection of the threshold is based on the best-achieved
FQIS value. Resulting fixed set of thresholds that yield afore-
mentioned oculomotor behavior serve as the baseline for each
corresponding algorithm. Note that when algorithms selected
for the baseline analysis employ different threshold units, the
concept of the RC introduced in the Section IV-D can be em-
ployed to bring them to the same scale and to investigate the
coefficient of variability.

Proposed heuristic produces meaningful behavior in terms of
the classification performance and yields low variability across
various metrics, as illustrated by Table II.

In the case of our experiment, the amount of variability in the
remaining metrics goes down to 0.108-0.149 when the SQnS is
fixed to 84% (maximum SQnS value achievable by all classifi-
cation algorithms).

TABLE III
ABSOLUTE DIFFERENCE BETWEEN CLASSIFIED AND IDEAL METRIC
VALUES AT BASELINE

Method Name Trheshold | RC FQns Fals ANS ASA | ANF | AFD
1-vT 200 40 5.38 0.64 195| 5.19| 241 0.24
I-HMM 195 39 5.37 0.81 0.50/ 2.82| 0.18| 0.12
I-KF 13 13 10.98 0.68 3.00f 6.04f 395 031
1-DT 1.551 47 8.24 0.65 4.09| 6.70| 3.50| 0.29
1-MST 0.66 20 26.89 0.63 6.32| 8.09] 7.59| 041

Once common baseline is derived, it is possible to measure
the classification accuracy of the algorithms based on the abso-
lute difference between the ideal and the actual metric values.
Table III presents the results, where bold numbers highlight
smallest differences.

The I-HMM algorithm provided classification results that
were the closest in terms of the ideal behavior encoded in the
stimulus; therefore, posing itself as the most behaviorally accu-
rate at this baseline. At the same time, the [-HMM algorithm
had highest positional error between the classified and presented
fixation stimulus, but such error was smaller than the average
calibration error of 1.01° reported in the Section I'V-B.

It is possibleto imagine a case when one algorithm will
achieve minimum differences in just one category of metrics
with remaining algorithms achieving minimums in the remain-
ing categories. In such cases, the definition of the “best” algo-
rithm should be defined by the researcher with importance of
the resulting behavior assessed via the scope of the specified
task and the goals of the experiment.

D. Automated Versus Manual Classification

Manual techniques are frequently employed to classify eye-
movement behavior [4]. However, this type of classification
technique is susceptible to human error and can be open for
biased interpretation with limited generalizability. Additionally,
it becomes extremely tedious and time consuming to analyze
large quantities of data.

One might conclude that reliable automation of classification
of eye movements is impossible based on the high variability in
eye behavior, even with presentation of a simple stimulus and
variation of a single metric threshold [3]. However, behavioral
classification for eye movements, as introduced in this paper,
provides a more stable point of reference based on stimulus
behavior, and therefore, uses a standardized criterion-based or
meaningful threshold selection to support automated classifica-
tion methods.

E. Limitations

1) Sampling Frequency: It can be argued that the sampling
frequency of 120 Hz (8.3 ms per eye sample) employed in
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our studies can be considered as low for detection of saccadic
behavior by some researchers. A sampling frequency of 120 Hz-
translates to approximately three data points for 1° and ten data
points for 30° saccades (3). Average saccade’s amplitude en-
coded in the stimulus was 19.3° providing approximately eight
data points for each recorded saccade. Our previous research in-
dicates that 120 Hz sampling frequency is sufficient to classify
basic and complex saccadic eye-movement behaviors, such as
express saccades, dynamic overshoots, simple/corrected under-
shoots/overshoots, and compound saccades [40]. However, it is
still understood that a low sampling frequency would prevent a
reliable analysis of extremely small saccades, with amplitudes
of less than 0.2, and submovements during fixations such as
drift and tremor.

2) Blink Detection: Simple criteria for blink removal pre-
sented in Section II-A worked well for 120-Hz eye-movement
data that was obtained with an Tobii x120 eye tracker. The em-
ployment of the higher sampling frequency equipment or the
use of a different eye tracker might require an introduction of a
more sophisticated blink removal algorithm to ensure meaning-
ful classification behavior.

VII. CONCLUSION

This paper provided a comprehensive overview of five major
eye-movement classification algorithms in terms of the assess-
ment of oculomotor saccadic and fixation behavior. The results
indicate that even in case of fixed stimulus behavior and alter-
nation of a single threshold parameter, the classification results
differ dramatically with differences up to 100% or greater.

The paper analyzed actual data to introduce a set of stan-
dardized qualitative and quantitative scores that provided more
stable algorithm performance in terms of fixation and saccade
classification. Standardized scores allowed for a proposed logic
for developing a criterion-based baseline for comparison be-
tween any classification algorithms. In addition, we provided
logic for meaningful threshold selection for any eye-movement
classification algorithm. Such logic would be extremely benefi-
cial for the eye-tracking practitioners and eye-tracking vendors
as a tool for the selection of the input parameters, including
thresholds, which would allow to assure reasonable classifica-
tion behavior, given specific equipment, software, experiment
setup, and subject.

In view of the numerous advantages of standardized auto-
matic analysis systems, future studies are necessary to explore
the feasibility of this scoring system for clinical applications.
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