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ABSTRACT

Autism spectrum disorder (ASD) is a developmental disorder that often 
impairs a child’s normal development of the brain. According to CDC, it is 
estimated that 1 in 6 children in the US suffer from development disorders, 
and 1 in 68 children in the US suffer from ASD. This condition has a negative 
impact on a person’s ability to hear, socialize, and communicate. Subjective 
measures often take more time, resources, and have false positives or false 
negatives. There is a need for efficient objective measures that can help in 
diagnosing this disease early as possible with less effort. EEG measures the 
electric signals of the brain via electrodes placed on various places on the 
scalp. These signals can be used to study complex neuropsychiatric issues. 
Studies have shown that EEG has the potential to be used as a biomarker 
for various neurological conditions including ASD. This chapter will outline 
the usage of EEG measurement for the classification of ASD using machine 
learning algorithms.
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Electroencephalogram (EEG) for Delineating Objective Measure of Autism Spectrum Disorder

INTRODUCTION

Autism Spectrum Disorder (ASD) is characterized by significant impairments 
in social and communicative functioning as well as the presence of repetitive 
behaviors and/or restricted interests. According to CDC estimates, the 
prevalence of ASD (14.6 per 1,000 children) has nearly doubled over the 
last decade and has a costly impact on the lives of families affected by the 
disorder. It is estimated that 1 in 6 children in the US suffer from developmental 
disorders. And 1 in 68 children fall under Autism Spectrum Disorder. ASD 
is a neurological and developmental disorder that has negative impact in a 
person’s learning, social interaction and communication. It is a debilitating 
condition that affects brain development from early childhood creating a 
lifelong challenge in normal functioning. Autism is measured in spectrum 
because of the wide range of symptoms and severity. The total lifetime cost 
of care for an individual with ASD can be as high as $2.4 million (Buescher 
et al. 2014). In the U.S., the long-term societal costs are projected to reach 
$461 billion by 2025 (Leigh and Du 2015).

One of the main contributing factors for ASD is known to be genetics. 
And so far, no suitable cure has been found. However, early intervention has 
been shown to reverse or correct most of its symptoms (Dawson 2008). And 
this can only be possible by early diagnosis. Therefore, early diagnosis is 
crucial for successful treatment of ASD. Although progress has been made 
to accurately diagnose ASD, it is far from ideal. It often requires various tests 
such as behavioral assessments, observations from caretakers over a period 
to correctly determine the existence of Autism. Even with this tedious testing 
often individuals are misdiagnosed. However, there remains promise in the 
development of accurate detection using various modalities of Biomedical 
Images, EEG, and Eye movements.

Efforts to identify feasible, low-cost, and etiologically meaningful 
biobehavioral markers of ASD are thus critical for mitigating these costs 
through improvement in the objective detection of ASD. However, the 
phenotypic and genotypic heterogeneity of ASD presents a unique challenge 
for identifying precursors aligned with currently recognized social processing 
dimensions of ASD. One approach to unraveling the heterogeneity of ASD 
is to develop neurocognitive measures with shared coherence that map onto 
valid diagnostic tasks, like the Autism Diagnostic Observation Schedule 
Second Edition (ADOS-2) (Gotham et al. 2007), that are the gold standard 
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in ASD identification. These measures can then be used to stratify children 
into homogeneous subgroups, each representing varying degrees of impaired 
social neurocognitive functioning. Despite the need for objective, physiological 
measures of social functioning, machine learning has not yet been widely 
applied to biobehavioral metrics for diagnostic purposes in children with ASD.

This chapter focuses on a social processing domain which, according to 
the NIMH Research Domain Criteria (RDoC), is a central deficit of ASD 
and lends itself to quantifiable neurocognitive patterns: social interactions 
during ADOS-2. The ability to socially coordinate visual attention, share 
a point of view with another person, and process self- and other-related 
information (Barresi and Moore 1996; Butterworth and Jarrett 1991; Mundy 
et al. 2009) is a foundational social cognitive capacity (Mundy 2016). Its 
emergence in infancy predicts individual differences in language development 
in both children with ASD and in typically developing children (Mundy et 
al. 1990; Mundy and Newell 2007). Moreover, attention is recognized in the 
diagnostic criteria of the DSM-V as one of the central impairments of early, 
nonverbal social communication in ASD. While the empirical evidence on 
the physiological nature of attention deficits in ASD is emerging that can 
index attention: social brain functional connectivity (FC) during real-life 
social interaction.

At the same time, it is well-established in the literature that the neural 
systems that subserve social cognition are functionally compromised in 
children with ASD (Baron-Cohen et al. 1985; Lombardo et al. 2011; Hill and 
Frith 2003; Kana et al. 2009; Mason et al. 2008). The research suggests there 
is a functional (frontal-temporal-parietal) overlap in neural system activity 
during ADOS-2 and social cognitive processing (Mundy 2016; Kennedy and 
Adolphs 2012; Redcay et al. 2012; Schurz et al. 2014; Lombardo et al. 2010; 
Caruana et al. 2015). Taken together, there is ample evidence to support that 
aberrant frontal temporal-parietal FC is a potential nexus for latent social 
cognitive disturbance in early ASD.

Many studies reveal either under- or over-connected areas in the autistic 
brain, depending on whether the subject is at rest or engaged in cognitive 
processing (Coben et al. 2008; Just et al. 2004; Just et al. 2006; Kana et al. 
2014; Koshino et al. 2005; Koshino et al. 2007; Lazarev et al. 2015; Lynch et 
al. 2013; Uddin et al. 2013; Shih et al. 2010; Noonan et al. 2009; Jones et al. 
2010; Damarla et al. 2010; Mohammad-Rezazadeh et al. 2016). Reduced FC 
within frontal, superior temporal, and temporal— parietal regions—regions 
that comprise the social brain system—have been consistently reported 
in most fMRI studies examining FC during social information processing 



37

Electroencephalogram (EEG) for Delineating Objective Measure of Autism Spectrum Disorder

(Koshino et al. 2007; Castelli et al. 2002; Kleinhans et al. 2008; Rudie et al. 
2011; Welchew et al. 2005). The presence of altered social brain system FC in 
early neurodevelopment can potentially reveal the onset of social difficulties 
(Keehn et al. 2013), as altered FC disrupts efficient information flow between 
parallel and distributed neural systems involved in the processing of social and 
communicative information (Mundy et al. 2009). Thus, children with ASD 
may develop with limited neurocognitive resources to efficiently deal with 
the processing demands of dynamic social exchanges. This social deficit may 
emerge as idiosyncratic patterns of EEG during bouts of joint social attention

LITERATURE SURVEY

Social Interaction Tasks

To date, the few studies that have examined FC during attention have done so 
using non-clinical paradigms that involve the observation of attention-eliciting 
videos; however, data from such paradigms may not reflect the true person-
to-person interactive nature. More importantly, video paradigms may only 
tap into one of two facets of attention: responding to joint attention (RJA), 
which serves an imperative function. What is not represented in JA-eliciting 
video paradigms is initiating joint attention (IJA), which serves a declarative 
function and taps into social reward systems that are integral to the social 
sharing of experiences (Caruana et al. 2015; Schilbach et al. 2010; Gordon et 
al. 2013). Moreover, RJA and IJA show a developmental dissociation during 
the first and second years of life (Yoder et al. 2009; Ibañez et al. 2013; Mundy 
et al. 2007). Although RJA and IJA both have predictive value in infancy, 
IJA is a more stable marker of ASD than RJA in later childhood (Mundy et 
al. 1986). Some neuroimaging researchers have dealt with the above issues 
by using a live face-to-avatar paradigm to simulate IJA bids (Redcay et al. 
2012; Gordon et al. 2013). However, the movement constraints inside the MRI 
scanner create testing conditions that can be difficult for younger children, 
with and without ASD.

Eye movement behavior is a result of complex neurological processes; 
therefore, eye gaze metrics can reveal objective and quantifiable information 
about the predictability and consistency of covert social cognitive processes, 
including social attention (Chita-Tegmark 2016; Guillon et al. 2014), emotion 
recognition (Bal et al. 2010; Black et al. 2017; Sawyer et al. 2012; Sasson 
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et al. 2016; Tsang 2018; Wagner et al. 2016; Wieckowski and White 2017), 
perspective taking, (Symeonidou et al. 2016) and joint attention (Bedford et 
al. 2012; Billeci et al. 2016; Falck-Ytter et al. 2012; Falck-Ytter et al. 2015; 
Swanson et al. 2013; Thorup et al. 2016; Thorup et al. 2018; Vivanti et al. 
2017) for children with and without ASD. Eye gaze measurement includes 
several metrics relevant to oculomotor control (Komogortsev et al. 2013) 
such as saccadic trajectories, fixations, and other relevant measures such 
as velocity, duration, amplitude, and pupil dilation (Krejtz et al. 2018a). 
We believe that combined analysis of fixations and saccades during natural 
and dynamic joint attention tasks, currently used as a reliable measure of 
ASD diagnostic criteria, will represent valid biomarkers for objectifying 
and delineating the dimensionality of ASD diagnosis in the future. Previous 
work in this area have successfully demonstrated development of Қ, the 
coefficient of ambient/focal attention (Krejtz et al. 2016) and previous work 
has supported the relationship between eye tracking metrics and severity 
of ASD diagnosis (Frazier et al. 2018; Del Valle Rubido et al. 2018) and 
communicative competence (Norbury et al. 2009). If visual attention influences 
stability of fixations dependent upon the demands of dynamic joint attention 
tasks, a natural next step is to look into how relevance may be reflected in 
similar neurophysiologic features for atypical social brain systems, such as 
in the context of ASD (Hotier et al. 2017).

EEG Based Machine Learning for ASD

Studies have shown that EEG has the potential to be used as biomarker for 
various neurological conditions including ASD (Wang et al. 2013). EEG 
measures the electrical signals of the brain via electrodes that are placed on 
various places on the scalp. These electrical signals are postsynaptic activity 
in the neocortex and can be used to study complex neuropsychiatric issues. 
EEG has various frequency bands and its analysis are performed on these 
varying bandwidths. Waves between 0.5 and 4 HZ are delta, between 4 and 
8 HZ are theta, between 8 and 13 HZ are alpha, 13 to 35 HZ are beta and 
over 35 are gamma. Saccadic eye movement plays a big role in the attention 
and behavior of an individual which directly affects both language and social 
skills (Fletcher-Watson et al. 2009). Autistic children seem to have different 
eye movement behaviors than non-autistic children. They tend to avoid eye 
contact and looking at human face while focusing more on geometric shapes 
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(Klin et al. 2009). While a typical child doesn’t find any interest in geometric 
shapes and tend to make more eye contact, and human face perception.

In Grossi et al. (2017), authors use a complex EEG processing algorithm 
called MSROM/I-FAST along with multiple machine learning algorithms to 
classify Autistic patients. In this study 15 ASD individuals and 10 non ASD 
were selected. ASD group comprised of 13 males and 2 females between 
7 and 14 years of age. Control group comprised of 4 males and 6 females 
between 7 and 12 years of age. Resting State EEG of both closed and open 
eyes were recorded using 19 electrodes. Patients sat in a quiet room without 
speaking or performing any mentally demanding activity while the EEG 
was being recorded. The proposed IFAST algorithm consists of exactly 
three different phases or parts. In the first stage also called Squashing phase, 
the raw EEG signals are converted into feature vectors. Authors present a 
workflow of the system from raw data to classification to make comparison 
between different algorithms such as Multi Scale Entropy (MSE) and the 
Multi Scale Ranked Organizing Maps (MS-ROM). MSROM is a novel 
algorithm based on Single Organizing Map Neural Network. In this study, 
the dataset is randomly divided into 17 training consisting of 11 ASD, 6 
controls and eight test records consisting of 4 ASD, 4 control. The noise 
elimination is performed only on the training set. Also, it completely depends 
on the algorithm selected for extraction of feature vectors. For MS-ROM 
features they utilize an algorithm called TWIST. In the final classification 
stage, they use multiple machine learning algorithms along with multiple 
validation protocols. The validation protocols are training-testing and leave 
one out cross validation. For classification purposes they make use of Sine 
Net Neural Network, Logistic Regression, Sequential Minimal Optimization, 
kNN, K-Contractive Map, Naive Bayes, and Random forest. With MSE 
feature extraction the best results were given by Logistic and Naive Bayes 
with exactly 2 errors. Whereas, MS-ROM with training test protocol had 0 
errors (100% accuracy) with all the classification models.

Bosl et al. (2011), conduct a study using mMSE as feature vectors along 
with multiclass Support Vector Machine to differentiate developing and 
high-risk infant groups. In this study they use 79 different infants of which 
49 were considered high risk and 33 typically developing infants. The 49 
infants were high risk based on one of their older siblings having a confirmed 
ASD diagnosis. The other 39 infants were not high risk since no one in their 
family ever was diagnosed with ASD. Data was collected from each infant 
during multiple sessions with some interval. Data extracted from an infant 
in five different sessions in various months between 6 to 24-month period 
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were considered unique. Resting state EEG with 64 electrodes was extracted 
by placing the infant in a dimly lit room in their mother’s lap where the 
research assistant blew bubbles to catch their attention. The raw signals were 
preprocessed using Modified Multiscale Entropy. Low, high, and mean for 
each curve from mMSE were calculated to create a feature set of 192 values. 
The best fit for the classification for High risk and normal infants was at age 
9 months with over 90% accuracy.

Abdulhay et al. (2017), use EEG intrinsic function pulsation to identify 
patterns in Autism. They mathematically compute EEG features and compare 
ASD with typically developing. In this study they selected 10 children with 
ASD and 10 non-autistic children within the age group of 4 to 13. They 
collected resting state EEG using 64 electrodes with a 500 HZ sampling 
frequency. Initially the signals were band pass filtered and all the artifacts 
including eye movements were removed by using Independent Component 
Analysis. Empirical Mode decomposition was applied to extract Intrinsic 
Mode Function from each of the channels of the participants. Then point by 
point pulsations of analytic intrinsic modes are computed which is then plotted 
to make comparison with the counterpart intrinsic mode in another channel. 
Any existing stability loops are analyzed for abnormal neural connectivity. 
In addition, they perform 3D mapping to visualize and spot unusual brain 
activities. In the first IMF of channel 3 versus the first IMF in channel 2 for 
typically developing and autistic child, it was found that the stability of local 
pulsation pathways maintained a consistency while it was random in typically 
developing. Similar patterns were seen in channels 1 and 2 and 36 and 37 
of non-autistic and autistic children. Overall this computational method was 
able to differentiate the abnormal EEG activities between ASD and typically 
developing children.

Alie et al. (2011) use Markov Models with eye tracking to classify 
Autism Spectrum Disorder. Unlike most other studies that collected data 
from children who were 3 years or older, in this study they collect data from 
6-month-old infants. There were in total 32 subjects out of which 6 were later 
at 3 years of age diagnosed with ASD and the rest were not. During the data 
collection the subjects were placed in front of their mothers and four different 
cameras from different angles recorded the video for about 3 minutes. The 
eye tracking was simply based on either the subject looked at the mother’s 
face or not. Through this they get a binary sequence of subjects’ eye pattern 
which is then converted into alphabet sequence of a specific length. Then 
the sequence was filtered using a low pass filter and down sampled by factor 
of 18. This is done to enhance Markov Models to produce effective results. 
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Using this data, they compare Hidden Markov Models and Variable-order 
Markov Models for the classification of ASD. Hidden Markov Models was 
able to correctly identify 92.03% of the typically developing subject while 
identifying only 33.33% of Autistic subject. Whereas the VMM correctly 
identified 100% of the Autistic and 92.03% of typically developing subjects. 
It was clear from this result that Variable-order Markov models are superior 
in finding Autistic eye pattern while both Markov Models are the same in 
finding typically developing. The authors point out this difference because 
of various spectrums of Autism with different eye patterns. Nevertheless, the 
VMM algorithm used in this study looks effective in identifying Autism in an 
early age. Similarly, Liu et al. (2015) propose a machine learning framework 
for the diagnosis of Autism using eye movement. They utilize two different 
datasets from previous studies. One of the datasets had 20 ASD children, 
21 typically developing, and 20 typical developing IQ-matched children. 
The other dataset comprised of 19 ASD, 22 Intellectually disabled, and 28 
typical young adults and adolescents. They compute Bag of Words for Eye 
Coordinates and Eye movement, N-Grams and AOI from the datasets. And 
they train five different Support Vector machine model with RBF kernel. Each 
of the model used different form of features like BOW of eye coordinates, 
BOW of eye movement, combination, N-Grams, and AOI. The result was 
good for both groups with Combination or fusion data. However, the children 
dataset with fusion was the best with around 87% accuracy.

Jiang and Zhao (2017) use eye movement with deep neural networks 
to identify individuals with Autism Spectrum Disorder. They used dataset 
from a previous study with 20 ASD and 19 health controls. Here the subjects 
observed around 700 images from the OSIE database. OSIE database is a 
popular eye tracking dataset used for image saliency benchmarking. First, 
they use Cluster Fix algorithm on the raw data to compute fixations and 
saccades. Next, they work on finding the discriminative images as the OSIE 
dataset is not specifically built for autism studies. So, both groups might have 
the same visual pattern for some of the images. For this purpose, they use 
Fisher score method by which they score each of the images and select only 
the one with the higher scores to be processed further. After this process of 
image selection, they compute fixation maps to differentiate fixations between 
two groups. Fixation maps are simply a probability distribution of all the eye 
fixations. In addition, they use a Gaussian Kernel for smoothing and normalize 
by their sum. Normalization is usually done when we are comparing two 
different fixation maps as is the case here. Then they compute difference of 
fixation map between the Autistic and non-Autistic group. This is the original 
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target which they used to train a SALICON network to predict these values. 
SALICON network is one of the state-of-the-art image saliency prediction 
algorithms. Image saliency prediction is about predicting the visual pattern of 
users given an image. SALICON network uses two VGG with 16 layers. One 
of the VGG uses the original image to detect the small salient regions whereas 
the other VGG uses the down sampled image to detect the center of large 
salient regions. At the end both the outputs are combined to get a better result. 
This only predicts the image saliency. So, to predict the difference of fixation 
map they add another convolution layer with Cross Entropy Loss function 
using the original Difference of fixation map. Next, they send the predicted 
difference of fixation maps to the final prediction layer. In this part they first 
apply tanh function to the features then concatenate the feature vectors of all 
fixation to consider dynamic change of attention. After which they reduce 
the dimension by using local average pooling. At last they train an SVM to 
make the final classification between ASD and control. They make use of the 
popular leave-one-out cross validation to measure the performance of their 
model. The accuracy of this model showed real promise in eye tracking for 
ASD with about 92% accuracy.

METHODOLOGY

Current techniques in practice for identifying ASD are mostly subjective and 
prone to error and usually takes a lot of time for final diagnosis. Most of the 
children with ASD are diagnosed after 3 years of age. Early diagnosis is the 
key for reversing or treating ASD through early intervention. As time is of 
an essence we need a method of diagnosis that is fast, and efficient unlike 
the current practice that could take months to years. Medical Imaging and 
blood testing (Sparks et al. 2002; Spence et al. 2004) are promising and a 
lot of work is being done with these modalities to diagnose ASD. However, 
EEG and Eye movement are cost effective and hence can be accessible in 
consumer level. The aim of this research is to study the identification of 
Autism Spectrum Disorder using EEG during ADOS-2. Comparison of the 
classification performance between EEG features can potentially result in 
finding the better feature set. We hypothesize as the top performing signal most 
likely has more of the unique data points and pattern of ASD and similarly, the 
least performing signals have less of the data points and patterns relating to 
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ASD. The secondary goal is to compare various machine learning algorithms 
for the classification purposes. Conditions like ADHD, and other learning 
disabilities can also share similar comparative patterns for different features.

Machine Learning With EEG Measures 
During Joint Attention

We have recently employed preliminary feature analysis on acquired raw EEG 
data from the work of Jaime et al. (2016), wherein the EEG was recorded from 
adolescents with ASD (N=24) and typically developing adolescents (N=28) 
while they watched a series of 30-second joint attention eliciting video clips. 

Figure 1. EEG Processing Pipeline for Study 1. EEG Data preprocessed using 
Makoto Pipeline follows this pipeline to train SVM, Logistic, DNN and Gaussian 
Naïve Bayes Models
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First, we applied the pre-processing pipeline (described in §3.3.1) on the raw 
EEG time series to remove noisy channels and data segments containing 
movement and ocular artifacts from the EEG data. The pre-processed data 
was then classified using EEG Analytics Pipeline (implemented in Python)
(Thapaliya et al. 2018).

Joint attention is the ability to socially coordinate visual attention, share 
a point of view with another person, and process self and other-related 
information. Hence the data retrieval was performed while making the subjects 
watch video clips that would help in examining joint attention. There was 
a total of 12 videos each of which was 30 seconds. About one second gap 
was provided between each video. Both the EEG and Eye movement were 

Figure 2. EEG Feature Processing Pipeline for Deep Neural Network. Each layer 
of the deep neural network is shown in the figure, with its functionality
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collected while the participants watched the video. A total of 34 participants 
EEG data was used in this paper after the preprocessing step.

There are many ways to extract feature from EEG data. Entropies, wavelets, 
FFT and various other statistical methods are commonly computed features 
(Al-Fahoum and Al-Fraihat 2014). In this work we use Statistical and Entropy 
values. Statistical features comprise of Mean, Standard Deviation, and 
combined mean and standard deviation of the filtered data. For the feature 
analysis, we used statistical and entropy values including mean, standard 
deviation, and combined mean and standard deviation on the pre-processed 
data. Entropy is computed by using Shannon entropy function (Lin 1991), 
which is the average rate at which information is produced by a stochastic 
source of data given by, H p p

e i i
=−∑ log

2
. Mean function takes in a 2D 

matrix consisting of the EEG signal of a person and returns a feature vector 
with mean values for each channel over windows of signal. For the mean, 
each of the 128 channels were computed. For each subject a feature vector 
consisting of mean of single channel was created. So, the mean function takes 
in a 2D matrix consisting of the EEG signal of a person and returns a feature 
vector with mean values for each channel. For the standard deviation, each 
of the 128 channels were computed. For each subject a feature vector consisting 
of mean of single channel was created. So, the deviation function takes in a 
2D matrix consisting of the EEG signal of a person and returns a feature 
vector with standard deviation values for each channel. This is shown in the 
Figure 1.

For classification SVM, Logistic, Deep Neural Network (DNN), and 
Gaussian Naive Bayes is used. For the deep neural network (see Figure 2) with 
five hidden layers with sigmoid activation function is used. For optimization 
categorical cross entropy for loss and Adamax optimizer (Freivalds and Liepins 
2017) is used. We captured three different feature set; entropy features, FFT 

Table 1. Classification Accuracy of EEG during Joint Attention Study. The Entropy, 
FFT, Mean and Standard Deviation values are given for each classifier used for 
this study

Classifier Entropy FFT Mean Std.

Gaussian Naive Bayes   0.26 0.53 0.55 0.55

   Logistic Regression   0.11 0.78 0.58 0.50

SVM   0.11 0.56 0.55 0.55

DNN   0.20 0.52 0.58 0.45
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and statistical features. We also calculate mean, and standard deviation. In 
total there are 4 different features from EEG and 4 different models for each 
type of classifier and, overall there are 16 different model variations based 
on the features (4 feature set x 4 classifiers). For each feature there are three 
models for each algorithm, two models using Feature Selection and the third 
one without using any feature selection. For Feature selection PCA and 
sequential feature selection is used.

Classification of EEG During Joint Attention: Results

The Table 1 presents an analysis and comparison of EEG data. Note that 
two models were created for each model with only EEG and combined data 
by using PCA and without using PCA. Like SVM with PCA and without 
PCA. For some models with PCA did better while for some without PCA 
did better. For example, DNN almost always without using PCA did worse 
because of the curse of dimensionality. The highest performing SVM with 
about 56% accuracy was using FFT with all the features without PCA. The 
highest performing Logistic regression with 78% accuracy was using FFT 
without PCA. SVM, Logistic Regression, and Gaussian Naive Bayes do 
better without PCA which means that with PCA it loses data points that these 
models find useful. This is interesting because PCA is supposed to find the 
most discriminant features and remove redundant or noisy features. And this 
is supposed to help machine learning models produce better results. For SVM 
most models with PCA did better except the highest performing model. This 
might mean that the Entropy data is more linear than the other datasets. For 
DNN the curse of dimensionality is obvious. Whereas for Gaussian Naive 
Bayes all the high performing models did not use PCA except the one with 
EEG mean. This is an exception and must be due to the nature of the EEG mean 
data. But in general case Naive Bayes does better without PCA. This might 
be since probabilistic models are able to make sense of higher dimensional 
dataset much easier than other models like DNN. Then with using Sequential 
Feature Selection algorithm almost all the models performed better than 
either PCA or no Feature Selection.

In this study we have used PCA, and Sequential Feature Selection 
algorithms. There are other Feature Selection algorithms like Genetic 
algorithm, Particle Swarm Optimization, and TWIST which can be compared 
to find features to optimize the performance of the models. Also, this will 
tell us which feature selection algorithm will work better for the combined 
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data sets. Gaussian Naive Bayes with some of the features had perfect score. 
But we need to reproduce this result with large number of participants to be 
able to use this in a clinical setting. Current number of 34 participants is too 
low to confirm our results. However, this is a first step towards developing 
an optimal Autism Diagnosis system.

EEG Coherence During Live Social Interaction

The notion that social brain system FC may be a useful index of social 
impairment is suggested by both the literature (Mundy 2016; Jaime et al. 2016) 
and by our preliminary findings obtained from our pilot sample composed of 
individuals between the ages of 5 and 17 years who completed an ADOS-2 
assessment while we simultaneously recorded their EEG. Despite a small 
sample size (ASD = 8; TD = 9), our preliminary results indicate a trending 
negative association between right hemisphere delta and theta band EEG 
coherence and level of social symptom severity (according to the ADOS-2 
algorithm scoring) in children with ASD (see Table 2 below), but not in our 
pilot sample of typically developing (TD) children. Our preliminary results 
paint a conceptual picture that is in line with our prior work evaluating 
EEG coherence during joint social attention perception in ASD (Jaime et al. 
2016), that there are diagnostic group differences in the association between 
right hemisphere frontal–temporal–parietal FC and standardized measures 
of social functioning. Such diagnostic group differences in FC association 
patterns reflect a tendency for children with impaired social capacity to have 
idiosyncratic patterns of social brain system functional organization relative 
to typical neurodevelopment. Thus, EEG measures of social brain system 
FC acquired during live social interaction shows promise as a candidate 
non-invasive biomarker of early emerging aberrant social neurocognitive 
dysfunction in ASD.

EEG Acquisition and Pre-Processing

Our preliminary FC measures were analyzed from each pilot subject’s EEG 
recording, acquired throughout the entire duration of the ADOS-2. We used 
a 32-channel LiveAmp wireless EEG system with active electrodes and a 
digital sampling rate of 250 Hz (Brain Products GmbH) for EEG time series 
acquisition. Use of a wireless EEG system allowed for head movements 
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and the active electrodes increased speed of application thereby increasing 
probability of successful EEG data acquisition with special populations.

All 32 channels were continuously recorded using the FCz electrode 
as reference. To maximize the consistency of the recording quality across 
conditions, a single epoch was recorded per experimental condition. In 
between epoch recordings an impedance check will be performed. This was 
resulted in 6 different epochs per subject. Prior to the recording of each 
experimental epoch, a 90 second epoch of eyes closed while resting will be 
recorded. This served as a necessary baseline metric for the EEG analysis. 
After acquisition, the raw EEG data output was imported into the open-source 
MATLAB toolbox: EEGLAB (Delorme and Makeig 2004). Next, following 
preprocessing pipeline is applied:

1. 	 Remove low frequency baseline drift with a 1 Hz high-pass filter.
2. 	 Remove 50-60 Hz AC line noise by applying the CleanLine plugin.
3. 	 Clean continuous raw data using the clean_rawdata plugin (Mullen et 

al. 2015). The clean_rawdata plugin first performs bad channel rejection 
based on two criteria: (1) channels that have flat signals longer than 5 
seconds and (2) channels poorly correlated with adjacent channels. It 

Figure 3. EEG Feature Processing and Classification. The raw signals acquired 
from an EEG are stored and is subjected to preprocessing to obtain clean time-series 
data. Once this completes, the clean data is passed through band pass filters and 
feature extraction is performed. Then the extracted features are fed into a classifier, 
which uses cross validation to evaluate its performance depending on how it predicts 
ASD and TD class labels.
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then applies artifact subspace reconstruction (ASR) — an algorithm 
that removes nonstationary, high variance signals from the EEG then 
uses calibration data (1 min sections of clean EEG) to reconstruct the 
missing data using a spatial mixing matrix.

4. 	 Interpolate removed channels.
5. 	 Re-reference channels to average reference.
6. 	 Separate non-brain artifacts from the EEG recording via EEGLAB’s 

Independent Component Analysis (ICA)1. Briefly, ICA involves the 
linear decomposition of the aggregate channel activity into a series of 
independent components that are spatially filtered from the recorded 
EEG time series. Components representing eye, cardiac, and muscle 
artifact are removed and components representing genuine brain activity 
are retained.

Table 2. ADOS-2 Score of the ASD vs TD subjects. Here, 8 subjects were diagnosed 
with ASD (above horizontal line) and the others were typically developing (TD)

Participant Sex Age ADOS-2 ASD Diagnosis

2 M 10 19 ASD

4 M 17 12 ASD

11 M 6 11 ASD

12 M 16 16 ASD

13 F 11 16 ASD

15 F 10 7 ASD

18 M 5 20 ASD

20 M 15 9 ASD

5 M 11 5 TD

7 F 9 0 TD

8 F 6 5 TD

14 F 16 0 TD

16 M 8 4 TD

17 F 6 0 TD

19 M 15 2 TD

21 M 6 4 TD

22 F 8 0 TD
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EEG Measures of Functional Connectivity

We first extracted 180-second epochs beginning from the middle one-third 
portion of each subject’s pre-processed EEG time series to calculate a 
functional connectivity (FC) measure of the engaged social brain system. 
With each subject’s epoched EEG time series treated as a discrete-time signal 
u x t

i
= ( )  for EEG channel i , we used EEG coherence as a variable of FC. 

EEG coherence, or normalized magnitude-squared coherence (MSC), C
uv
2 ω( ) , 

is a statistical estimate of the amount of phase synchrony between two EEG 
time series, u  and v C

uv uv uu vv
: /2

2
ω φ ω φ ω φ ω( ) = ( ) ( ) ( )( )  where the squared 

magnitude of the cross spectrum density ϕ ω
uv ( )

2
 (a measure of co-variance) 

between the two signals u  and v  at a given frequency ω , is normalized by 
the Power Spectral Densities (PSDs) (variance) of each channel ϕ

uu
 and ϕ

vv
 

so that 0 12≤ ( )≤C
uv
ω . Higher values represent greater synchronous activity 

between distinct channels whereas lower values represent reduced or non-
synchronous activity (Nunez and Srinivasan 2006). Coherence is a function 
of frequency; to compute a single similarity metric between a pair of signals, 
we integrate over frequency to obtain total power (or variance in a statistical 

sense) P
T
C

ij

T

uv
= ( )∫
1

0

2 ω  where T  is the extent of frequency components 

sampled. The MSC of a signal which itself produces no variance (in the 
statistical sense) and hence P

ii
= 1 , gives a convenient, normalized metric 

of similarity.
Accordingly, intra-hemispheric MSC between electrode positions that 

are spatially collocated over areas comprising the social brain system (Saxe 
2006; Adolphs 2009) were examined. Electrode pairs were selected based on 
Homan et al.’s [1987] electrode placement correlates of cortical location. Using 
the international 10/20 placement system (Klem et al. 1999), the following 
electrodes were selected: F7, F8, T7, T8, TP9, TP10, P7, P8, C3, and C4.

Classification of EEG During ADOS-2: Results

We generated five feature sets categorized according to the frequency bands: 
1) delta, 2) theta, 3) alpha, 4) beta and 5) gamma with each set representing 
the amplitude and power of the signal from each electrode. These feature 



51

Electroencephalogram (EEG) for Delineating Objective Measure of Autism Spectrum Disorder

sets were entered to 43 different classifiers yielding precision rates, recall 
rates, F1 scores, and percent accuracy. We identified six the top performing 
classifiers: Random Forest, Logistic, Bagging, JRIP, LMT and AdaBoostM1.

The six top performing classifiers for the 5-band feature set are listed in 
Table 3. The JRIP classifier yielded the highest percent accuracy with 98.06% 
indicating that a 5-band feature set collected during an ADOS-2 test classifies 
a diagnosis of ASD with greater than 90% accuracy. From these six classifiers, 
the AdaBoostM1 classifier yielded the lowest percent accuracy at 92.14%.

The evaluation results in Table 3 were calculated based on features from 
all electrodes. We also conducted an evaluation by selecting only F7, F8, 
T7, T8, TP9, TP10, P7, P8, C3 and C4 electrodes based on Homan et al.’s 
[1987] electrode placement correlates of cortical location. The results of this 
evaluation are listed in Table 4. When comparing the results, it was observed 
that the Random Forest classifier yielded the highest percent accuracy with 
97.04%. The AdaBoostM1 classifier yielded the lowest percent accuracy at 
79.75%.

Table 3. Precision, Recall, F1 and Accuracy of six classifiers used for classification 
of EEG during ADOS-2

Classifier Precision Recall F1 Accuracy

Random Forest 0.98 0.98 0.98 98.00%

Logistic 0.96 0.96 0.96 96.63%

Bagging 0.95 0.95 0.95 95.66%

JRIP 0.98 0.98 0.98 98.06%

LMT 0.95 0.95 0.95 95.79%

AdaBoostM1 0.92 0.92 0.92 92.14%

Table 4. Precision, Recall, F1 and Accuracy of six classifiers used for classification 
of EEG during ADOS-2 using only a selected set of features

Classifier Precision Recall F1 Accuracy

Random Forest 0.97 0.97 0.97 97.04%

Logistic 0.84 0.84 0.84 84.72%

Bagging 0.95 0.95 0.95 95.50%

JRIP 0.94 0.94 0.94 94.57%

LMT 0.83 0.82 0.82 82.94%

AdaBoostM1 0.80 0.79 0.79 79.75%
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DISCUSSION AND FUTURE OUTLOOK

Due to its low cost and feasibility, electroencephalography (EEG) shows 
potential as an effective neurophysiological instrument in the classification 
of ASD (Lenartowicz and Loo 2014; Snyder et al. 2015; Gloss et al. 2016), 
and there is emerging evidence that—–combined with machine learning 
approaches–—quantitative measures of EEG can predict ASD with high levels 
of sensitivity and specificity (Bosl et al. 2018; Grossi et al. 2017; Djemal et al. 
2017). An advantage of EEG is its ability to be applied to ecologically valid 
contexts (i.e., person-to-person social interaction) via wireless solutions thus 
allowing for the simultaneous acquisition of data from multiple participants 
in real-world settings.

To establish proof of concept—that our classifiers show utility to predict 
features in line with diagnostic criteria of ASD—we collect biobehavioral 
metrics within the context of standardized tasks used in a gold standard 
assessment of ASD symptomatology: The Autism Diagnostic Observation 
Schedule Second Edition (ADOS-2) (Gotham et al. 2007). The ADOS-2 has 
been carefully developed to create snapshots of naturalistic social scenarios 
that can reveal observable features central to ASD (i.e., joint attention, social 
overtures), thereby allowing us to measure brain activity that are temporally 
concurrent with these observable ASD features within relatively brief periods. 
It is also important to note that we did not use these ADOS-2 tasks as a clinical 
tool to diagnose participants; rather, we capitalized on the semi-structured and 
standardized nature of these social tasks in the ADOS-2 to create a context 
that engages the social brain system and elicits joint visual attention behavior 
for acquisition of biobehavioral metrics. Thus, participants recruited for this 
study have already received a diagnosis of ASD by a clinical professional 
prior to enrolling in this study.

Due to its high temporal resolution and feasibility, electroencephalography 
(EEG) shows potential as an effective neurophysiological instrument in the 
classification of ASD (Lenartowicz and Loo 2014; Snyder et al. 2015; Gloss 
et al. 2016). An advantage of EEG is its ability to be applied to ecologically 
valid contexts via wireless solutions that allow for the simultaneous acquisition 
of data from multiple participants. This makes EEG an appropriate choice for 
examining relevant neurophysiological features of ASD in real-world settings 
(Lee and Tan 2006). Despite these advantages, most EEG research occurs in 
highly controlled experimental environments, requiring data collected over 
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many trials with minimal head movement. We will address this deficiency 
by combining EEG and eye tracker usage in the future studies.

Early diagnosis is crucial for successful treatment of ASD. Although 
progress has been made to accurately diagnose ASD, it is far from ideal 
(Dawson 2008). It often requires various subjective measures, behavioral 
assessments, observations from caretakers over a period to correctly diagnose 
ASD. Even with this tedious testing often individuals are misdiagnosed. 
However, there remains promise in the development of accurate detection 
using subjective modalities of EEG, and Eye movements. In the future we 
will obtain two sets of biobehavioral measures representing joint attention: 
functional integration of neurocognitive networks associated with the social 
brain (i.e., EEG metrics) and visual behavior (i.e. eye tracking metrics). 
Regarding visual behavior, we will collect, analyze, and produce a battery 
of traditional positional eye movement metrics thought to be potential 
indicators of joint attention, including number of fixations (Jacob and Karn 
2003), fixation durations (Fitts et al. 1950; Just and Carpenter 1976), and 
number of regressions (Azuma et al. 2014), during naturalistic, dynamic 
communication tasks.
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