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Web data records are usually accompanied by auxiliary webpage segments, such as ilters, sort options, search form, and

multi-page links, to enhance interaction eiciency and convenience for end users. However, blind and visually impaired (BVI)

persons are presently unable to fully exploit the auxiliary segments like their sighted peers, since these segments are scattered

all across the screen, and as such assistive technologies used by BVI users, i.e., screen reader and screen magniier, are not

geared for eicient interaction with such scattered content. Speciically, for blind screen reader users, content navigation

is predominantly one-dimensional despite the support for skipping content, and therefore navigating to-and-fro between

diferent parts of the webpage is tedious and frustrating. Similarly, low vision screen magniier users have to continuously

pan back-and-forth between diferent portions of a webpage, given that only a portion of the screen is viewable at any instant

due to content enlargement. The extant techniques to overcome ineicient web interaction for BVI users have mostly focused

on general web-browsing activities, and as such they provide little to no support for data record-speciic interaction activities

such as iltering and sorting ś activities that are equally important for facilitating quick and easy access to desired data records.

To ill this void, we present InSupport, a browser extension that: (i) employs custom machine learning-based algorithms to

automatically extract auxiliary segments on any webpage containing data records; and (ii) provides an instantly accessible

proxy one-stop interface for easily navigating the extracted auxiliary segments using either basic keyboard shortcuts or mouse

actions. Evaluation studies with 14 blind participants and 16 low vision participants showed signiicant improvement in web

usability with InSupport, driven by increased reduction in interaction time and user efort, compared to the state-of-the-art

solutions.

CCS Concepts: · Human-centered computing→ Accessibility technologies; Empirical studies in accessibility.

Additional Key Words and Phrases: Web accessibility, Blind, Low Vision, Visual impairment, Screen reader, Screen Magniier,

Data records

1 INTRODUCTION

Interaction with web data records (e.g., products, lights, posts, job listings, emails) is an integral part of everyday
web activities such as shopping, seeking information, communication, and social networking. To facilitate
convenient and eicient interaction with web data records, modern web applications provide an assortment of
auxiliary segments such as ilters, sort options, search form, and multi-page links as shown in Figure 1. While
sighted users can easily and almost instantly access these auxiliary segments using a pointing device such as
a mouse, blind and visually impaired (BVI) users on the other hand struggle to do the same using their go-to
assistive technologies such as a screen reader (e.g., JAWS, NVDA, VoiceOver) or a screen magniier (e.g., ZoomText,
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Fig. 1. InSupport for convenient BVI interaction with web data records. The auxiliary segments such as filters and sort
options are automatically extracted and instantly ‘delivered’ to a BVI user via a proxy interface that is easily navigable using
either basic shortcuts such as arrow and TAB keys or simple mouse actions. Without the proxy interface, the BVI user has
to perform multiple key presses and/or panning-and-scrolling to manually navigate between data records and auxiliary
segments ś a process that includes searching and traversing realms of irrelevant content.

Windows Magniier). This is because these assistive technologies are not tailored for interaction scenarios where
content is distributed all over the screen as in case of webpages containing web data records and auxiliary
segments (see Figure 1).
For instance, a screen reader primarily supports one-dimensional navigation of content (e.g., ‘H’ key for

navigating to and hearing the contents of the next heading, ‘A’ for the next link), and therefore blind users have
to endure an arduous and tedious process involving a multitude of key presses for navigating back-and-forth
between data records and auxiliary segments (see Figure 1) [8, 19]. While this interaction burden is reduced to
a certain extent in some screen readers which support alternative modalities (e.g., rotor in VoiceOver allows
users to choose and selectively navigate certain types of HTML elements on the webpage), the onus of locating
the auxiliary segments nonetheless still remains on the users. Moreover, to exploit this additional screen reader
support, the users should have apriori knowledge of the HTML element types (heading, link, button, etc.) of
auxiliary segments and their components; remembering such webpage-speciic details can induce cognitive
overhead for the blind users [16]. Similarly, low vision screen magniier users too need to expend considerable
‘panning’ and scrolling efort for not only navigating to-and-fro between data records and auxiliary segments but
also inding desired search ilters, since only a small portion of the screen is visible to the users at any instant
due to content enlargement.

Existing research solutions to address this problem are mostly based on speech interaction [8, 27], which are not
only susceptible to noise but also require a tighter integration of a third party speech service with the user’s screen
reader, thereby limiting their practicality to a few open-source screen readers. The use of speech in public settings
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has also shown to cause privacy issues for BVI users [2, 63]. The few extant non-speech solutions on the other
hand have all primarily focused on general webpage navigation [8, 15, 17]. Speciically, these existing methods
strived to improve interaction eiciency by allowing BVI users to skip irrelevant content during navigation, i.e.,
skip directly to the beginning of the records from anywhere in the page [8], skip to the next/previous record
irrespective of underlying HTML markup [9], navigate the webpage at a semantic level of logically meaningful
segments [15, 17], etc. However, these solutions did little to enable convenient and eicient execution of data
record speciic activities such as iltering, sorting, and searching, which are also essential for quickly locating the
desired records, especially when the number of data records is large and distributed across multiple pages.

To overcome these limitations of current approaches, in this paper we present InSupport, a browser extension
that automatically extracts auxiliary segments from a webpage containing data records, and then pushes these
segments to BVI users instantly on demand via a proxy interface (see Figure 1) that is easily navigable with
either basic keyboard shortcuts or mouse actions. To extract the auxiliary segments in the webpage, InSupport
uses custom devised machine learning-based detection algorithms that can identify subtrees in the DOM of the
webpage that correspond to these segments. With this instant access support from InSupport, the BVI users will
no longer have to spend signiicant time and efort manually exploring and navigating between diferent webpage
segments while perusing web data records. This is especially beneicial for novice blind screen reader users who
typically remember only a handful of basic keyboard shortcuts [7]; these users currently spend signiicantly more
time than expert blind users in performing web tasks [7], as they are unaware of advanced shortcuts that enable
faster navigation of web content.
A user study with 14 blind participants showed that with InSupport, the average time and number of input

actions required by the participants for locating their desired data records were signiicantly lower than those
with a state-of-the-art solution [9] as well as those with just their preferred screen readers. Similar observations
were made in another user study with 16 low vision participants, where the participants’ task completion times
with InSupport were signiicantly and consistently lower than those with an extant solution [17] as well as their
preferred screen magniier. Note that this work is a direct extension of our prior work that was published in IUI
2022 [26]. In sum, our contribution in this manuscript (including those in our prior work) are:

• Machine learning-based algorithms to automatically identify auxiliary segments such as ilters, sort options,
search form, and multi-page links in webpages containing data records.
• A novel browser extension InSupport that enables BVI users to conveniently and instantly access auxiliary
segments (e.g., ilters, sort options) while interacting with web data records.
• Findings of two user studies with 14 blind and 16 low vision participants respectively where the participants
evaluated InSupport against both state-of-the-art solutions and their status-quo assistive technologies.

2 RELATED WORK

Our work closely relates to existing research on the following topics: (i) web usability for blind screen reader
users; and (ii) web usability for low vision screen magniier users.

2.1 Web Usability for Blind Users

There exist plenty of prior research works that have investigated the interaction issues faced by blind users while
browsing the web [8, 12, 19, 29, 39, 46, 50, 51]. However, bulk of the existing works have predominantly focused
on the accessibility of web content for blind users [4, 5, 10, 13, 30ś32, 45, 50, 53, 59, 62], whereas the usability
of non-visual web interaction has received comparatively lesser attention from researchers [8, 9, 12, 19, 22, 39].
Among these existing works, some approaches have pursued the idea of automatically annotating webpages by
injecting JavaScript into the DOM of webpages in order to improve their usability [9, 22]. For instance, Brown
et al. [22] presented a JavaScript based method that captured and classiied dynamic changes in webpages, and
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subsequently provided this information to screen reader users via an injected ARIA live region. Similarly, a fairly
recent work [9] employed visual saliency-capturing deep neural networks to identify the important parts or
‘hot-spots’ of a webpage, and then automatically injected ARIA landmark roles into the corresponding DOM
subtrees of the identiied hot-spots, so as to enable a screen reader user to quickly navigate to these hot-spots with
special screen reader shortcuts (e.g., ‘R’ in the JAWS screen reader). While some screen readers also provide similar
functionalities (e.g., the rotor feature in VoiceOver) for skipping irrelevant content, navigation is nonetheless
one-dimensional and dependent on the DOM layout of the webpage; semantics and relative importance of the
individual auxiliary segments are not considered by either these existing annotation methods or in-built screen
reader functionalities.

Apart from automatic annotations, researchers have also investigated other approaches such as web automation
[14, 52], speech assistants [8, 27], and alternative input modalities [15]. Web automation techniques [14, 18, 43, 48]
facilitate automatic execution of certain repetitive web tasks (e.g., ordering a preferred pizza), thereby signiicantly
reducing the user’s manual efort and time for doing these tasks. A common aspect of most automation techniques
is the use of task scripts or macros that contain the sequence of actions to execute the corresponding tasks. These
macros can either be created through handcrafting [18, 48], or via user demonstration [6, 14, 44, 52]. While these
techniques indeed improve interaction experience for blind screen reader users, they are limited to a small set of
repetitive tasks, and therefore they may not be able to handle web tasks such as searching for a desired web data
record, which involve considerable ad-hoc web browsing. Furthermore, end users face an extra burden of not
only creating a script for each web task, but also maintaining and updating the script over time to accommodate
changes to either the webpage or their preferences.

Accessibility assistants enable blind users to use speech input to interact with webpage content [7, 8, 27]. For
instance, Gadde et al. [27] proposed a simple speech-based interface that enabled blind users to use simple voice
commands to aurally obtain a quick overview of any webpage and also directly navigate (i.e., shift screen reader
focus) to a few key segments. Ashok et al. [8] supported a more elaborate set of speech commands, including
those to navigate and query web data records. Although speech interfaces facilitate faster access to content,
they have several limitations, notably speech recognition accuracy (in noisy environments) [1], blind users’
social concerns (e.g., drawing undesired attention from others), and privacy [3]. Also, many of these assistants
(e.g., [8, 27]) require tighter integration with third-party screen reader framework, so their scope is limited to
open-source screen readers.
Prior works have also explored novel input modalities to facilitate convenient webpage navigation by over-

coming some of the core limitations of the keyboard based screen reader interaction. For example, Billah et al.
[15] proposed using an of-the-shelf Dial input device as a surrogate for mouse to hierarchically navigate the
semantically-meaningful segments (e.g., menu, forms, data records) on the page using simple rotate and press
gestures. Similarly, Soviak et al. [56] presented a new tactile input device that enabled blind users to ‘feel’ the
layout of any webpage via tactile sensations provided at boundaries of the webpage segments. Blind users could
also employ this tactile device to navigate webpage content in a 2D space and directly select one of the segments
on the page, akin to touch exploration on mobile devices. While these interfaces are efective in improving
non-visual interaction with web content, they are limited to general navigation of the webpage semantic structure,
and as such do not directly assist in accomplishing speciic data record-related activities such as iltering, sorting,
and searching. Moreover, these approaches are less adoptable as they require additional hardware, which can be
potentially expensive to many blind users.

2.2 Web Usability for Low Vision Users

Usability of web interaction for people with low vision remains an understudied research topic [35, 42, 49, 57]. An
early work by Jacko et al. [35] focused speciically on low-vision users who had age-related macular degeneration,

ACM Trans. Interact. Intell. Syst.



Enabling Eficient Web Data-Record Interaction for People with Visual Impairments via Proxy Interfaces • 5

and observed the mouse behavior of the users to understand their interaction strategies. Their indings indicated
that user performancewas signiicantly dependent on the size of icons ś larger the icon size, better the performance.
Szpiro et al. [57] conducted a more elaborate investigation to understand the low vision user behavior, interaction
strategies and challenges when interacting with diferent computing devices such as desktops, smartphones, and
tablets. They noticed that the low vision users sometimes needed to simultaneously rely onmore than one assistive
technology to overcome interaction challenges associated with computing applications. They also noticed that
the low vision users frequently needed to make several adjustments to comfortably view the application content.
Both of these works strived to study the general characteristics and pain points of low vision interaction with
computing applications; they did not expend much efort to address low vision usability in speciic web scenarios
such as interacting with web data records and auxiliary segments.
Few research works have focused on improving low vision usability of computing applications including

web browsing [11, 17, 28, 38]. A seminal work by Kline et al. [38] proposed a collection of tools that enabled
low vision users to selectively enlarge portions of the screen and additionally keep track of mouse cursor. The
ideas underlying these tools have now been incorporated in most modern screen magniiers. Gajos et al. [28]
on the other hand suggested transforming the application GUI itself via their proposed interface-generation
technique tailored exclusively for people with low vision and motor impairments. By providing a custom interface
speciication, their technique could automatically generate a personalized GUI catering to the individual needs of
low vision users. Similarly, Bigham [11] proposed the idea of altering web application GUI to improve usability,
but he focused on space compaction; his magniication system automatically determined the extent to which
webpage content could be enlarged without causing adverse side efects such as increased horizontal scrolling.
Billah et al. [17] also proposed a space compaction based context preserving screen magniication system that
strived to reduce panning by placing related webpage elements close to each other within the magniied viewport.
Their magniication system also enabled users to sequentially navigate the important segments in a webpage using
an external Dial input device. While space compaction can improve usability by preserving local relationships
between content elements, its efectiveness is limited in scenarios where related content elements are distributed
all across the screen such as in case of web data records and auxiliary segments.

Prior works directly addressing the low vision usability of web data records [40, 41] have only focused on the
content of the records themselves and as such they do not support eicient access to the auxiliary segments
such as ilters and sort options, which are also important to ensure convenient low vision interaction with data
records. Speciically, these existing works explored the idea of automatically extracting information in data
records and then presenting it as a compactly arranged table which was more amenable for screen magniier
interaction. In their evaluation studies, many low vision participants explicitly expressed that they needed an
assistive mechanism that facilitated eicient access to auxiliary segments while interacting with data records.
In sum, while the aforementioned approaches were efective in improving general low vision usability of

web interaction, their impact on data record-speciic activities involving auxiliary segments was limited, since
they were not tailored for convenient low-vision access of spatially distributed web content. Therefore, in this
paper we present InSupport, a scalable approach to improve the usability of interaction with auxiliary segments
associated with web data records for BVI users.

3 APPROACH

Figure 2 presents an architectural schematic illustrating the worklow of InSupport [26]. As shown in the igure,
InSupport was implemented as a browser extension that has two core components: (i) Segment Extractor and
(ii) Proxy Interface. The Segment Extractor analyzes the webpage DOM and extracts the auxiliary segments
(i.e., ilters, sort options, search form, and multi-page links) using custom machine learning-based identiication
algorithms. The content of identiied auxiliary segments is then replicated and presented to a user via the
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Fig. 2. InSupport architectural workflow.

Proxy Interface. The user can instantly access the InSupport Proxy Interface using a special ‘CTRL+SHIFT+Z’
shortcut, and then navigate the content using TAB and arrow keys, or alternatively using mouse clicks and
scrolls. All user selections in the Proxy Interface (e.g., łilter by pricež, łsort by most recentž, łnext pagež) are
automatically translated by InSupport into equivalent actions on the actual auxiliary segments on the webpage,
thereby achieving the same intended efect.

3.1 Extracting Auxiliary Segments

The Segment Extractor leverages custom identiication algorithms to extract the auxiliary segments fromwebpages
containing data records. Speciically, InSupport extracts the following four types of auxiliary segments: (i) ilter
options; (ii) sort options; (iii) search form; and (iv) multi-page Links (see Table 1).

3.1.1 Identification Algorithms. The four algorithms for extracting the four types of auxiliary segments all have
a similar worklow as shown in Algorithm 1. The algorithms start by irst extracting all the candidate DOM
nodes by referring to a predeined tag list as presented in Table 1. This predeined list was compiled after manual
analysis of 100 webpages from top-visited websites belonging to diferent domains such as shopping, travel, job
search, and classiieds. Then the algorithms extract a set of handcrafted features (see Table 5 in the Appendix)
from the subtrees of all candidates. The extracted features representing each candidate are then fed to the custom
trained machine learning classiiers (Table 1) that determine whether the candidate is the intended auxiliary
segment.

Features. The detailed list of features along with their descriptions, for each auxiliary segment type is presented
in Table 5 in the Appendix. We handcrafted a unique set of features for each segment type. As seen in Table 5,
most features were binary (0 or 1) whereas the remaining features were numerical (integer). We designed several
keyword based features (e.g., presence of search keyword) because we noticed in our earlier manual analysis that
the HTML metadata typically contained several of such keywords within the attribute values of container nodes
(e.g., div), even if these words were not shown on the webpage.
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Algorithm 1: Auxiliary segment extraction algorithm

Input :HTML DOM of the loaded web page, binary auxiliary segment classiier with classes ‘AUX’ and
‘NON-AUX’

Output :Auxiliary Segment or Null

�������� ← Root node of DOM
// Get all the candidate nodes

���������� ← ���������������� (��������)

foreach candidate ∈ candidates do
// Extract corresponding Table 5 features

� ������� ← ��������������� (���������)

// Classify the candidate

����� ← ���_������ � ��� (� �������)

if ����� == ‘��� ’ then
������ .������ (���������)

end

end

// Arbitration: Select the candidate with the highest probability score

���������� = ����������� (������)

if ���������� == ���� then

// No auxiliary segment detected

return Null
end

return ����������

Auxiliary Segment Candidate Tags # Features
Classiication

Model

Filter options
div, li, section, article, dt, desktop-
facet, ul, form, ieldset, button, dl

5 MLP classiier

Sort options div, ul, select 4 MLP classiier

Search form form 5 Logistic regression

Multi-page links
div, nav, li, ul, span, section, button,
tr, footer, aPage, pagination, bPage

6 Logistic regression

Table 1. Extraction algorithm details for the auxiliary segments.

Model evaluation. To evaluate the classiication models, we constructed four separate datasets for each of
the four types of auxiliary segments. The source for these datasets was a custom built collection of manually-
annotated 209 webpages (webpage collection/datasets and details available on the GitHub repository1). These
webpages were chosen from a diverse set of websites belonging to over 15 diferent domains including shopping,
travel, inance, and sports (e.g., Best Buy, Airbnb, Shutterstock, NBA). Note that these datasets did not overlap with

1https://github.com/javedulferdous/InSupport
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the earlier dataset of 100 websites that was used for manual analysis to determine candidate tags. We annotated
each webpage in the collection by manually inserting custom data attributes, one for each type of auxiliary
segment; these data attributes were then exploited while constructing the corresponding datasets. Therefore, each
webpage in the collection produced 1 positive data point for each type of auxiliary segment, thereby totalling
209 positive data points per auxiliary segment type. As the number of negative data points from each webpage
can be more than 1, we randomly picked one negative data point per auxiliary type from each webpage in order
to have balanced datasets. In sum, for each type of auxiliary segment, we had a total of 418 data points in the
corresponding dataset, with equal number of positive/negative points.
In each of these datasets, we randomly picked and set aside 320 data points (160 positive and 160 negative)

for training and the remaining 98 for testing. As for the machine learning model, in this paper, we explored
logistic regression and multi-layer perceptron classiiers, given their widespread popularity across a variety of
domains for binary classiication tasks [24, 36, 37, 58]. For each of these two algorithms, we performed a 5-fold
cross validation on the training dataset for optimization. The best models (based on F-score) for each classiier
were then evaluated on each corresponding test dataset. The performances of these classiiers for each auxiliary
segment type are presented in Table 6 (see Appendix). As noticeable in Table 6, with the handcrafted features, both
machine learning algorithms performed very well in discriminating between auxiliary segments and arbitrary
webpage segments. The few erroneous classiications were mostly due to unconventional HTML realizations of
auxiliary segments in some test webpages. For example, in one such instance, the ilter options were implemented
as a collection of drop down menus instead of the conventional group of checkboxes or links. Similarly, in another
instance, the sort options were implemented as independent buttons instead of the traditional drop-down list. In
such scenarios, which were pretty rare, the models were not able to correctly recognize the auxiliary segments,
thereby causing a slight drop in the recall performance of these algorithms. The best performing model (based on
F-score) for each segment type was then selected for the corresponding identiication algorithm.

Algorithm evaluation. To evaluate the algorithms as a whole and in the wild, we built another test dataset
comprising 100 manually-annotated webpages (webpage collection/datasets and details available on the same
GitHub link as that for model datasets described earlier). These webpages were randomly sampled from a diverse
set of websites belonging to over 5 diferent domains including shopping, lifestyle, inance, and sports (e.g.,
American Eagle, Flipkart, 99acres, Under Armour). We ensured that this dataset did not overlap with the previous
dataset of 209 webpages which was used for training and evaluating models. We annotated each of the 100
webpages in the dataset by manually inserting data attributes in their DOMs ś one attribute for each type of
auxiliary segment. Out of these 100 webpages, 26 did not have a search form and 44 did not have sort options. All
webpages had ilter options and multi-page links. The algorithms were then executed on the test dataset and
their outputs were compared with the manual annotations to determine their performance.

Auxiliary Segment Precision Recall F-score

Filter options 0.85 0.95 0.90

Sort options 0.86 0.98 0.92

Search form 0.98 0.83 0.90

Multi-page links 0.95 0.89 0.92

Table 2. Performance of extraction algorithms.

Table 2 shows the performance values for all the algorithms. Overall, all four algorithms showed high per-
formance on the test dataset. The errors were mainly due to one of the following reasons: (i) the candidate
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HTML tag list (Table 1) did not contain the HTML tag of an auxiliary segment, so it completely missed it during
extraction (i.e., false negative); (ii) the machine learning model inaccurately assigned a higher probability to
another candidate which was not the intended auxiliary segment (i.e., false positive); and (iii) the machine learning
model did not correctly classify a candidate as an auxiliary segment (i.e., false negative). For example, the Aurate
website2 had an image button on top of the webpage to bring up the search overlay and then a <div> tag in
the overlay was the root of the search form, therefore the algorithm missed this search form since the list of
candidate tags (see Table 1) only included the <form> tag. Another example of false negative was in the ASOS
website3, where the Multi-page links auxiliary segment was presented as a single łLOAD MOREž link instead
of the conventional list of numbered links (e.g., ł1, 2, 3, Nextž); therefore, our algorithm was unable to identify
this segment. As for examples of false positives, in the American Eagle website4, the Sort options segment was
incorrectly identiied as Filter options segment, presumably because the two segments were clubbed together in
the webpage. Similarly, in the Points2 website5, the implementation of ilters resembled that of a search form, so
the Filter options segment was incorrectly recognized as the Search form segment. All (100%) of the false negative
errors due to incompleteness of the candidate tags list (Table 1) occurred in case of Search form segment. The
false negatives for all other auxiliary segments were due to incorrect classiication. As shown in Table 2, false
negatives mostly occurred in case of the Search Form and the Multi-page links segments. All false positive errors
were due to incorrect classiications by the underlying machine learning models. As observable in Table 2, these
errors mostly afected the Filter Options and the Sort Options segments; the examples provided earlier illuminate
the causes underlying the errors.

3.2 InSupport Proxy Interface

The proxy interface of InSupport was designed to be navigable with simple TAB/arrow keys or mouse click/scroll
actions. As seen in Figure 3, it is a łone-stopž interface where a user can access all four auxiliary segments (if
available). To access the interface, the user needs to press the ‘CTRL+SHIFT+Z’ shortcut. Initially the focus is set
to the irst auxiliary segment, namely the Search form if available, otherwise it is set to Filter Options. To navigate
to other segments, the user can either use the mouse or press TAB/SHIFT+TAB or LEFT/RIGHT arrow keys.
To select one of the segments, the user has to simply click on it or press the ENTER key. Within each segment,
the user can navigate the various options using mouse scroll or TAB/SHIFT+TAB or UP/DOWN arrow keys. To
select an option, the user can click on it or press ENTER key. For a screen reader user, to directly move focus
back to the list of segments, the user can press the ESCAPE key.
When the user selects an option (e.g., łilter by price less than $50ž), InSupport automatically translates this

action into an equivalent action on the actual auxiliary segment on the webpage, thereby producing the same
efect. Furthermore, InSupport refocuses the screen-reader cursor to the beginning of the data records each time
they are updated or refreshed, thereby letting the blind user avoid the burden of pressing numerous screen-reader
shortcuts to navigate back to the data records from the top of the webpage (by default, the screen reader starts
narrating from the top of a page whenever the page is loaded or refreshed). To detect the beginning of the data
records, we relied on the STEM algorithm [25] which is a robust and eicient state-of-the-art technique for
identifying web data records. Also, the use of InSupport to access the auxiliary segments is purely optional; the
user can always rely on the standard screen-reader shortcuts or mouse magniier panning to interact directly
with the webpage including auxiliary segments.

Note that InSupport does not show the tab option for a given auxiliary segment in its proxy interface if the
corresponding extraction algorithm is unable to: (i) detect the segment in the webpage (i.e., false negative), and (ii)

2https://auratenewyork.com/collections/all
3https://www.asos.com/us/search/?q=shoes
4https://www.ae.com/us/en/c/men/shoes/cat4840024?pagetype=plp
5https://www.point2homes.com/US/Apartments-For-Rent/VA/Norfolk.html
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(a) (b)

Fig. 3. InSupport proxy interface: (a) Sort options, (b) Multi-page links.

detect labels from the extracted segment possibly due to improper webpage design or due to inaccurate segment
identiication (i.e., false positive). In case InSupport is able to detect labels from a non-auxiliary segment that is a
false positive, InSupport unfortunately does end up showing the extracted content in its interface, as it presently
lacks the ability to handle such scenarios. However, we observed that such scenarios were a minority in our test
dataset (described earlier), speciically, InSupport was able to detect labels in only 6.8% of false positives. Also, as
users typically have certain apriori expectations regarding the content of an auxiliary segment based on their
prior experiences on e-commerce websites such as shopping websites, they are likely to easily detect these false
positives, and therefore avoid interacting with the corresponding non-auxiliary segments.

4 EVALUATION WITH BLIND SCREEN READER USERS

To assess the efectiveness of InSupport’s proxy interface, we conducted an IRB approved user study with blind
participants [26]. The details of the study and the indings are described next.

4.1 Participants

We recruited 14 blind participants via email lists and snowball sampling. Table 3 presents the participants’
demographic details. The average age of the participants was 43.57 (Median = 44, Min = 26, Max = 64), and
the gender representation was equal (7 female, 7 male). Our inclusion criteria required the participants to be
proicient with JAWS screen reader and Chrome web browser. No participant had any motor impairments that
afected their ability to do the study tasks. All participants stated that they regularly accessed a wide range of
e-commerce websites for doing activities such as shopping, searching for jobs, and browsing classiieds.

4.2 Design

In the study, the participants were asked to perform the following two tasks related to typical data record
interaction:
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ID Age Gender
Age of Preferred Hours

Computer Type
Vision Loss Screen Reader Per Day

P1 39 M Since birth JAWS 5-6 Laptop

P2 26 M Age 3 JAWS 5-6 Laptop

P3 52 F Age 5 JAWS 2-3 Laptop

P4 45 M Age 6 JAWS 3-4 Desktop

P5 34 F Age 11 JAWS 5-6 Laptop

P6 48 F
Cannot
remember

JAWS 4-5 Laptop

P7 34 M
Cannot
remember

JAWS 3-4 Desktop

P8 54 F
Cannot
remember

JAWS 1-2 Laptop

P9 57 F Since birth JAWS 2-3 Desktop

P10 28 M Age 2 JAWS 5-6 Desktop

P11 64 F Since birth JAWS 1-2 Desktop

P12 51 F Since birth JAWS 3-4 Laptop

P13 35 M Since birth JAWS 5-6 Desktop

P14 43 M Since birth JAWS 3-4 Laptop

Table 3. Participant demographics for the user study with blind participants. All information was self-reported by the
participants. Hours per day indicates the average time a participant spent per day on web browsing.

• T1 ś Locate a data record on a travel website that matches a predeined criteria (e.g., morning light, Delta
carrier, price less than $300).
• T2 ś Locate a desired data record on a shopping website based on the participant’s own personal preferences.

In a within-subjects experimental setup, the participants were asked to perform the above two tasks under
three study conditions:

• Screen reader ś The participants could rely only on their preferred screen readers to complete the tasks.
This condition represented the status quo for all the participants.
• SaIL [9] ś The participants could rely only on their screen readers in this condition too, except that the
webpage was preprocessed by a state-of-the-art transcoding technique SaIL [9]. Speciically, SaIL uses
visual saliency to detect important regions of a webpage, and then injects ARIA landmarks to the webpage
DOM so that screen reader users can access the salient regions via special shortcut (e.g., ‘R’ in JAWS screen
reader).
• InSupport ś The participants could not only interact with webpages directly via screen reader shortcuts,
but also instantly access the four auxiliary segments (i.e., ilter options, sort options, search form, and
multi-page links) via the InSupport interface.

To mitigate learning efect and avoid confounds, we used three diferent travel websites (Kayak, Travelocity,
and Orbitz) for T1, and also three diferent shopping websites (Amazon, eBay, and Target) for T2. Furthermore,
for T2, we also chose three diferent but similar query items (‘laptop’, ‘desktop’, and ‘tablet’). For T1, the target
data record was located in the second data records webpage (between ifth and eighth positions) on all three
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chosen websites. Also, in all the websites, the SaIL model [9] was able to identify all four auxiliary segments as
being salient, and therefore these segments had corresponding aria landmarks injected into them for the SaIL
study condition. We also ensured that InSupport too was able to accurately extract the auxiliary segments so
as to prevent the confounding impact of extraction algorithm accuracy on InSupport user interface evaluation.
The assignment of websites to conditions, items to websites, and the ordering of both tasks and conditions were
counterbalanced using the Latin square method [20].

4.3 Apparatus

The experiment was conducted remotely, and the participants used their own computers ś either laptop or
desktop (‘Computer Type’ column in Table 3). All participants had JAWS screen reader and Google Chrome
web browser installed on their computers. The InSupport extension was sent to the participants via email (as a
Google Drive link) just prior to the study, and the experimenter also assisted the participants (via Zoom or Skype
conferencing software) in installing the extension onto their Chrome browser. Four participants (P3, P8, P11,
and P14) needed assistance from their cohabiting family members or friends to install InSupport. Note that for
convenience, both the SaIL and InSupport systems were included in the single extension that was emailed to the
participants. A special shortcut was provided to turn ‘ON/OFF’ each condition, and only one condition could be
turned on at any given time. Speciically, if the SaIL condition was turned ‘ON’, the InSupport condition was
automatically turned ‘OFF’, and vice versa.

4.4 Procedure

The experimenter irst assisted the participant in downloading and installing the InSupport extension. Next,
the experimenter gave the participant enough time to practice (∼ 20 minutes) so as to make them familiar
and comfortable with the study conditions. The participant was then asked to complete all the tasks under
diferent study conditions in the predetermined counterbalanced order. For each task, the experimenter allowed a
maximum of 20 minutes for the participant to complete the task. The study lasted for a maximum of 3 hours, and
all conversations were in English. After completing the tasks, the participant was asked to respond to subjective
questionnaires (System Usability Scale (SUS) [21] for measuring usability and NASA Task Load Index (NASA-
TLX) [33] to measure perceived user workload), and also participate in an exit interview to collect suggestions
and other qualitative feedback. Throughout the study, the screen-sharing and recording features were turned on
so as to capture (with the participant’s permission) all user interaction activities for subsequent data analysis.
Measurements. During the study, the experimenter recorded task completion times and the number of user
actions for each task performed by the participant. The experimenter also recorded the responses to the System
Usability Scale (SUS) [21] and the NASA Task Load Index (NASA-TLX) [33] questionnaires. Qualitative feedback
and peculiar interaction behavior during the study were also noted by the experimenter. We used an open coding
technique [54] for analyzing the transcribed qualitative feedback from the participants. We iteratively went over
the user responses and identiied key recurring themes or insights in the data.

4.5 Results

4.5.1 Task T1 - Travel. Task completion time. Figure 4a presents the results for task completion times of the
participants under all three study conditions for Task T1. Overall, in the screen reader condition, the participants
spent an average of 780.64 seconds (Median = 816.5, Min = 501, Max = 945), whereas they spent an average of
540.85 seconds (Median = 521.5, Min = 455, Max = 679) with SaIL, and 288.64 seconds (Median = 290, Min = 158,
Max = 380) with InSupport. A Kruskal-Wallis test showed that the diference in task completion times between
the three study conditions was statistically signiicant (see Table 7 in Appendix).
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Fig. 4. User performance statistics for the two study tasks T1 and T2.

Number of user actions. Figure 4b shows the statistics regarding the number of input actions performed by
the participants under the three study conditions. In the screen reader condition, the participants needed an
average of 611.85 input actions (Median = 623.5, Min = 352, Max = 815) to complete the task, whereas in the SaIL
condition they needed an average of 395.92 input actions (Median = 356.5, Min = 304, Max = 567) to inish the
task. However, in the InSupport condition, the participants performed signiicantly fewer input actions ś an
average of 187.21 input actions (Median = 193.5, Min = 89, Max = 283) to complete the task. As in case of task
completion times, we observed a statistically signiicant diference between the number of user actions for the
three study conditions (Table 7 in Appendix).
An analysis of the study data revealed the underlying reasons for the observed diference in task completion

times and the number of actions between conditions for Task T1. In the screen reader condition, most users
(12) exhibited the following two types of interaction behavior: (i) navigate the data records one-by-one while
accessing only the multi-page links auxiliary segment (7 participants); and (ii) navigate back-and-forth between
data records and the ilters segment, speciically, repeat the process of navigating the irst few records one-by-one
and then go back to selecting ilters, until the target data record is found (5 participants). These two types of
behavior signiicantly contributed to the increase in completion time and number of actions as the participants
traversed a vast amount of DOM content in the process. Only the two remaining participants decided to set
all the desired ilters irst and then serially navigate the data records to locate the target record. Even in the
SaIL condition, despite practice, slightly over one-third of the participants (5) did not use the special shortcut
for quickly navigating between diferent landmarks injected by SaIL that covered both the data records and the
ilters segment. Instead, they chose to navigate over the data records one-by-one as in case of the screen reader
condition, which considerably increased the time and input actions overhead. Even in case of the remaining
9 participants who used special SaIL shortcuts, they still had to navigate over quite a few irrelevant segments
that were present between the ilter options and the data records, since these irrelevant webpage segments too
were landmarked by the SaIL saliency model. This problem did not manifest in the InSupport condition as the
participants could directly access the auxiliary segments including ilter options.
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4.5.2 Task T2 - Shopping. Task completion time. Figure 4c presents the results for task completion times
under all three study conditions for Task T2. Overall, in the screen reader condition, the participants spent an
average of 894.35 seconds (Median = 918.5, Min = 602, Max = 1161), whereas they took an average of 646.14
seconds (Median = 623, Min = 580, Max = 789) with SaIL, and 413.64 seconds (Median = 405.5, Min = 278, Max
= 579) with InSupport. Similar to Task T1, a Kruskal-Wallis test showed that the diference in task completion
times between the three study conditions was statistically signiicant (see Table 7 in Appendix). All participants
were able to successfully complete the task in all conditions.

Number of user actions. Figure 4d presents the statistics regarding the number of input actions performed by
the participants in T2 under the three study conditions. In the screen reader condition, the participants needed
an average of 751.64 input actions (Median = 756.5, Min = 482, Max = 997) to complete the task, whereas in the
SaIL condition, they needed an average of 506.85 input actions (Median = 492.5, Min = 428, Max = 624) to inish
the task. However, in the InSupport condition, the participants only performed an average of 276.64 input actions
(Median = 259, Min = 179, Max = 458) to inish the task. This diference in the number of user actions between
the three study conditions was statistically signiicant (see Table 7 in Appendix).
In contrast to Task T1 where the participants were focused on locating a pre-speciied target record, in Task

T2 they exhibited a more exploratory navigational behavior. In the screen reader condition, all participants on
at least one occasion navigated to-and-fro between the data records and the ilters segment. However, each
back-and-forth added signiicant time and efort overhead given the large of number of DOM elements they
had to traverse while navigating between these segments. A majority (9) of the participants exhibited a similar
behavior in the SaIL condition, however, the time and efort were considerably reduced due to the advantage of
special landmark shortcuts. However, these participants still had to navigate over extraneous segments to go
back-and-forth between data records and ilters segment. The remaining 5 participants did not use the landmark
shortcut and instead performed the task just like how they did in the screen reader condition. In the exit interviews,
these participants stated that they forgot the special landmark shortcut (despite practice) and that they were
hesitant to try out their guesses for the fear of losing context in the task webpage. In the InSupport condition, all
participants were more liberal in their use of ilters via the InSupport proxy interface ś all participants accessed
the ilters at least three times while doing the tasks. As the InSupport interface was instantly accessible, the
participants did not expend any time or efort accessing the ilters. Instead, most of their time and efort (i.e.,
input actions) were dedicated towards navigating the data records and also the linear list of ilters in the proxy
interface.

4.5.3 Usability. As mentioned earlier, we administered the standard SUS questionnaire to measure usability [21].
The SUS questionnaire requires the participants to rate alternating positive and negative statements about each
study condition on a Likert scale from 1 - strongly disagree to 5 - strongly agree, with 3 - neutral. These responses
are then assimilated into a score between 0 to 100, with higher values indicating better usability ratings. Overall,
the SUS ratings for the InSupport condition were much higher (� = 86.07, � = 6.38) compared to those for the
screen reader (� = 53.92, � = 13.61) and SaIL (� = 68.92, � = 14.66) conditions. A one-way ANOVA test revealed
that this diference in SUS scores was statistically signiicant (� = 22.865, � < 0.0001). In the exit interviews,
most (12) participants attributed their high ratings to the instant interface access feature of InSupport that saved
multitude of key presses which were otherwise necessary to navigate between webpage segments. 8 participants
also mentioned that the short learning curve of InSupport motivated them to provide favorable usability ratings
for InSupport.

4.5.4 Perceived Workload. For workload estimation, we administered the NASA-TLX questionnaire to the
participants [33]. The TLX questionnaire measures perceived task workload as a value between 0 and 100, with
lower values indicating lower workloads, and hence better results. Overall, the TLX scores were signiicantly
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better for InSupport (� = 25.61, � = 6.71) than those for screen reader (� = 74.38, � = 4.93) and SaIL (� = 45.57, � =
6.76). As in case of SUS score, the diference in TLX scores between the three study conditions was statistically
signiicant (one-way ANOVA, � = 203.401, � < 0.0001). The individual subscales of TLX that contributed the most
towards the high total workloads in the screen reader condition were temporal demand, efort, and frustration,
i.e., the ratings for these subscales were signiicantly higher than those for the other subscales (mental demand,
physical demand, and overall performance). Efort and frustration subscales were also the major contributors to
the workloads in the SaIL condition. For the InSupport condition, however, the ratings were much lower and
uniform across all subscales with no obvious patterns.

4.5.5 ualitative Feedback. In addition to the responses to the questionnaires, the participants also provided
subjective feedback in their exit interviews that also included suggestions for improvement and feature requests.
Some of the notable recurring themes identiied from the exit interview data are mentioned next.

Separate interface for auxiliary segments is important. Almost all (12) participants stated that having a
separate proxy interface for accessing the auxiliary segments was important because it helped them łseparate
their concernsž, i.e., use screen reader shortcuts only for navigating within the data records and not worry about
how to navigate to the auxiliary segments. As quoted by P4, łI only have to remember the layout of content in
each item of the results, and not the entire webpage.ž In fact, a few (3) participants even suggested providing a
diferent input method such as speech to access the InSupport proxy interface, so as to completely disentangle
InSupport from the screen reader keyboard shortcuts.

Mitigating webpage exploration reduces frustration and leads to better record selection. All participants
stated much of the frustration and fatigue during web browsing stems from the tedious serial exploration of
webpage content using keyboard shortcuts, and therefore they typically cannot explore many data records
before their selection. A majority (11) of the participants further stated that due to limited exploration caused by
fatigue, they often miss out on the łbest dealsž. These participants expressed that as fatigue and frustration are
signiicantly lower with InSupport, they can explore more data records and therefore take advantage of better
deals. This was best quoted by P7, łMore coverage means more options, and more options means more likelihood
of inding a better productž.

Remembering and reusing past ilters can increase eiciency of data record interaction. More than one
third (5) of participants expressed a desire for remembering the past selection of ilters and then automatically
applying in future interactions involving the same or similar data records. For example, P7 suggested that InSupport
should be able to remember his light preferences based on prior interaction data and then automatically apply
these ilters every time he searches for lights, not only on the same website but only on other travel websites.
These participants indicated that such a feature would signiicantly reduce their interaction burden as the list of
ilters itself can sometimes be very long.

All data records on one single page is preferable. 7 participants mentioned that they would like to have
all data records on single webpage, so that they did not have to rely on multi-page links to go over multiple
webpages. The main reason given by these participants was that every new page load in the browser tends to
refocus the screen reader cursor to the top of the page, and sometimes it is tedious and cumbersome to navigate
to the data records from the top of the page. These participants desired the InSupport to be capable of prefetching
all the data records and appending them to the list on the irst webpage.

5 EVALUATION WITH LOW VISION SCREEN MAGNIFIER USERS

We also conducted a user study with screen magniier users to evaluate the potential of InSupport in improving
low vision usability of interaction with web data records.
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ID
Age/

Gender

Diagnosis

(C - Congenital, A - Adventitious)

Visual Acuity Max
Zoom

Daily Web

Browsing
Left Eye Right Eye

P1 25/F Cataract (A) 20/200 20/500 5× 4 hours

P2 55/F Macular degeneration (A) 20/100 20/200 3× 2 hours

P3 43/M Retinitis pigmentosa (A) 20/400 20/400 6× 3 hours

P4 53/F Glaucoma (A) NA NA 4× 6 hours

P5 49/F Chorioretinal scarring (C) 20/400 20/200 6× 2 hours

P6 31/M Glaucoma (A) 0 20/200 6× 4 hours

P7 49/F Glaucoma (C) 20/200 20/400 5× 5 hours

P8 39/M Stevens-Johnson syndrome (A) 20/200 20/200 4× 2 hours

P9 53/F Leber congenital amaurosis (C) NA NA 6× 2 hours

P10 36/M Optic atrophy (A) 20/200 20/100 4× 6 hours

P11 39/M Astigmatism (C) 20/400 20/200 5× 3.5 hours

P12 31/F Retinitis pigmentosa (A) 20/700 20/200 8× 2 hours

P13 57/M Diabetes (A) NA NA 6× 2.5 hours

P14 22/M Congenital retinal scar (C) 20/400 20/400 6× 5 hours

P15 36/F Glaucoma (A) 20/200 20/100 3× 3 hours

P16 52/M Macular degeneration (A) 20/200 20/200 4× 2 hours

Table 4. Participant demographics for the user study with low vision participants. The participants self-reported all the data.

5.1 Participants

We recruited 16 low vision participants who had a variety of low vision conditions as shown in Table 4. The
average age of the participants was 41.8 (Range = 22-57), and the gender representation was equal (8 female, 8
male). For this study, we only considered BVI users who relied on screen magniiers to interact with applications;
BVI users with extremely poor visual acuity who could not use screen magniiers and instead need to rely
on screen readers, were excluded from the study. All participants stated that they used one of the following
screen magniiers: Windows Magniier [47], ZoomText [55], and Apple Zoom [34]. As noticeable in Table 4, the
participants spent at least 2 hours (average) a day browsing the web. Also, the visual acuity of the participants
ranged between 20/100 (good eye) and 20/700 (bad eye).

5.2 Design

In a within-subject experiment, the participants were asked to perform representative tasks under the following
study conditions:

• Screen Magniier (Magniier): The participants only used their preferred screen magniier (e.g., ZoomText) to
do the assigned task.
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• Screen Magniier + Space Compaction (Compaction): The participants used their preferred screen magniier
to do the task, but a state-of-the-art space-compaction method [17] (see Section 2.2) was also applied to the
magniied webpage to reduce panning and preserve local relationships between elements.
• Screen Magniier + InSupport (InSupport): The participants used their preferred screen magniier to do the
assigned task, however they could also leverage the InSupport popup interface while interacting with the data
records.

The tasks selected for the study were the same as those used in the earlier user study with the blind participants:

• T1 ś Locate a data record on a travel website that matches a predeined criteria (e.g., morning light, Delta
carrier, price less than $300).
• T2 ś Locate a desired data record on a shopping website based on the participant’s own personal preferences.

The rest of the study design was identical to that in the earlier study with blind users. To tackle learning efect
and confounds, we used three diferent travel websites for T1 (Kayak, Travelocity, and Orbitz) and three diferent
shopping websites for T2 (Amazon, eBay, and Target). Moreover, we chose three diferent but similar query items
(‘laptop’, ‘desktop’, and ‘tablet’) for T2. For T1, the target data record was located in the second data records
webpage (between ifth and eighth positions) on all three chosen websites. We also ensured that InSupport was
able to accurately extract the auxiliary segments so as to prevent the confounding impact of extraction algorithm
accuracy on InSupport user interface evaluation. The assignment of websites to conditions, items to websites,
and the ordering of both tasks and conditions were counterbalanced using the Latin square method [20].

5.3 Apparatus

The study was remotely conducted, where the participants used their own computers to perform the study tasks.
We used the Zoom or Skype conferencing software for communication and screen-sharing, and we recorded the
whole study session after obtaining the participants’ consent. The participants P4, P5, P8, P12, and P14 used the
Apple’s built-in Zoom magniier on their Macbook laptops, and all others used either the ZoomText or Windows
screen magniier on their desktop computers/laptops. All participants had Google Chrome web browser installed
on their computers. The InSupport extension was emailed as a shared Google Drive to the participants, and the
experimenter helped the participants setup the browser extension via the conferencing software. For convenience,
space compaction method was also included in the InSupport extension, and it could be turned ON/OFF using a
special shortcut. When this option was turned ON, InSupport features were disabled to simulate the Compaction
study condition, and when it was OFF, InSupport features were enabled to simulate the InSupport study condition.
No participant required any additional assistance from their family members to setup the extension.

5.4 Procedure

The experimenter procedure was identical to that in the earlier study. First, the experimenter helped the par-
ticipants in setting up the InSupport extension in their Chrome browser. Next, the experimenter allowed the
participants to practice enough (∼ 20 minutes) to get comfortable using both the Compaction and the InSupport
study conditions. After practice, the experimenter asked the participants to do the tasks in the predetermined
counterbalanced order. The participants were given a maximum of 20 minutes for each task. The duration of
the study did not exceed 3 hours for any participant and the conversations were in English. After completing
the tasks, the participants were administered subjective questionnaires such as System Usability Scale (SUS)
[21] and NASA Task Load Index (NASA-TLX) [33]. The participants were inally debriefed in an exit interview
where subjective opinions about the study conditions and other qualitative feedback were collected. During the
study, the screen-sharing and recording features were turned on to capture (with the participants’ permission) all
interaction activities for subsequent data analysis.
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Fig. 5. Completion time statistics for the two study tasks T1 and T2.

Measurements. Completion times for the study tasks were recorded during the study. Subjective data included
responses to the System Usability Scale (SUS) [21] and NASA Task Load Index (NASA-TLX) [33] questionnaires,
as well as the qualitative feedback and suggestions from the exit interviews. The completion times, SUS scores,
and TLX scores were analyzed using inferential statistics; qualitative data was analyzed using an open coding
technique [54], where we iteratively went over the user responses and identiied key recurring themes or insights.

5.5 Results

5.5.1 Task Completion Time. The completion time statistics for the two study tasks in each of the three conditions
are shown in Figure 5. For both tasks, the performance of the participants was the highest under the proposed
InSupport condition, followed by the Compaction condition and lastly, the default Magniier condition. Speciically,
for the task T1, the average task completion time under the InSupport condition was 207.87 (Median = 197.5, Min
= 111, Max = 357), whereas it was 386.06 (Median = 367.5, Min = 258, Max = 550) and 570.43 (Median = 622, Min
= 317, Max = 712) respectively in the Compaction and Magniier study conditions. For the task T2, the average
task completion time under the InSupport condition was 393.18 (Median = 409, Min = 244, Max = 543), which
was much lower than that in the Compaction condition (Average = 574.06, Median = 552.5, Min = 487, Max = 747)
as well as that in the Magniier condition (Average = 774.87, Median = 742, Min = 562, Max = 945). The diference
in task completion times between the three study conditions was also found to statistically signiicant in both
tasks by a Kruskal-Wallis test (see Table 8 in Appendix). Note that all participants successfully completed all the
tasks in all conditions.

Analysis of the study data revealed that in the Magniier condition, almost all (14) participants spent signiicant
amount of time panning to-and-fro between the ilter options and the web data records. This was because they
did not select all the desired ilter options in one sitting (presumably because only a few options were visible
within the magniier viewport at any instant). Instead, they repeated the process of selecting one or two ilters
and then perusing the refreshed list of data records before going back to the ilter options to change/select other
ilters. Only two participants spent time panning and scrolling over the entire list of ilter options only once
and selecting all the desired ilters before navigating back to the data records. Some participants also spent a
signiicant amount of time scrolling through the enlarged list of data records to access the multi-page links.

We noticed that participants’ behavior was similar in the Compaction condition, but the amount of panning and
scrolling was signiicantly reduced due to decrease in the overall area of enlarged content. However, as noticeable
in Figure 5, this decrease in user efort (and thereby time) was still incomparable to the drastic reduction in user
efort under the InSupport condition. In the InSupport condition, all participants mostly relied on the instantly
accessible popup interface to select the desired ilters, sort options, and multi-page links, and therefore they did
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not expend much panning-and-scrolling efort in accessing the actual auxiliary segments on the webpage. Only
on a few handful (6) occasions, the participants accessed the auxiliary segments on the webpage instead of the
InSupport popup interface, presumably due to habit.

As in case of the previous study with blind users, all low vision participants were more explorative in the task
T2 than in the task T1. The participants accessed the popup interface signiicantly more times during T2 (� = 3.56,
� = 0.99) than in T1 (� = 1.68, � = 0.68). They especially did this to try out an assortment of ilter options and
explore as many data records as possible before making a decision to choose one of the records for completing
the task T2.

5.5.2 Usability. As speciied earlier, the usability of each condition was measured via the well-known SUS
questionnaire [21]. In the SUS questionnaire, the participants had to rate alternating positive and negative
statements about each study condition on a Likert scale from 1 - strongly disagree to 5 - strongly agree with 3 -
neutral. The individual responses to the statements were then combined into a single score between 0 to 100,
where higher scores indicate better usability. Overall, the average SUS score for the InSupport condition was
much higher (� = 84.21, � = 5.42) than those for both Compaction (� = 63.28, � = 14.65) and Magniier (� = 48.75,
� = 13.54) conditions. This diference in SUS scores between study conditions was also found to be statistically
signiicant (one-way ANOVA test, � = 33.45, � < 0.001). All participants mentioned in the exit interviews that
their high usability scores for InSupport were primarily due to its simplicity and also due to its ‘push-based’
instant-access support for auxiliary segments. Five participants also mentioned that it was easy and quick to get
comfortable using the InSupport popup interface.

5.5.3 Perceived Workload. We measured interaction workload using the NASA-TLX questionnaire [33]. TLX
scores too have a range of 0 to 100, however lower scores indicate reducedworkloads and hence better performance.
Overall, InSupport had the least average TLX score (� = 31.83, � = 5.37), followed by the Compaction (� = 55.93,
� = 6.84) and Magniier (� = 68.06, � = 5.28) study conditions. The diference in TLX scores between the study
conditions was also found to be statistically signiicant (one-way ANOVA, � = 147.7, � < 0.001). A closer
inspection of participants’ responses revealed that poor ratings for the Efort and Frustration TLX subscales were
the main drivers of higher TLX scores for the Compaction and Magniier study conditions, compared to the
InSupport condition where the ratings for all six TLX subscales were lower and more uniform.

5.5.4 ualitative Feedback. Analysis of the participants’ exit interview data revealed the following notable
observations.

It is important to be able to quickly go over the full list of available ilters. Nearly two-thirds (10) of the
participants stated that it was important for them to know all the ilters that were available for selection, as this
could help avoid spending time and efort navigating over data records that were irrelevant to them. 7 of these
participants stated that it is presently diicult for them to get a quick glance of all available ilters, and therefore
they just try to leverage the limited number of ilters they come across in the irst few seconds of panning. They
further mentioned that they only look for other ilters if their present selection of ilters is unable to provide them
with relevant data records that satisfy their custom needs. This explains why the participants spent signiicant
amount of time panning to-and-fro between records and ilters in both the Magniier and Compaction study
conditions.

Additional sort options based on record attributes will be helpful. Half (8) of the participants expressed
that the sort feature in most webpages was inadequate in terms of the available sort options. These participants
stated that additional options corresponding to the various attributes of current data records on the page should
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also be included in the sort feature. This explains why only a few participants accessed the sort options during
the study.

It should be possible to manually set the number of records per page. A majority (12) of the participants
mentioned that it should be possible to manually set the number of data records per page on any arbitrary website.
They mentioned that very few websites support this feature, but they would like this feature to be available on
all webpages containing data records. 5 of these 12 participants stated that fewer records per page helped reduce
panning and scrolling, and also helped them make better comparisons between the records on the page. The
remaining 7 participants had a contrary opinion; they instead wanted a large number of data records on the same
webpage so that they didn’t have to move between diferent pages to make comparisons.

Automatic selection of ilters for repetitive tasks will improve user experience. One fourth (4) of the
participants mentioned that for some of the repetitive web browsing activities like shopping and travel, they
would like to avoid selecting the same ilters every time they engage in these activities. They wished InSupport
could remember their selections and automatically apply them in subsequent interactions with data records.
Recall that in the earlier study, blind users too expressed a desire for such an automatic ilter selection feature,
thereby indicating that this need is common across all users with visual disabilities.

6 DISCUSSION

The user studies demonstrated how InSupport was efective in signiicantly improving the overall interaction
eiciency and usability for BVI users with web data records. There are however a few limitations of InSupport
which need to be addressed in the future for further enhancing user experience with data records.

Limitations. A limitation of our work is that the InSupport’s proxy interface was evaluated on webpages
where the extraction algorithms could accurately identify all the auxiliary segments, and as such we did not
consider webpages where one or more of the extraction algorithms had errors. Further elaborate validation of the
algorithms and InSupport interface is required to determine the extent to which our indings generalize across
arbitrary webpages having diferent kinds of content layouts and designs. Moreover, the extraction algorithms
were designed exclusively for webpages in English, and therefore they need to be extended with additional
language-agnostic features to be able to accurately identify auxiliary segments in webpages written in other
languages.
Another limitation of our work is that in our study with blind users, our focus was limited to only JAWS

screen reader users. Apart from JAWS, a recent survey also found that a larger proportion (59.9%) of blind users
rely on other screen readers including NVDA and VoiceOver [60]. While our observations are very likely to
generalize across diferent screen readers due to similarities in how they support web browsing, a formal study
to compare the interaction experiences between user groups relying on diferent screen readers can shed light on
the efectiveness of InSupport both within and between groups. Also, the current InSupport is only supported for
the Chrome web browser. While Chrome browser is currently the most widely used browser within the BVI user
community, there are still signiicant proportions of BVI users relying on other browsers such as Firefox [60]. In
future, we will explore options to extend InSupport support for other browsers, which is mostly an engineering
efort.
For training classiiers in identiication algorithms, we only considered logistic regression and multi-layer

perceptronmodels due to their widespread popularity in classiication tasks. Although these models exhibited high
performance values on our test datasets, it is still unclear if these models perform better than other alternatives
such as support vector machine, decision tree, and random forest. Exploring these alternatives is the scope of
future work.
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Also, InSupport presently is unable to handle a false positive scenario where it can extract label information
from a non-auxiliary segment incorrectly classiied as an auxiliary segment. Although, we observed that such
scenarios were rare in our dataset, further analysis and improvements to the InSupport algorithms are necessary
to understand and eliminate the possible negative consequences of these classiication errors.
The current InSupport prototype supports only desktop/laptop web browsing, and does not yet support

mobile web browsing. As smartphones are becoming ubiquitous and users are increasingly browsing the web on
smartphones, support for convenient interaction with data records is especially important for BVI users, given
that smartphone screen readers ofer very few input gestures for blind users, and the screen size is extremely
limited for low vision screen magniier users. Recognizing this emerging need, we will explore options in the
future to port InSupport for smartphone browsers.
Lastly, in our study with low vision users, we only analyzed the general trends common across multiple low

vision participants. However, low vision community is inherently a heterogeneous group comprising diverse set
of eye conditions, where each subgroup (e.g., tunnel vision, peripheral vision) itself may have speciic interaction
needs and challenges. Therefore, much larger user studies having suicient representation from the diferent low
vision subgroups need to be conducted in the future, to excavate and address the needs of individual subgroups.

Automatic ilter selection and reordering. As mentioned by the participants in both studies, sometimes
the list of ilters can be very long, and therefore navigating this list can be tedious and cumbersome even with
InSupport. Therefore, mechanisms are needed that can automatically determine the set of ilters that the user
will mostly likely apply, given the user’s past interaction history. By leveraging these mechanisms, InSupport
will be able to proactively either apply the desired ilters on user’s behalf or suggest them to the user. This will
especially be beneicial in case of repetitive online browsing tasks. InSupport will also be able to dynamically
reorder the ilters in the proxy interface so that the ilters with high likelihood of being selected are placed near
the front of the list. Exploring such solutions is the scope of future research.

Setting the number of data records per page. In both studies, some participants expressed a desire to have
most of the data records on one single page to reduce navigation between diferent webpages for making record
comparisons. While a few websites do provide an option to choose the number of records per page, most websites
do not ofer this feature. Prefetching a large number of data records from possibly a multitude of webpages can be
challenging due to the signiicant time overhead that may potentially render the prefetching method impractical
for real-time interaction. Exploring feasible alternative approaches to address this issue under such challenging
constraints will also be part of our future research.

Additional sort options based on context. In the study with low vision users, some of the participants
expressed a need for additional sort options corresponding to the various attributes of data records currently on
the webpage. Providing such a functionality will require InSupport to irst identify these attributes. Fortunately,
there are plenty of extant works on automatic data record extraction [23, 25, 61] that we can exploit for this
purpose. Exploring these algorithms and devising mechanisms to support additional sort options also fall under
the scope of future work.

Needs of blind users vs. needs of low vision users. The two studies also illuminated many similarities and
some diferences between the needs and experiences of blind screen reader users and those of low vision screen
magniier users. For instance, as mentioned earlier, some of the participants in both studies desired an option of
viewing all the data records in a single webpage. Similarly, both blind and low vision participants stated that
automatically applying search ilters for repetitive tasks based on prior ilter selections would help signiicantly
reduce interaction burden and improve usability of interaction with web data records. Regarding sort options
however, low vision users wanted additional options corresponding to attributes of data records, whereas blind
users did not specify any additional requirements. Also, the low vision users stated that they preferred to explore

ACM Trans. Interact. Intell. Syst.



22 • Ferdous et al.

a webpage to igure out all available ilter options. In contrast, blind users mentioned that they did not like
exploring a webpage as it signiicantly increased the amount of listening and shortcut presses. These similarities
and diferences suggest that interface-customization features should be included in InSupport so that users with
diferent visual conditions can alter the interface according to their preferences.

Societal impact. Usability of webpages is important to ensure the equality of access to digital content for
people with disability, including those with visual impairments. As most websites are primarily designed for
convenient sighted interaction, BVI users have to expend signiicantly more time and efort to do even basic web
tasks which their sighted peers can accomplish in a matter of few seconds [8], thereby creating a usability gap in
the interaction experience. This paper seeks to narrow this gap for one of the important everyday web tasks ś
interaction with web data records. By facilitating more convenient interaction with web data records, BVI users
too will be able to ind ‘better deals’, complete transactions faster on e-commerce websites, read more posts from
their friends with less efort, and so on.

7 CONCLUSION

Interaction with web data records is an important and ubiquitous activity in web browsing. The present interface
design for data records however is primarily tailored for sighted interaction and therefore BVI users struggle
to locate desired data records with the same ease and eiciency as their sighted peers. To reduce this usability
gap between sighted and BVI users, this paper presented InSupport, a browser extension that automatically
extracts the important auxiliary segments such as ilters and multi-page links from webpages containing data
records, and subsequently makes them instantly accessible to BVI users via an easy-to-use proxy popup interface.
Evaluation of InSupport in two separate user studies with blind and low vision participants respectively showed
that InSupport signiicantly reduced the interaction efort and also improved the usability and task workload,
compared to both state-of-the-art contemporary techniques as well as the participants’ own assistive technologies.
The studies also illuminated potential avenues for further research on this topic, which included automatic
data-driven selection of record ilters that a user will most likely apply for a given set of data records.
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A FEATURES FOR AUXILIARY SEGMENT CLASSIFIERS

Search Form

Feature Description

Inner text present Checks whether the candidate node has inner text in its subtree - binary

Search keyword Checks for the keyword łsearchž in the inner text of candidate’s subtree - binary

Number of search key-

word

Number of łsearchž keyword matches with in the candidate’s subtree - integer

Button present Check whether the candidate has a button in its subtree - binary

Search attribute value Checks if any attribute in any node within the candidate’s subtree has łsearchž

keyword in it - binary

Filter Options

Feature Description

Checkbox List Checks if the candidate’s subtree contains a list of check boxes - binary

Number of links Counts the number of links in the candidate’s subtree - integer

Number of inputs Counts the number of input tags in the candidate’s subtree - integer

URL valid Check if all the links in the candidate’s subtree contain valid URLs - binary

Button list Checks if the candidate’s subtree contains a list of buttons - binary

Sort Options

Feature Description

Keyword match Checks inner text of nodes in candidate’s subtree for keywords such as price,

recommended, ratings, distance, time, and so on - binary

Keyword count Counts the number of keyword matches using the same keywords as the previous

option - integer

Sort keyword Check if inner text values of nodes in candidate’s subtrees have the keyword sort

- binary

Option tag count Counts the number of option tags (if any) in the candidate’s subtree - integer

Multi-Page Links

Feature Description

Number of buttons Counts the number of buttons in the candidate’s subtree - integer

Number of links Counts the number of links in the candidate’s subtree - integer

Common URL Counts the number of links that have the same domain and subdomain URL -

integer

Number of values Counts the number of nodes in the subtree that have only numeric text such as

1, 2, and 3 - Integer

Keyword present Checks if inner text of subtree nodes contains keywords such as page, show, next,

previous, and so on - binary

Keyword count Counts the number of occurrences of select keywords in the candidate’s subtree

- integer

Table 5. Features for each auxiliary segment, along with their descriptions.
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B CLASSIFICATION PERFORMANCE OF MACHINE LEARNING MODELS FOR AUXILIARY
SEGMENTS

Segment Type Classiier
Precision (%) Recall (%) F-score (%)

Negative Positive Negative Positive Negative Positive

Filter options
Logistic regression 99 100 100 99 99.5 99.5

Multi-layer perceptron 99 100 100 99 99.5 99.5

Sort options
Logistic regression 91.9 100 100 90.8 95.7 95.1

Multi-layer perceptron 92.3 100 100 91.3 95.9 95.4

Search form
Logistic regression 90.4 94.5 94.7 90.0 92.5 92.2

Multi-layer perceptron 90.7 93.2 93.3 90.4 93.5 91.7

Multi-page links
Logistic regression 83.4 100 100 79.9 90.9 88.8

Multi-layer perceptron 83.4 100 100 79.9 90.9 88.8

Table 6. Classification performance of machine learning algorithms.
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C SIGNIFICANCE TEST RESULTS FOR USER STUDIES

Task Completion Time Number of User Actions

Task T1
� = 34.207, � � = 2, � = 34.465, � � = 2,

� < 0.001 � < 0.001

Task T2
� = 34.369, � � = 2, � = 33.576, � � = 2,

� < 0.001 � < 0.001

Table 7. Kruskal-Wallis test for statistical significance between conditions in the study with blind users.

Task Completion Time

Task T1 � = 35.417, � � = 2, � < 0.001

Task T2 � = 35.709, � � = 2, � < 0.001

Table 8. Kruskal-Wallis test for statistical significance between conditions in the study with low vision users.
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