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Abstract: Neurological disabilities cause diverse health and mental challenges, impacting quality
of life and imposing financial burdens on both the individuals diagnosed with these conditions
and their caregivers. Abnormal brain activity, stemming from malfunctions in the human nervous
system, characterizes neurological disorders. Therefore, the early identification of these abnormalities
is crucial for devising suitable treatments and interventions aimed at promoting and sustaining
quality of life. Electroencephalogram (EEG), a non-invasive method for monitoring brain activity, is
frequently employed to detect abnormal brain activity in neurological and mental disorders. This
study introduces an approach that extends the understanding and identification of neurological dis-
abilities by integrating feature extraction, machine learning, and visual analysis based on EEG signals
collected from individuals with neurological and mental disorders. The classification performance
of four feature approaches—EEG frequency band, raw data, power spectral density, and wavelet
transform—is assessed using machine learning techniques to evaluate their capability to differentiate
neurological disabilities in short EEG segmentations (one second and two seconds). In detail, the
classification analysis is conducted under two conditions: single-channel-based classification and
region-based classification. While a clear demarcation between normal (healthy) and abnormal (neu-
rological disabilities) EEG metrics may not be evident, their similarities and distinctions are observed
through visualization, employing wavelet features. Notably, the frontal brain region (frontal lobe)
emerges as a crucial area for distinguishing abnormalities among different brain regions. Also, the
integration of wavelet features and visual analysis proves effective in identifying and understanding
neurological disabilities.

Keywords: neurological disorders; discrete wavelet transform; visual analysis; machine learning;
feature extraction

1. Introduction

In neuroscience, electroencephalography (EEG) has commonly been used as an early
diagnostic tool for examining various abnormal neurological or psychiatric conditions,
encompassing attention-deficit/hyperactivity disorder (ADHD), chronic pain, major de-
pressive disorder, and obsessive–compulsive disorder. ADHD is one of the most common
neurodevelopmental disabilities affecting both children (approximately 5%) and adults
(approximately 2.5%) [1]. Individuals who have ADHD can experience various symptoms,
such as social interaction difficulties, depression, anxiety, learning challenges, and sleep
disruptions [2]. Insomnia, a sleep disorder, can contribute to emotional issues, frustration,
and learning difficulties [3]. It also causes problems with decision making and poses a risk
for heart-related diseases [4]. Chronic pain, persisting for over 12 weeks despite treatment,
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significantly impacts patients’ lives, leading to depression, presenteeism, and financial
burdens on families or caregivers [5]. Major depressive disorder (MDD), the most prevalent
mental disorder, adversely affects physical health, sleep, mood, and social activities, poten-
tially leading to suicidal thoughts or attempts [6]. Obsessive–compulsive disorder (OCD),
another common mental disorder, diminishes quality of life through persistent intrusive
thoughts and repetitive behaviors [7,8]. The direct economic cost of mental or neurological
disorders in the United States surpassed USD 210 billion in 2010, with the global economic
cost of mental disorders estimated at USD 2.5 trillion [9,10].

Since neurological and mental disorders are increasingly prevalent and closely related
to various mental and physical health conditions and deficits in social interaction, the
early detection of abnormal conditions is crucial for effective care planning, intervention,
and advocacy. EEG is capable of early diagnosis identification and is reliable and valid
in accurately detecting neurological and mental disorders. While previous studies have
adeptly utilized EEG data for early detection, these studies primarily focused on analyzing
and computing techniques for isolating single disorders. Moreover, despite the existence
of more than six hundred neurological diseases, limited research has been conducted to
identify neurological disorders using a unified framework. This study shifts the focus to
comprehending the patterns associated with multiple neurological disabilities by extracting
significant features and subjecting them to analysis to enhance our understanding of
these disabilities through visualization techniques. We introduce an automated pattern
recognition approach that integrates visual analysis and machine learning to analyze
neurological disabilities. It is important to note that, in this study, the term ’neurological
disability’ encompasses both neurological disorders and mental disorders. To the best of
our knowledge, there is no previous study that analyzes multiple disorders based on EEG
data while integrating multiple visualization techniques.

EEG signals are recognized as multivariate time series data, comprising a sequence of
spatial and temporal information ordered over time. The signals encompass diverse local
and global information, enabling the identification of distinctive patterns for various health
conditions and the tracking of trends in individual health conditions. This information is
particularly valuable for capturing unique characteristics related to neurological disabilities.
However, extracting significant features from EEG signals is an essential yet challenging
task in neurological studies. Although a few previous studies have demonstrated the
potential to differentiate neurological disabilities using classification algorithms, there
exists room for performance enhancement and the advancement of knowledge to accurately
differentiate disorders from one another. Due to similar symptoms between ADHD and
other psychiatric disorders, identifying ADHD through the analysis of neurophysiological
signals remains a challenging task [11]. Therefore, this study introduces an approach that
integrates machine learning and visualization to determine differences among patients
with neurological disabilities. We emphasize the importance of identifying critical features
from EEG signals associated with individual neurological disabilities and determining their
unique patterns, as this enhances our ability to understand the disabilities. In summary,
the primary contributions of this study are outlined as follows:

• We designed an efficient feature extraction approach, utilizing signal processing
techniques to analyze EEG data associated with multiple neurological and mental dis-
orders with short-term EEG segmentation, such as 1 s and 2 s segmentation intervals.

• Our work is the first study utilizing visualization techniques to enhance understanding
of the extracted features to distinguish the disorders.

• We conducted multiple data classification analyses utilizing machine learning (ML)
algorithms, including support vector machine (SVM), random forest (RF), k-nearest
neighbors (KNN), and logistic regression (LR).

• We also performed an extensive evaluation to determine the optimal wavelets and
decomposition levels for analyzing and differentiating neurological disabilities.

The rest of the paper is organized as follows: First, we discuss prior research in neuro-
logical disorders utilizing EEG in the Previous Works section. Then, the proposed approach
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is explained in greater detail, emphasizing the importance of utilizing wavelet transform
and integrating visualization. After presenting the research findings and implications, we
conclude this paper with possible future works.

2. Previous Works

Various studies have been performed to understand neurodevelopmental disorders
and analyze neurological diseases. Musser and Nigg [12] conducted an analysis on electro-
cardiogram (ECG) and impedance cardiography data in individuals with ADHD to explore
its connection with emotions. Out of a total of 100 datasets, 50 pertained to individuals
with ADHD. They revealed that children, both with and without ADHD, exhibited similar
facial affection behaviors. However, those with ADHD demonstrated reduced coherence
between facial affection behavior and their parasympathetic function. In comparison to
their counterparts without ADHD, children with ADHD may have experienced conflicting
emotional signals. While it is acknowledged that genetic factors may strongly contribute to
the onset of ADHD [13], researchers emphasize the need for numerous ongoing studies
to gain a more accurate understanding of symptoms and facilitate more effective medical
treatments. Martin et al. [14] emphasized the existence of gender differences in ADHD.
They studied to explore gender differences through quantitative and qualitative analyses of
genetic factors. Their research indicated a higher risk of ADHD among siblings of females.
In another study, Maniruzzaman et al. [15] investigated an optimal channel selection ap-
proach for predicting ADHD using machine learning techniques, including decision tree
(DT), KNN, RF, LR, and SVM. The study employed a hybrid approach of SVM and an
independent t-test to identify optimal channels, revealing six crucial channels (Fz, F8, F3,
C4, C3, and F7) used for predicting ADHD.

Most neurological studies using EEG have focused on building a predictive model
with a single neurological disease. For instance, Khare and Acharya [16] examined EEG
data to find appropriate brain regions. Specifically, they focused on determining signif-
icant EEG channels by employing entropy, statistical measures, and nonlinear features
to identify ADHD. They identified the crucial role of frontal regions in ADHD detection
and highlighted specific EEG channels (Fz, F7, Pz, P7, and Cz) as significant for ADHD
analysis. Coelho et al. [17] evaluated EEG Hjorth features extracted from the brain regions,
i.e., the parietal, frontal, central, and occipital lobes, to identify Parkinson’s disease patients.
To evaluate the performance of differentiating the patients with Parkinson’s disease and
healthy individuals, they utilized classification methods such as SVM, KNN, and RF. Koh
et al. [18] introduced an approach to detect ADHD and conduct disorder (CD) using ECG
signals by integrating empirical wavelet transform (EWT). They applied feature extrac-
tion by measuring entropy and performed feature selection via the analysis of variance
(ANOVA) test. They assessed the selected features to determine ADHA and CD using
machine learning techniques such as SVM, decision tree (DT), and KNN. Yasin et al. [19]
reviewed previous EEG studies focused on MDD and observed a growing demand for
applying deep learning (DL) in EEG analysis. The study also underscored the challenges
in interpreting results from neural network-based approaches. Mulaffer et al. [20] high-
lighted the significance of EEG features in insomnia detection by comparing them with
hypnogram-based features using SVM. The study employed C3 and C4 channels to assess
these features. Although numerous research studies have been performed to identify
neurodevelopmental disorders, there is still a need to identify essential features for accu-
rate identification. SVM has been underscored as a crucial technique for analyzing EEG
signals in dyslexia detection [21,22]. Despite extensive research, it is still necessary to find
essential features to identify them accurately. Seshadri et al. [23] proposed an approach
to detect learning disabilities (LD), a neurodevelopmental disorder that severely impacts
children’s lives. They assessed classification performance using various ML classifiers,
including DT, KNN, SVM, ensemble classifiers, Naive Bayes, linear discriminant analysis
(LDA), and LR, and neural network (shallow and deep) models. They segmented ten
seconds of non-overlapping windows to extract features from EEG data. In detail, they
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used discrete wavelet transform (DWT) to decompose EEG data into different frequency
levels with diverse EEG frequency bands (i.e., α, β, δ, θ) to extract features such as mean,
standard deviation, median absolute deviation, variance, interquartile range, kurtosis, and
skewness. They showed the effectiveness of DWT in analyzing EEG data by evaluating
the performance differences of multiple predictive models using combined features from
nineteen channels.

Mumtaz et al. [24] presented a method for diagnosing MDD by utilizing EEG power
features with various machine learning algorithms, such as SVM, Naive Bayes (NB), and
logistic regression (LR). They conducted data standardization through z-scores to identify
critical features by eliminating potential outliers. The study revealed that SVM yielded high
classification results in the analysis of MDD. Suuronen et al. [25] used data collected from
multiple academic institutions (i.e., the University of Turku, the University of New Mexico,
and the University of Iowa) to investigate Parkinson’s disease. Sample entropy was used
to extract features from different EEG frequency bands, delta ([0.5–4] Hz), theta ([4–8] Hz),
low alpha ([8–10] Hz), high alpha ([10–13] Hz), and beta ([13–30] Hz). They developed a
greedy-based feature selection procedure to determine the optimal channels for disease
analysis. The relevance of the channel was determined by measuring the area under the
ROC curve. Consequently, the performance using one channel and five channels with
the eyes open (EO) datasets was determined as 67% and 76%, respectively. Additionally,
crucial channels were identified as frontal, left-temporal, and midline-occipital.

Shilaskar et al. [26] proposed an approach for dyslexia detection using principal com-
ponent analysis (PCA). To address the data imbalance problem, they applied synthetic
minority oversampling techniques (SMOTEs). Then, classification performance results to
detect dyslexia were evaluated using various machine learning algorithms, including SVM,
LR, RF, NB, decision trees, and KNN. The results indicated that the combination of SMOTE
and RF accurately identified dyslexia. In a comprehensive review, Ahire et al. [27] explored
diverse approaches utilizing machine learning algorithms for dyslexia identification based
on EEG signals. Their findings suggested that SVM outperformed other machine learning
algorithms in this context. Zolezzi et al. [28] concentrated on categorizing chronic pain
into three groups (high, moderate, and low) by employing approximate entropy (ApEn)
and absolute band power from five frequency bands: delta ([0.1–4] Hz), theta ([4–8] Hz),
alpha ([8–12] Hz), beta ([12–30] Hz), and gamma ([30–100] Hz). By analyzing multiple
datasets with chronic neuropathic pain, they found that combining three bands (theta,
alpha, and beta) with the ApEn feature separated the pain group well with the approximate
entropy. Aydin et al. [29] performed a classification of patients with obsessive–compulsive
disorder (OCD) using SVM with EEG segments of 2 s. By employing three entropy measure-
ments (approximate entropy, sample entropy, and permutation entropy) after segmenting
EEG in 2 s, they determined that permutation entropy yielded the highest accuracy in
classifying OCD.

Researchers have also performed various multi-class classification studies for ana-
lyzing neurological disorders with EEG data. Alturki et al. [30] conducted a study to
analyze neurological disorders by extracting features from EEG sub-bands and applying
multiple classification algorithms, such as LDA, SVM, KNN, and ANN. They used five
statistical methods, including logarithmic band power (LBP), standard deviation, vari-
ance, kurtosis, and Shannon entropy (SE), from DWT with level four decomposition, ‘db4’
wavelet, and EEG segments of length 50 s, to extract the features. They performed an
extensive analysis of evaluating classification accuracies in both two- and three-class sce-
narios. They also conducted a study with three types of EEG datasets, considering both
single-channel and multi-channel modes of diagnosis. They identified that SVM produced
high classification accuracy, especially when combined with the logarithmic band power
feature. In a different approach, Tawhid et al. [31] proposed a method for analyzing EEG
signals to classify various neurological disabilities, such as autism, epilepsy, Parkinson’s
disease, and schizophrenia, utilizing Convolutional Neural Networks (CNNs). As part of
the pre-processing steps, EEG signals were segmented into 3 s intervals and transformed
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into 2D time–frequency–spectrogram images using a short-time Fourier transform. The
classification analysis, incorporating five-fold cross validation, aimed to distinguish neu-
rological disorders from normal subjects. The results indicated that the proposed CNN
model achieved a notable performance accuracy of 98.33% in classifying the disorders.

Although numerous studies have been performed to identify neurological disorders
or mental disorders by analyzing EEG data, the majority have centered on understanding
individual disorders by simply applying diverse classification algorithms. The critical
examination of each channel associated with neurological disabilities is essential for dis-
cerning both commonalities and distinctions among them. Despite this importance, limited
studies have been performed to analyze multiple neurological disorders or mental disor-
ders by evaluating their shared characteristics and variations. This study addresses this gap
by undertaking a comparative analysis of various features, including EEG frequency bands,
power spectral density, raw data, and wavelet features. Our study gauges the efficacy of
these features in analyzing neurological disorders, utilizing a publicly available dataset con-
taining diverse neurophysiological information encompassing conditions, such as ADHD,
MDD, OCD, and Parkinson’s disease. Multiple features were extracted from the dataset
using various EEG segmentation techniques, including short-term EEG segmentation based
on DWT. EG signals are irregular and non-stationary with changing magnitude values over
time [31]. So, presenting information from a specific duration satisfying the stationarity
assumption in EEG signals is important [32,33]. Thus, the choice of a segmentation length
in analyzing EEG signals is always challenging. Using longer segmentation lengths may
produce misleading results [32] due to increased non-stationarity. Also, utilizing longer
segmentation lengths typically results in an elevated computational cost [34,35]. Numerous
studies are conducted on a single neurological disorder with various segmentation lengths
empirically as 1 s, 2 s, 3 s, and 5 s [16,31,35–38]. In this study, we examined two segmenta-
tion lengths (1 s and 2 s) to identify neurological disabilities by comparing their features,
classification performance results, and visual representations. To the best of our knowledge,
no previous studies have provided detailed comparisons illustrating feature extraction,
classification performance results, and visual representation in different segmentation
lengths with various neurological disorders. To advance our understanding of the distinc-
tions among neurological disorders, our study advocates adopting a sophisticated analysis
technique—visual analytics. In detail, multiple visualization methods were employed to
generate graphical representations of data, facilitating interactive visual analysis for users.
Additionally, an extensive region-based analysis was performed to address the limitation
of comprehending neurological disorders solely through a broad perspective, initiating a
detailed exploration of specific regions. A detailed explanation of the conducted procedures
and steps is provided in the following sections.

3. Methods

As mentioned above, the primary objective of this study is to discern neurological
disabilities by combining wavelet-based feature extraction and visual analysis. Since the
identification of crucial features that encapsulate the distinctive characteristics of neurolog-
ical disabilities is pivotal in differentiating them, our approach involves an examination
of the most pertinent channels associated with each disability and an assessment of the
performance variances between employing single-channel- and region-based predictive
models. The incorporation of visual representations of features enhances the capacity to
comprehend both the extracted features and EEG data, facilitating the differentiation of
various disabilities. Our proposed approach contains four steps: pre-processing, extract-
ing and selecting features, generating predictive models, and conducting visual analysis.
Detailed elucidations for each of these steps are added in the following subsections.

3.1. Data Description

We used a publicly available TDBRAIN dataset [39]. The dataset contains resting state
raw EEG signals with relevant clinical and demographic data collected from psychiatric
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patients between 2001 and 2021. The dataset contains 1274 EEG signals (with a sampling
frequency of 500 Hz) for psychiatric patients (aged 5 to 89 years). It includes both formal
diagnoses and referral indications (unofficial diagnoses). The raw EEG signals have 26-
channel (10–10 Ag/AgCl electrodes) recordings with eyes open (EO) and eyes closed (EC)
for 2 min each. The data contain both healthy and several disorders such as major depres-
sive disorder (MDD), attention deficit hyperactivity disorder (ADHD), subjective memory
complaints, obsessive–compulsive disorder, burnout, dyslexia, chronic pain, Parkinson’s,
tinnitus, insomnia, and migraine as indications. In this study, we only analyzed the subjects
that matched between each indication and formal diagnosis. Collected during eyes open
(EO) and eyes closed (EC) tasks, the data in different task conditions are referred to as
EO-data and EC-data throughout the paper for clarity. We analyzed 23 channels (C3, C4,
CP3, CP4, CPz, F3, F4, F7, Cz, F8, P3, P4, FC3, FC4, FCz, Fp2, Fz, O1, O2, Oz, P8, T7, and
T8). Given the prevalence of subjects categorized as ‘Unknown’ for formal diagnoses, we
only considered the data associated with seven disabilities: ‘burnout’, ‘dyslexia’, ‘chronic
pain’, ‘MDD’, ‘OCD’, ‘ADHD’, ‘Parkinson’s disease’, and ‘healthy’ condition (see Table 1).

Table 1. Descriptive statistics for the data used in this study. (* no age information is found in the
original dataset.)

Male Female

# of Subjects (Mean ± SD) # of Subjects (Mean ± SD)

MDD 67 (42.11 ± 12.48) 66 (43.59 ±13.53)

Dyslexia 12 (11.04 ± 2.17) 9 (9.68 ± 0.92)

Chronic pain 3 (34.95 ± 15.29) 9 (49.95 ± 4.40)

OCD 10 (36.33 ± 13.94) 12 (36.15 ± 14.63)

ADHD 8 (29.96 ± 14.14) 26 (20.68 ± 13.20)

Parkinson 4 (66.46 ± 11.01) 13 (65.86 ± 9.04)

Burnout 1 (-) * 5 (50.02 ± 2.33)

Healthy 32 (23.41± 19.36) 16 (31.19± 15.48)

Due to the existence of numerous disorder types in the dataset, we analyzed the data
by categorizing them into two groups: ‘normal (healthy)’ and ‘abnormal (disabilities)’.

3.2. Feature Extraction and Selection

Data pre-processing plays a crucial role in eliminating noise and obtaining clean data
for EEG analysis. In this study, we employed notch and band-pass filters to enhance the
data quality. Since the EEG data contain a 50 Hz frequency associated with power line
noise, the notch filter was applied for frequency removal. Then, the band-pass filter within
the frequency range of 0.5 to 100 Hz was employed for further refinement.

Feature extraction is an essential step influencing the overall classification performance.
To analyze the EEG data, a non-overlapping segmentation is utilized to split EEG signals
into distinct segments. For the multi-channel EEG data of subject k ∈ {1, 2, · · · , N}, where
N indicates the total number of the subjects, including healthy and unhealthy subjects,
each channel is divided into segments with a pre-defined segmentation length. Specifically,
Di = {X1, X2, · · · , XNk}, where Nk =

⌈
l
s

⌉
represents the total number of segments for the

subject k, and l denotes the total length of the EEG data. The i-th segment of a channel
is represented as C i containing T instances, where 1 ≤ i ≤ Nk and T = ml × fs, where
ml is the pre-defined segmentation length and fs is a sampling rate. As the suitable
segmentation length for EEG data analysis is unknown, we evaluated the EEG data with
two segmentation lengths (i.e., ml = 1 second, 2 seconds). The class label of the i-th channel
is determined by C i ∈ {0, 1}, and 0 and 1 represent “normal” and “abnormal”, respectively.
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We employed four different feature extraction approaches to extract features from each
segment to compare and examine the capability of identifying the abnormal condition. The
extracted features encompass raw features, EEG frequency band information, power spec-
tral density (PSD), and wavelet features. The raw features represent the features extracted
directly from each segment, calculated by determining the average of the z-score, mean,
variance, kurtosis, and entropy. The EEG frequency band information is broadly used in
analyzing EEG data. To extract EEG frequency band features, commonly used EEG fre-
quency band information, such as α, θ, γ, β, and δ, was identified in each segment. Then, the
average and standard deviation of the frequency band were computed. For the extraction of
PSD features, Welch’s periodogram [40] was employed to compute the frequency spectrum
of EEG signals using fast Fourier transform (FFT). The resulting PSD features comprised
five attributes: frequency, energy, variance, sample entropy, and permutation entropy.
While FFT is effective in identifying the underlying frequency information within the EEG
data, it struggles to detect local transient changes at specific frequencies. Therefore, wavelet
transform (WT) is considered due to its suitability for analyzing non-stationary data, of-
fering the capability to extract both frequency (scales) and time information. Wavelets are
characterized by small waves with limited duration and zero average values [41]. WT is
good for analyzing data at a specific time and frequency or revealing information with
different scales [42]. It extracts local information with different frequencies to reveal trends,
discontinuities, and repeated patterns underlying the data. Through the analysis of low-
and high-frequency information, data trends and deviations (representing low and high
fluctuations) can be identified accordingly [43]. DWT decomposes the EEG data at a prede-
fined level by splitting each level into two sub-bands containing different frequency ranges
(i.e., low and high frequencies) using the formula

ϕa,τ(X t,c) =
1√
a
(X t,c

t−τ
a
)

where X t,c represents the EEG data at the segment t, 1 ≤ t ≤ T of the channel c, and
ϕa,τ .(X t,c) is a scaling function, called wavelet basis functions, generated by the mother
wavelet ϕ(X t,c). a and τ indicate the scale and translation factor, respectively, controlling
the scaling and translation of the wavelet. In our study, DWT was employed to extract
features by decomposing EEG data into high- and low-frequency information at each
level. High-frequency information produces detail coefficients, presenting any rapid or
sudden changes in the data, while low-frequency information produces approximate
coefficients, showing slow changes in the data. The detail coefficients are particularly
useful for detecting rapid changes, such as discontinuities or sudden shifts. Using the
coefficients, the following wavelet features are computed at each level:

ω
j
1 =

n

∑
1

di,j

n
, ω

j
2 =

√
∑n

i=1(di,j − di,j)2

n
, ω

j
3 = ∑(nµ ×

√
(2 ∗ log(n)))

ω
j
4 =

∑n
1 (δi,j)

2

n
, ω5 =

µdi,5

µa
, ω6 =

µdi,4

µa

where di,j = {d1,j, d2,j, · · · , di,j} represent the wavelet coefficients at the jth level
(j = 1, 2, · · · , (l + 1)), l denotes a pre-defined decomposition level, i indicates the ele-
ments of the coefficients (i = 1, 2, · · · , n), di,j indicates the mean of di,j, µa represents the
sum of the coefficients in level l, and n denotes the length of the coefficients. nµ, repre-

senting the noise variance, can be computed as nµ =
ϵdi,j
Td

, where ϵdi,j
indicates the median

of the coefficients, and Td = 0.6745 presents the wideband neuronal signal for Gaussian
noise [44]. We evaluated various mother wavelets and decomposition levels to examine
their similarities and differences for analyzing neurological disabilities.
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Once all features were extracted, we performed feature selection to remove any redun-
dancies. In detail, we employed one-way analysis of variance (ANOVA) [45] to determine
statistically significant features (p < 0.05). Only the statistically significant features were
utilized for classification and visual analysis.

3.3. Data Classifications

To assess the effectiveness of the selected features in identifying unhealthy conditions,
we conducted a classification analysis using machine learning (ML) algorithms. Specifically,
four classification algorithms—SVM, RF, KNN, and LR—were employed to measure the
performance differences. The four features, i.e., wavelet, raw, PSD, and EEG frequency
band, were tested to explore their distinctiveness in classifying “normal” and “abnormal”.
In detail, we conducted the classification analysis under two conditions: single channel
based and region based. The single-channel-based analysis involved the independent
analysis of data from each channel. The region-based analysis focused on the examination
of five brain regions, i.e., frontal, temporal, central, parietal, and centroparietal, whose
channel information is detailed in Table 2. All features in each brain region were combined
to investigate the capability of identifying unhealthy subjects. Various performance metrics,
including precision, recall, F1 score, and the area under the receiver operating characteristic
curve (AUC), were compared using k-fold cross validation to evaluate the classification
performance and identify unhealthy subjects. With k-fold cross validation, the feature set in
channel c, denoted as F c, was divided into n subsets, represented as f1, f2 · · · fn, fi ∩ f j ̸= ∅.
In detail, n − 1 subsets were used for training, and the remaining one was employed for
testing the trained model. This process was repeated n times, and the average performance
scores were determined.

Table 2. Five brain regions are defined and analyzed. Each region consists of multiple relevant
channels to initiate the region-based analysis.

Region Channel Information

Frontal FP1, FP2, F3,F4, F7, F8, AF3, Fz, Fpz

Temporal T3, T4, T5, T6, T7, T8

Central C3, C4, CZ, C5, C1, C2

Parietal P3, Pz, P4,

Occipital O1, O2, Oz

3.4. Visual Analysis

Conducting data classifications with different machine learning algorithms is valu-
able for assessing their effectiveness in distinguishing between “normal” and “abnormal”.
However, the clarity in differentiating between them is hindered by the imbalanced data.
Imbalanced data may cause challenges in comprehending the performance of a classifica-
tion model due to its inherent unreliability. To address this issue, we considered leveraging
visualization techniques to represent the extracted features by mapping them into visual
glyphs. Visual representations can help in understanding the patterns and structures of the
data by revealing underlying patterns. Since the data utilized in this study consist of nu-
merous variables, dimension reduction is applied to show the data in a lower-dimensional
space (i.e., 2D space). In the visualization domain, various dimension reduction techniques
have been employed for presenting high-dimensional data, including PCA, LDA, MDS
(multi-dimensional scaling), t-SNE (t-distributed stochastic neighbor embedding), UMAP
(Uniform Manifold Approximation and Projection), and others [46]. Among them, t-SNE
and UMAP have been broadly used recently by researchers in representing data because
they show a better separation of the classes than others. However, these methods come
with computational costs to approximate the optimal positions. Therefore, we considered
using PCA to determine the points representing the high-dimensional data. It computes
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eigenvectors and eigenvalues to identify multiple principal components. By utilizing the
1st and 2nd principal components, the data can be effectively represented in a 2D space [47].

We also employed parallel coordinates visualization [48] to represent all data instances.
It generates polylines through vertically arranged variables (i.e., parallel axes), representing
individual instances. Despite its effectiveness in presenting multivariate data, researchers
have proposed numerous variations of parallel coordinates visualization [49,50]. However,
parallel coordinates visualization has a major limitation when handling large data instances,
occurring a visual cluttering problem where multiple polylines overlap. To address this
problem, researchers considered reducing the number of polylines or rearranging (or re-
ordering) the axes of the parallel coordinates. Since we utilized the parallel coordinates
visualization to understand the patterns between classes, we did not consider addressing
the visual cluttering problem in this study. Instead, we considered showing data distri-
bution in each axis because it helps users understand clusters in each group (e.g., normal
vs. abnormal). To represent data distributions in each variable, angular histograms [51]
were generated to illustrate the density and slopes of underlying polylines overlaid onto
the parallel coordinates. Angular histogram is a technique that presents the frequency
distribution of underlying data within each parallel axis by measuring the frequency of
the data and the directional information of polylines in each axis. Figure 1 shows an
example of applying angular histograms to parallel coordinates. The histogram highlights
density using different colors (red for high density and green for low density) based on
the measured distributions. To measure the distributions, various statistical approaches
have been proposed to determine an appropriate bin size for histograms [52]. However,
traditional histograms only present univariate data. In detail, a single histogram can only
represent the frequency of the data plots within the selected vertical axis. Therefore, no
unique statistical approach can be applied to determine an appropriate bin size for handling
all variables in the parallel coordinates visualization. Instead, a user-driven approach is
commonly utilized to determine the bin size of histograms in parallel coordinates [51,53,54].
To generate density distributions, the angular histogram utilizes a user-defined binning
approach to determine the denseness of each distribution. Each bin is defined as a direc-
tion vector representing the slope (α) of each polyline toward another parallel axis. The
angular frequency distance (F(α)) is computed by measuring the frequency in each bin and
evaluating the distance to the next parallel axis.

Figure 1. An example overview of applying an angular histogram to parallel coordinates. The angular
histogram shows the distributions of data with different colors overlaid on top of parallel coordinates.
In the histogram, the red color indicates a high-density region, and the green color represents a
low-density region. F(α) indicates the angular frequency distance. (A) Parallel coordinates of the
variables of O102∼O104 in the occipital region in the PSD features, (B) schematic design of the
angular histogram, and (C) applying angular histograms to the parallel coordinates. In the parallel
coordinates (A,C), the values located on the top and bottom of the plots indicate the minimum and
maximum values of each variable.



Appl. Sci. 2024, 14, 273 10 of 27

4. Results

As mentioned above, we applied four different feature extraction approaches with
two EEG segmentations (1 s and 2 s) to examine the effect of the segmentation length
in distinguishing abnormal conditions. For applying DWT, we employed a pre-defined
wavelet decomposition level of six (l = 6) to extract wavelet features. Then, statistically
significant features were determined by applying ANOVA with the p-value (<0.05). Vary-
ing numbers of significant features were determined in each channel. By analyzing the
EEG frequency band features, we found three to nine and four to nine significant features
from the EC- and EO-data, respectively. In detail, we found nine significant features with
the 1 s EEG segmentation in the O2 channel. But, with the 2 s EEG segmentation, only
three significant features were determined. For the FC3 channel, we found three and nine
significant features with the 1 s and 2 s EEG segmentations, respectively. With the 2 s EEG
segmentation, nine significant features were identified in the channels (i.e., CP4, Cz, F3,
Fc3, Fz, O1, Oz, P3, P4, CP4, and T7), seven features in the channels (i.e., C3, C4, CP3, CPz,
F4, F7, and Fp1), six features in the channels (i.e., FCz, and T8), and four features in the
FC4. We also found the same number of features from the channels with the 1 s and 2 s
segmentations: nine features—CP4, F3, and P7; eight features—F8; and six features—T8.
We determined nine features from the channels (Cpz, Cz, and Fp2) in both the 1 s and
2 s segmentations. Among the various features, we found that the measured standard
deviation was commonly identified as a significant feature. The measured average value
was also identified as a significant feature in some channels. These features might be
critical for analyzing the conditions precisely because they hold unique characteristics for
differentiating them. The extracted features from β and γ bands in all channels of the EC-
and EO-data were also recognized as significant features.

By evaluating the PSD features from the EO-data, we identified that all features
extracted from 60.6% of the channels were determined as significant features. But for
the features from the EC-data, only 27.3% and 51.1% were determined to produce all
significant features with the 1 s segmentation and the 2 s segmentation accordingly. We
also found that sample entropy (SmpE) and permutation entropy (PE) were identified
as significant features from all channels in the EC-data. Three raw features (kurtosis,
variance, and entropy) were selected as significant features from 90% of the channels with
the 1 s segmentation and 75.7% with the 2 s segmentation. The two features (kurtosis and
variance) were determined as significant features in most EC- and EO-data channels. But
the feature (z-score) was not identified as a significant feature in any of the channels. The
feature (kurtosis) was determined as a significant feature in the two channels (C3 and Oz)
with the 1 s segmentation and in the four channels (C3, F3, FCz3, and Oz) with the 2 s
segmentation with the EO-data. For the EC-data, only the P7 channel presented significant
features with the 1 s segmentation. When evaluating the wavelet features, we determined
the features from the coefficient levels (3, 4, and 5) corresponding to 4 Hz∼32 Hz to be
significant features in the 1 s and 2 s segmentations. In detail, the features (ω3

1 , ω3
2 , ω3

5 , ω3
6)

corresponding to 16 Hz∼32 Hz were selected as significant features in level three detail
coefficients. Only the features (ω1

2, ω1
3, ω1

4) were identified as significant features in level
one detail coefficients. The feature (ω1

2) was also identified as a significant feature in the
EC- and EO-data with the 2 s segmentation.

4.1. Single-Channel Analysis

Figure 2 shows examples of the four features extracted from the channels (O2, C4, Fp1,
and T7) using the EC-data with the ‘db4’ wavelet and level six decomposition. The raw
features exhibited subtle distinctions with minimal overlaps among the various disabilities.
Specifically, the T7 channel presented slight differences in patterns between OCD, dyslexia,
and Parkinson’s (see Figure 2M). In both the O2 and T7 channels, OCD was distinguishable,
presenting an isolated pattern (high values) compared to others (see Figure 2A,M).
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Figure 2. The comparisons of the channels (O2, C4, Fp1, and T7) with the EC-data using the selected
features with the segmentation length (=1 s). The ‘db4’ wavelet and the level six decomposition were
used. The x-axis indicates each feature, and the y-axis denotes the mean (µ) ± SEM. The plots are
arranged by channels (O2: (A–D); C4: (E–H); Fp1: (I–L); and T7: (M–P)), and by feature type (Raw:
(A,E,I,M); PSD: (B,F,J,N); EEGband: (C,G,K,O); Wavelet: (D,H,L,P)).

Using the PSD features, we found distinct patterns between the two disabilities
(dyslexia and ADHD) and the healthy condition, particularly in the Fp1 and O2 chan-
nels. Notably, the C4 and T7 channels exhibited nearly identical patterns between dyslexia
and ADHD. When analyzing EEG frequency band features, a clear separation among
dyslexia, Parkinson’s disease, and MDD was determined. When employing wavelet fea-
tures, the Fp1 channel emerged as effective in differentiating between dyslexia, ADHD,
Parkinson’s disease, chronic pain, and the healthy condition. For the O2 channel, we
observed differences, especially when comparing features of OCD, ADHD, and Parkinson’s
disease with others. Results for the disabilities (burnout and MDD) were almost identical
across most channels. Additionally, chronic pain and Parkinson’s disease showed almost
similar patterns in the C4 channel. We also found a high similarity between MDD and
Parkinson’s disease in the Fp1 channel. But, we noticed completely different patterns
between them in some of the channels (O2, T7, and C4). MDD and burnout displayed
high similarity across most channels, except for the T7 channel. Among the four features,
the wavelet features were determined as superior in distinguishing the disabilities from
healthy. Specifically, we identified that the wavelet features in the Fp1 channel could be a
good indicator for differentiating Parkinson’s disease, OCD, ADHD, dyslexia, and healthy
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because of the clear separation between them. With the 2 s segmentation, we observed the
wavelet features in the C4 channel showed three distinctively separable groups: dyslexia
and ADHD, chronic pain, and the rest of the disabilities.

Utilizing the level six decomposition (l = 6), we observed nearly identical patterns
between ADHD and dyslexia in the O2 channel. However, a clear differentiation among
the disabilities within the same channel became evident when employing the level seven
decomposition (l = 7). Furthermore, with the level seven decomposition, we identified
a distinct separation between MDD and the healthy condition, which was not apparent
with the level six decomposition. Distinctions between Parkinson’s disease and burnout
were highlighted through features extracted from level four and six detail coefficients
and approximate coefficients in the T7 channel. We observed a clear separation among
burnout, healthy, and other disabilities with the level seven decomposition, particularly
when utilizing the features from the approximate coefficient corresponding to 1∼4 Hz. We
also found that the features with detail coefficient levels five, six, and seven presented
distinctive separations across the disabilities: dyslexia and ADHD, and other disabilities.
In the Fp1 channel, chronic pain showed a clearly distinguishable pattern from other
disabilities, similar to the results obtained using the level six decomposition. The wavelet
features derived from the level seven decomposition revealed two to three divisible groups
among the disabilities, whereas the level six decomposition showed individual differences.

Figure 3 illustrates the comprehensive results of single-channel classification for the
EC-data with both 1 s and 2 s segmentations. We found that the wavelet features showed
better classification performance results than those using other features. Among the classi-
fication algorithms, RF showed better classification performance than the others. While
the 2 s segmentation showed slightly better classification results than the 1 s segmentation,
variations in classification performance were noted across the channels depending on the
segmentation (either 1 s or 2 s segmentation). Specifically, the channels F3, F4, F8, and
CP4 showed enhanced performance results with the 1 s segmentation. From the evalu-
ation of the classification performance results, we found an improvement in AUC with
increased segmentation length. For the single-channel classification evaluation, we used
the wavelet (‘db4’). Alternatively, different wavelets can be utilized to extract wavelet
features. Based on our evaluation with another wavelet (‘coif’), we found slightly different
classification performance results. For instance, the F1 classification scores for analyzing the
EC-data were determined as RF (0.85 ± 0.0002), SVM (0.79 ± 0.0001), KNN (0.83 ± 0.0003),
and LR (0.80 ± 0.0001). When analyzing the EO-data, the F1 scores were identified as RF
(0.85 ± 0.0002), SVM (0.80 ± 0.0002), KNN (0.83 ± 0.0002), and LR (0.80 ± 0.0002)). We
found the AUC scores to be RF (0.60 ± 0.0005), SVM (0.51 ± 00.0003), KNN (0.59 ± 0.0004),
and LR (0.51 ± 0.0003). Although slightly different classification results can be observed
depending on the applied wavelet, we determined that the wavelet features produced
better classification performance results than other features.

By evaluating the classification performance results for the features with the 2 s
segmentation using the level six and seven decompositions (l = 6 and 7), we found
higher F1 scores with l = 6. But similar AUC scores were observed between them. When
using the wavelet features extracted from the EC-data with ‘db4’, we found the overall
average F1 scores for all channels to be RF (0.880 ± 0.0002), SVM (0.860 ± 0.0001), KNN
(0.856 ± 0.0003), and LR (0.860 ± 0.0001). For evaluating the wavelet features from the
EO-data, the F1 scores were determined as RF (0.851± 0.0014), SVM (0.800± 0.0011), KNN
(0.831± 0.0012), and LR (0.801± 0.0008). The overall average AUC of all channels from the
EC-data was measured as RF (0.601 ± 0.0001), SVM (0.510 ± 0.0002), KNN (0.574 ± 0.005),
and LR (0.513± 0.0012). For the EO-data, the performance results were RF (0.610± 0.0001),
SVM (0.510 ± 0.0001), KNN (0.582 ± 0.0003), and LR (0.510 ± 0.0002). Overall, we found
slightly better performance reults with l = 6 when comparing the F1 and AUC scores with
2 s segmentation. We also found slightly better performance in multiple channels (Fp1, Fp2,
F3, F4, and FcZ) with l = 7.
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Figure 3. Average classification performance comparisons of four extracted features (i.e., EEG
frequency band, PSD, raw, and wavelet) for all channels in the EC-data. The classification of the
four extracted features using the 1 s and 2 s segmentations was evaluated.

4.2. Region-Based Analysis

We also conducted a region-based channel analysis on the five regions (frontal, tempo-
ral, central, parietal, and occipital). Figure 4 shows the F1 scores for the applied classification
algorithms. When evaluating the performance results between 1 s and 2 s segmentations,
the 2 s segmentation showed slightly better results. We also found that the wavelet features
performed better with the region-based classification. Because of numerous performance
results from our study, three region-based classification results (accuracy, precision, and
AUC) are listed in Appendix A. Notably, we observed high accuracy and precision scores
for the regions utilizing the wavelet features from the region-based classification analysis
on the EC- and EO-data. We also found that the wavelet features showed better AUC
scores. Among the classification algorithms, both KNN and RF showed better classification
performance results. More importantly, we determined that RF demonstrated high classifi-
cation performance results with the wavelet features (see the red glyphs in Figure 4B). High
F1 scores were identified in the frontal region with ML techniques. The wavelet features
also showed high F1 scores with SVM, RF, and LR in all regions except KNN. When using
KNN, minor differences were observed between the wavelet and EEG frequency band
features in the frontal brain region (see Figure 4C). The EEG frequency band features
showed comparable performance with the wavelet features in the frontal region. Except
for the frontal region, all other regions performed better with the wavelet features.

Additionally, we performed a comparison of the classification results employing
different wavelets (w) and decomposition levels (l). Table 3 presents the F1 scores for the
region-based classification with the 2 s segmentation using two wavelets (w = ‘coif3’ and
‘db4’) and two decomposition levels (l = 6 and 7). We observed similar F1 scores between
the two wavelets, with minor differences depending on the decomposition levels and the
specific classification algorithms. Overall, the frontal region showed higher performance
results across the regions. RF and KNN showed higher performance results with the EC-
and EO-data. Specifically, the occipital and frontal regions showed enhanced performance
results with l = 6 and w = ‘coif3’, while the central region exhibited better performance
with l = 7 and w = ‘coif3’. However, considering the frequency of achieving higher
performance by each classification algorithm, ‘db4’ was selected for l = 6 (55%) with the
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EO-data. With l = 7, the ‘coif’ was determined as the best wavelet when analyzing both
the EC- and EO-data.

(A) SVM (B) RF

(C) KNN (D) LR
00.10.20.30.40.50.60.70.80.91

1 2 3 4

Chart Title

EEGband PSD Raw Wavelet

Figure 4. Region-based classification performance results with 1 s and 2 s segmentations using the
four features (EEGband, PSD, raw, and wavelet). (A–D) show box plots of the F1 scores with SVM, RF,
KNN, and LR, respectively. Regions are arranged along the x-axis—C: central, F: frontal, O: occipital,
P: parietal, T: temporal.

By measuring AUC scores for the frontal region in the EC-data with l = 6 and w = ‘db4’,
we determined the performance scores as SVM (0.903), RF (0.921), KNN (0.968), and LR
(0.627). For analyzing the EO-data, we found the scores to be SVM (0.975), RF (0.976), KNN
(0.986), and LR (0.682). When examining the same region with l = 6 and w = ‘coif3’, the
AUC scores for the EC-data were identified as SVM (0.928), RF (0.913), KNN (0.977), and
LR (0.664) and for the EO-data as SVM (0.916), RF (0.925), KNN (0.965), and LR (0.594).
With l = 7 and w = ‘db4’, the AUC scores for the EC-data were found to be SVM (0.882),
RF (0.929), KNN (0.975), and LR (0.627), and those for the EO-data were SVM (0.885), RF
(0.924), KNN (0.978), and LR (0.615). With l = 7 and w = ‘coif3’, we found the scores for the
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EO-data to be SVM (0.885), RF (0.924), KNN (0.980), and LR (0.673), and for the EC-data,
SVM (0.903), RF (0.953), KNN (0.980), and LR (0.629). Overall, KNN showed better results
when comparing the AUC scores. By evaluating the average classification scores for all
classification algorithms, we observed that the AUC scores with l = 6 and w = ‘db4’ were
higher than with l = 6 and w = ‘coif3’ except for the central region in the EC-data. With the
EO data, l = 6 and w = ‘db4’ was higher in the frontal, occipital, and parietal regions. With
the level seven decomposition (l = 7), the ‘db4’ performed better for the regions except for
the frontal region with the EC data. With the EO data, the ‘db4’ was superior for all regions
except the frontal and occipital regions.

Table 3. F1 scores of using two wavelets and two decomposition levels on the EC- and EO-data.

Region l w
EC EO

SVM RF KNN LR SVM RF KNN LR

Central

Six
db4 0.880 0.937 0.943 0.816 0.885 0.945 0.916 0.757

coif3 0.901 0.943 0.946 0.749 0.882 0.939 0.953 0.753

Seven
db4 0.886 0.951 0.947 0.760 0.904 0.954 0.953 0.706

coif3 0.878 0.931 0.936 0.845 0.885 0.940 0.932 0.846

Frontal

Six
db4 0.969 0.976 0.987 0.859 0.987 0.989 0.992 0.866

coif3 0.977 0.974 0.990 0.762 0.973 0.978 0.986 0.730

Seven
db4 0.963 0.979 0.990 0.707 0.959 0.985 0.992 0.695

coif3 0.964 0.978 0.991 0.877 0.971 0.987 0.993 0.857

Occipital

Six
db4 0.865 0.927 0.939 0.815 0.919 0.960 0.938 0.697

coif3 0.884 0.939 0.950 0.774 0.802 0.886 0.946 0.956

Seven
db4 0.884 0.941 0.929 0.738 0.841 0.876 0.944 0.943

coif3 0.903 0.938 0.937 0.833 0.884 0.954 0.943 0.841

Parietal

Six
db4 0.855 0.935 0.942 0.819 0.898 0.955 0.937 0.762

coif3 0.851 0.938 0.937 0.754 0.874 0.936 0.942 0.759

Seven
db4 0.896 0.939 0.939 0.750 0.892 0.957 0.950 0.709

coif3 0.877 0.929 0.923 0.824 0.878 0.947 0.941 0.827

Temporal

Six
db4 0.817 0.899 0.883 0.815 0.797 0.913 0.858 0.760

coif3 0.794 0.901 0.879 0.747 0.817 0.918 0.906 0.672

Seven
db4 0.807 0.909 0.883 0.699 0.825 0.916 0.888 0.765

coif3 0.844 0.910 0.887 0.831 0.830 0.911 0.900 0.804

l: decomposition level, w: wavelet.

4.3. Visual Analysis

To understand the patterns and structures of the different features, PCA-based vi-
sualization is performed. Figure 5 shows examples of the PCA projections of different
features. To generate the PCA projections, the first- and second-principal components
are determined and used to show all instances in 2D scatterplots, mapped to the x- and
y-axis, respectively. Although different visualizations were generated depending on the
features, we could identify similarities among PCA projections. For instance, the visual
representations with the EEG frequency band and wavelet features from the occipital
region showed similar widely spread patterns (see Figure 5A,D). Triangular shapes were
also observed when analyzing the EEG frequency band and wavelet features from the
O2 channel (see Figure 5E,H). For the PSD features, we could not find any similarities
compared to the visualizations with other features. But, we noticed completely different
patterns when analyzing the visualizations with the raw features (see Figure 5C,G). This
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might happen because of the small number of attributes and their high similarities. The
visualizations with the features from the O2 channel showed various possible outliers
(see the arrow). The raw features showed a dense region in the bottom left corner. Two
mostly extreme outliers, representing ADHD and Parkinson’s instances, appeared in each
corner of the PCA space. The PCA-based visualization is good for understanding the
overall pattern of the features because PCA is useful for identifying major variances by
determining the principal components from the data. However, we found that it was
difficult to determine the unique difference between normal and abnormal groups with
PCA. This might be because no major difference between them can be determined due to
their high similarity. To address this limitation, we performed an additional analysis with
parallel coordinates visualization.

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 5. PCA projections of the (A,E) EEG frequency band, (B,F) PSD, (C,G) raw, and (D,H) wavelet
features. (A,B) use the features from the occipital region using a one-second window size.
(E–H) represent the features from the O2 channel using two-second segmentation. In the visu-
alizations, the blue- and red-colored glyphs denote normal and abnormal groups, respectively. The
arrows indicate possible outliers that do not follow the patterns of other instances within the PCA pro-
jection space. In the projections, the x- and y-axis indicate the first (PC1)- and second (PC2)-principal
components, respectively.

To help users perform a comparative analysis, group-based visualizations are gener-
ated to represent the normal and abnormal groups in each separated parallel coordinates
visualizations. Since we found that it was not easy to identify major differences between the
groups within the PCA projections, multiple parallel coordinates visualizations were gener-
ated to determine the differences. In the parallel coordinates, the variables are arranged
vertically to represent parallel axes. Angular histograms are overlaid on parallel axes to
show the distribution of each variable. Figure 6 shows multiple parallel coordinates visual-
izations with different features. The difference was not apparent in the parallel coodinates
visualizations using the raw features because they may have similar characteristics. But,
with the angular histograms, minor differences were observed. Specifically, the angular
histograms of the variables O201 and O202 showed the high-density areas at the lower
region in the normal group (see the arrows in Figure 6C). The visualizations with the
PSD and raw features showed similar results between the groups because there was no
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significant difference in the distributions of the features (see the zoomed representations
of the angular histograms in the figure). The visualizations with the EEG frequency band
and wavelet showed distinctive representations because of many statistically significant
features. In detail, they showed various distinctive data distributions of variables (see the
angular histograms highlighted by arrows).

(A)

(B)

(C)

Figure 6. Cont.



Appl. Sci. 2024, 14, 273 18 of 27

(D)

Figure 6. Parallel coordinates with angular histograms of the (A) EEG frequency band, (B) PSD,
(C) raw, and (D) wavelet features from the occipital region using the window size (1 s). Significant dif-
ferences between normal and abnormal groups are emphasized with arrows. Zoomed representations
of the highlighted regions (indicated with rectangular outlines) are arranged on the right side of the
paralleled coordinates. Arrows indicate distinctive patterns compared to other data distributions. In
detail, high-density regions (colored red in angular histograms) have appeared in multiple locations
in the histograms.

5. Discussion

By evaluating the classification performance results, we found that the segmentation
length (2 s) is suitable for analyzing the disabilities. We also identified that RF showed
better performance results than the other algorithms. When evaluating the difference
using the decomposition levels (l = 6 or 7), we found a clear distinction between chronic
pain and healthy with l = 6. With the level l = 6, we also observed slightly better
performance results in most channels except the four channels (F3, Fp1, F4, Fcz, and P4).
The four channels showed opposite results with the level l = 7. These results indicated
that a higher decomposition level should be applied for analyzing certain disabilities.
However, this statement requires an extensive analysis of identifying the relationship
between decomposition levels and EEG channels in producing classification performance
results for analyzing disabilities. Since this analysis is not a primary consideration of this
study, we leave this as our future work. Comparing the two wavelets (‘db4’ and ‘coif3’), we
found similar classification performance results, even if different decomposition levels were
applied. For the single-channel-based classification, we found a higher performance result
with RF (1% difference) when using either wavelet. However, slightly better performance
results with the 2 s segmentation and ‘coif3’ were determined when analyzing the EO-data
with l = 6. Furthermore, for the region-based classification, ‘coif3’ performed better than
‘db4.’ Since DWT is suitable for detecting local events with different frequency scales,
combining multiple wavelet features from different channels could synergistically improve
the overall performance of identifying disabilities.

As discussed above, the most influencing features were determined with the ANOVA
test to distinguish the disabilities in the channels. The cardinality of determining the subset
of the features as significant features varied depending on the channel, segmentation length,
and feature approach. For example, four EEG frequency band features were selected in the
O2 channel with the 2 s segmentation, producing the recall performance as SVM (0.787),
RF (0.807), KNN (0.780), and LR (0.784) for analyzing the EO-data. For the EC-data, nine
features were selected, producing the performance results of SVM (0.859), RF (0.857), KNN
(0.843), and LR (0.858). When using the wavelet features, the same cardinality of features
was selected in the O2 channel, even when using different segmentation lengths. Instead,
the C4 channel showed the different cardinality as important features between the two
segmentation lengths. The recall scores with the 2 s segmentation were determined as
the EC-data of SVM (0.883), RF (0.898), KNN (0.871), and LR (0.879), and the EO-data of
SVM (0.852), RF (0.868), KNN (0.844), and LR (0.852). The same metric score performance



Appl. Sci. 2024, 14, 273 19 of 27

with the 1 s segmentation was SVM (0.813), RF (0.859), KNN (0.844), and LR (0.814) with
the EC-data and SVM (0.714), RF (0.806), KNN (0.782), and LR (0.725) with the EC-data.
Overall, the EO-data with the 2 s segmentation provide better performance results. We
found that the higher the cardinality, the better the performance presented.

For understanding the neurological disabilities depending on their age groups, mul-
tiple parallel coordinates visualizations were generated as shown in Figure 7. With the
traditional parallel coordinates visualization (i.e., representing each instance as polyline),
we could not determine the difference between the age groups when analyzing the data.
However, we identified the difference between the groups by evaluating the angular his-
tograms (bin size = 25) that present the distribution of each variable. For instance, the
variable (‘Cz07’) represents fat-tailed distributions (i.e., skewed distributions). But distinc-
tive distributions were observed depending on the age groups. In detail, the high peak
appeared near the centerline of the angular histograms in the age 20s. But, the high peak
existed at the bottom edge of the angular histograms in the age 70s. The differences, de-
pending on the age groups, were more clearly visible in the variable ‘C417’. Specifically, the
distribution in the age 40s showed skew normal distribution, having normal distribution
but leaning toward one side of the distribution. Although identifying the primary cause
of such distinctive distributions depending on the age groups cannot be determined from
the visualization, it highlights the need to conduct extensive analysis to understand the
effectiveness of each attribute in differentiating the distributions in the age groups. We
performed Tukey’s Honest Significant Difference (HSD) test to examine the differences
between the age groups. We found most variables showed significant differences (p < 0.05)
between the age groups. For instance, the variable (‘Cz07’) in the Cz channel showed
significant differences (p < 0.05) except for the age groups between 0 and 50 (p = 0.9), 0
and 70 (p = 0.0584), 20 and 70 (p = 0.894), and 30 and 60 (p = 0.925). The variable (‘C417’)
in the C4 channel presented significant differences (p < 0.05) except for the age groups
between 20 and 30 (p = 0.8348), and 40 and 50 (p = 0.9).

Figure 7. Analyzing patterns by age groups with parallel coordinates visualizations. Statistically
significant wavelet features from the central region (window size = 1 s and bin size = 25) are used to
generate the visualization. Each horizontally positioned parallel coordinates visualization represents
an individual age group (i.e., 0: 0∼9, 10: 10∼19, . . ., 70: 70∼79). Various background color attributes
are used to represent data patterns in different age groups.
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We conducted an additional analysis to understand the difference between the disor-
ders by generating multiple parallel coordinates visualizations depending on the conditions
(seven neurological disorders and one healthy condition). Figure 8 shows eight parallel coor-
dinates visualizations with angular histograms (bin size = 25) arranged horizontally. From
the figure, we determined distinctive patterns depending on the conditions. For instance,
the healthy condition showed similar frequency distributions compared to the disorders
(i.e., Parkinson’s disease and MDD) in the variables (‘C300’∼‘Cz06’—from left to right in
the visualization). But the rest of the other variables represented distinctive distributions be-
tween them. For example, the variables (‘Cz10’ and ‘Cz11’) in the healthy condition showed
highly skewed distributions (i.e., asymmetric distributions) (see Figure 8A). Although the
disorders MDD and Parkinson’s disease also represented asymmetric distributions, their
distributions were different (see Figure 8B and 8C, respectively). More interestingly, Parkin-
son’s disease shows peaks at the bottom edge of the distributions (see Figure 8C). These
findings can be used to extract more critical features from data to differentiate the disabili-
ties. The disorders chronic pain and dyslexia showed similar frequency distributions in the
variables (‘C300’∼‘Cz06’—from left to right in the visualization). The disorders burnout
and OCD represented sparse frequency distributions (small-sized histograms appeared
on one side of the distribution) compared to other conditions. This may have occurred
because fewer instances exist in the dataset.

The limitations of this study are as follows. First, this study used a relatively imbal-
anced sample size of individual neurological disabilities. Second, we did not perform
extensive analyses of identifying individual neurological disability comparisons with
healthy subjects. At last, we only provided comparisons of two decomposition levels
(i.e., six and seven) with short-length segmentation (1 s and 2 s). To have a full under-
standing of neurological disabilities, extensive analysis with different datasets needs to be
performed. Various segmentation sizes should be tested to determine the effectiveness of
different segmentations for analyzing neurological disabilities.
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Figure 8. Analyzing features based on eight conditions (seven neurological disabilities and one healthy) with parallel coordinates visualization with angular
histograms. Fifty-five significant wavelet features from the central region using the segmentation (1 s) and the bin size (25) are used to generate the visualization. In
the parallel coordinates, numerous skewed angular histograms are generated depending on data distributions. Among them, three distinctively visible asymmetric
distributions are observed as (A) skinny distribution, (B) fat distribution, (C) fat distribution with a slim peak.
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6. Conclusions and Future Works

This study presents a novel approach to analyzing EEG data with neurological dis-
abilities, incorporating DWT, ML classification algorithms, and visualization techniques.
Despite various existing methods utilizing feature extraction and machine learning, pre-
vious studies have faced challenges in accurately identifying disabilities and enhancing
understanding of the features and data. To address these limitations, we introduced a
feature extraction approach using DWT to differentiate disabilities with short-length seg-
mentations (e.g., 1 s and 2 s). We evaluated the effectiveness of this approach by employing
multiple feature extraction methods (extracting the EEG frequency band, power spectral
density, and raw features) and comparing their classification performance with wavelet
features. Specifically, we conducted single-channel-based and region-based classifications.
Then, further extensive analysis was performed through visual analysis using multiple vi-
sualization techniques. The comprehensive analysis revealed that wavelet features with the
region-based classification exhibited strong performance results in differentiating disabili-
ties, with the frontal brain region proving particularly effective. Among the classification
algorithms, RF and KNN presented good performance results in the region-based classi-
fication, with RF demonstrating higher performance than other algorithms such as SVM,
KNN, and LR. While evaluating different decomposition levels and wavelets for analyzing
disabilities, no explicit patterns were observed. However, we noted that the ‘db4’ wavelet
with 2 s segmentation and level six decomposition showed high classification performance
results in the single-channel-based classification. Additionally, we found that the ‘coif’
wavelet yielded high performance with level seven decomposition, and the ‘db4’ with level
six decomposition demonstrated high performance in the region-based classification.

For future works, we will expand our study through extensive analyses, exploring
individual disabilities compared to healthy conditions across channels and region-based
classifications while considering age and gender differences. Additionally, we will con-
duct multiclass classifications of neurological disabilities across individual channels. The
integration of deep learning techniques will also be explored as a means to distinguish
between disabilities using the proposed features. Furthermore, we plan to test longer
EEG segmentation lengths, such as 5 s, 10 s, 20 s, 30 s, and 60 s, with various wavelets to
determine their effectiveness for analyzing neurological disabilities. This will enable us
to examine the relationship between wavelets and decomposition levels, uncovering the
distinctive characteristics associated with different disabilities.
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Appendix A. Region-Based Classification Performance Comparisons

We performed an extensive classification analysis to determine the effectiveness of
using the wavelet features compared to other feature extraction approaches. Since the

https://brainclinics.com/resources/
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performed classification results include too many values, detailed information about the
results is listed here.

Table A1 presents the ML performance comparisons of the regions in 1 s and 2 s
segmentations. Among the features, wavelet features performed better in the regions for
the metrics AUC, accuracy, and precision with the 1 s segmentation with the EC-data. With
the 2 s segmentation, we found that the wavelet features performed higher in the regions.
All regions performed better with the wavelet features for accuracy except for the temporal
region. It also showed slightly better performance compared to the EEG frequency band
features with SVM, KNN, and LR.

Table A2 presents the ML performance comparisons of the regions in 1 s and 2 s seg-
mentation with the EO-data. With EC- and EO-data, we found that wavelet features
performed better in all the regions for the metrics (AUC, accuracy, and precision) in both
1 s and 2 s segmentation. Please note that the results of the F1 scores are included in the
main paper.

Table A1. Region-based classification performance comparisons for the EC-data. S represents the
segmentation length, F indicates the features, and R presents the brain regions. The letters in column
F denote E—EEG frequency band; P—PSD; R—raw; and W—wavelet. The letters in column R
indicate C—central; F—frontal; P—parietal; O—occipital; and T—temporal.

Metric ACC Precision AUC

S F R SVM RF KNN LR SVM RF KNN LR SVM RF KNN LR

1 s

E

C 0.897 0.896 0.914 0.852 0.899 0.903 0.909 0.803 0.661 0.653 0.773 0.501

F 0.973 0.925 0.988 0.852 0.974 0.931 0.988 0.804 0.917 0.747 0.973 0.514

O 0.893 0.888 0.915 0.852 0.896 0.9 0.909 0.789 0.651 0.622 0.765 0.503

P 0.894 0.896 0.917 0.852 0.897 0.906 0.912 0.726 0.652 0.651 0.773 0.5

T 0.864 0.877 0.876 0.852 0.875 0.883 0.86 0.742 0.541 0.59 0.663 0.5

P

C 0.87 0.889 0.89 0.852 0.878 0.891 0.879 0.736 0.564 0.635 0.708 0.5

F 0.935 0.924 0.963 0.851 0.936 0.929 0.963 0.736 0.795 0.745 0.906 0.5

O 0.861 0.883 0.884 0.851 0.868 0.885 0.871 0.731 0.532 0.618 0.694 0.5

P 0.857 0.891 0.891 0.852 0.87 0.89 0.88 0.726 0.517 0.648 0.71 0.5

T 0.852 0.874 0.861 0.852 0.766 0.864 0.838 0.726 0.5 0.601 0.623 0.5

R

C 0.856 0.869 0.848 0.852 0.859 0.855 0.812 0.781 0.515 0.584 0.576 0.501

F 0.872 0.914 0.9 0.854 0.881 0.918 0.892 0.827 0.572 0.719 0.74 0.513

O 0.856 0.87 0.853 0.855 0.849 0.861 0.82 0.854 0.516 0.579 0.584 0.511

P 0.857 0.871 0.854 0.852 0.872 0.859 0.822 0.726 0.516 0.585 0.587 0.5

T 0.863 0.864 0.846 0.849 0.854 0.845 0.804 0.757 0.546 0.562 0.558 0.501

W

C 0.913 0.949 0.94 0.86 0.913 0.95 0.938 0.832 0.725 0.84 0.845 0.564

F 0.984 0.985 0.991 0.877 0.984 0.985 0.991 0.861 0.952 0.949 0.982 0.646

O 0.915 0.947 0.942 0.854 0.915 0.948 0.94 0.815 0.731 0.826 0.849 0.541

P 0.925 0.954 0.945 0.853 0.925 0.955 0.943 0.812 0.76 0.853 0.863 0.547

T 0.873 0.916 0.892 0.85 0.875 0.915 0.882 0.805 0.578 0.738 0.722 0.542
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Table A1. Cont.

Metric ACC Precision AUC

S F R SVM RF KNN LR SVM RF KNN LR SVM RF KNN LR

2 s

E

C 0.897 0.896 0.914 0.852 0.913 0.916 0.936 0.738 0.671 0.671 0.83 0.5

F 0.973 0.925 0.988 0.852 0.975 0.945 0.988 0.818 0.923 0.795 0.972 0.514

O 0.893 0.888 0.915 0.852 0.89 0.899 0.92 0.792 0.579 0.606 0.783 0.503

P 0.894 0.896 0.917 0.852 0.903 0.912 0.943 0.791 0.651 0.66 0.848 0.503

T 0.906 0.907 0.939 0.859 0.882 0.893 0.881 0.81 0.57 0.611 0.696 0.503

P

C 0.893 0.911 0.931 0.859 0.901 0.915 0.927 0.829 0.624 0.691 0.808 0.502

F 0.943 0.939 0.975 0.86 0.944 0.942 0.975 0.849 0.805 0.786 0.937 0.504

O 0.865 0.895 0.905 0.859 0.872 0.898 0.897 0.801 0.524 0.636 0.744 0.501

P 0.874 0.913 0.929 0.858 0.873 0.914 0.925 0.788 0.562 0.704 0.816 0.501

T 0.863 0.889 0.886 0.858 0.865 0.882 0.873 0.761 0.518 0.635 0.689 0.5

R

C 0.869 0.874 0.853 0.862 0.878 0.869 0.815 0.832 0.538 0.565 0.565 0.52

F 0.88 0.914 0.909 0.86 0.883 0.917 0.902 0.831 0.58 0.702 0.757 0.504

O 0.859 0.863 0.845 0.859 0.738 0.836 0.787 0.766 0.5 0.527 0.527 0.5

P 0.861 0.866 0.845 0.859 0.871 0.838 0.797 0.738 0.506 0.55 0.543 0.5

T 0.864 0.859 0.849 0.859 0.868 0.814 0.796 0.747 0.522 0.53 0.534 0.5

W

C 0.902 0.943 0.945 0.864 0.91 0.946 0.943 0.836 0.657 0.802 0.848 0.538

F 0.97 0.977 0.987 0.882 0.971 0.977 0.987 0.867 0.904 0.921 0.968 0.63

O 0.893 0.935 0.942 0.864 0.9 0.938 0.939 0.835 0.626 0.772 0.842 0.535

P 0.887 0.942 0.945 0.865 0.89 0.944 0.943 0.84 0.607 0.797 0.848 0.542

T 0.868 0.913 0.894 0.863 0.873 0.914 0.883 0.832 0.536 0.706 0.698 0.536

Table A2. Classification performance comparisons with region-based for the EO-data. S represents
segmentation length, F indicates features, and R presents brain regions. The letters in column F
denote E—EEG frequency band; P—PSD; R—raw; and W—wavelet. The letters in column R indicate
C—central; F—frontal; P—parietal; O—occipital; and T:—temporal.

Metric ACC Precision AUC

S F R SVM RF KNN LR SVM RF KNN LR SVM RF KNN LR

1 s

E

C 0.888 0.889 0.909 0.853 0.884 0.895 0.903 0.806 0.645 0.631 0.767 0.51

F 0.985 0.97 0.993 0.855 0.985 0.971 0.993 0.819 0.955 0.9 0.981 0.54

O 0.906 0.919 0.928 0.852 0.907 0.925 0.925 0.795 0.698 0.731 0.808 0.501

P 0.922 0.924 0.94 0.853 0.921 0.928 0.938 0.808 0.756 0.748 0.838 0.507

T 0.868 0.883 0.878 0.853 0.87 0.883 0.862 0.806 0.558 0.615 0.66 0.512

P

C 0.855 0.89 0.891 0.852 0.846 0.886 0.882 0.761 0.511 0.651 0.73 0.5

F 0.962 0.965 0.976 0.856 0.962 0.966 0.976 0.822 0.882 0.886 0.94 0.551

O 0.868 0.915 0.907 0.85 0.868 0.915 0.901 0.78 0.561 0.728 0.76 0.504

P 0.883 0.917 0.914 0.852 0.882 0.915 0.909 0.828 0.621 0.741 0.778 0.502

T 0.868 0.883 0.878 0.853 0.87 0.883 0.862 0.806 0.51 0.616 0.639 0.503
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Table A2. Cont.

Metric ACC Precision AUC

S F R SVM RF KNN LR SVM RF KNN LR SVM RF KNN LR

1 s

R

C 0.855 0.865 0.848 0.852 0.848 0.843 0.817 0.779 0.512 0.579 0.589 0.502

F 0.91 0.955 0.946 0.861 0.914 0.955 0.944 0.859 0.706 0.857 0.868 0.535

O 0.858 0.89 0.867 0.852 0.854 0.881 0.846 0.756 0.525 0.664 0.639 0.5

P 0.875 0.895 0.879 0.85 0.868 0.886 0.865 0.751 0.598 0.691 0.689 0.501

T 0.852 0.851 0.835 0.852 0.726 0.797 0.774 0.785 0.5 0.515 0.522 0.5

W

C 0.894 0.944 0.933 0.857 0.889 0.945 0.93 0.824 0.67 0.824 0.836 0.552

F 0.989 0.988 0.993 0.887 0.989 0.989 0.992 0.875 0.967 0.962 0.983 0.703

O 0.906 0.953 0.948 0.858 0.907 0.955 0.946 0.829 0.698 0.848 0.864 0.548

P 0.924 0.96 0.954 0.863 0.925 0.961 0.953 0.839 0.759 0.872 0.877 0.568

T 0.869 0.92 0.889 0.857 0.871 0.92 0.878 0.823 0.562 0.744 0.705 0.57

2 s

E

C 0.829 0.844 0.843 0.785 0.829 0.844 0.843 0.785 0.616 0.654 0.714 0.514

F 0.981 0.967 0.989 0.796 0.981 0.967 0.989 0.796 0.963 0.925 0.982 0.578

O 0.895 0.903 0.921 0.788 0.895 0.903 0.921 0.788 0.777 0.781 0.857 0.515

P 0.882 0.898 0.905 0.784 0.882 0.898 0.905 0.784 0.735 0.77 0.827 0.501

T 0.819 0.855 0.829 0.785 0.819 0.855 0.829 0.785 0.596 0.681 0.682 0.505

P

C 0.826 0.864 0.871 0.783 0.833 0.863 0.865 0.691 0.609 0.714 0.779 0.501

F 0.948 0.956 0.97 0.807 0.949 0.957 0.97 0.782 0.893 0.901 0.946 0.611

O 0.833 0.867 0.862 0.793 0.833 0.864 0.855 0.761 0.633 0.725 0.754 0.544

P 0.834 0.886 0.886 0.785 0.841 0.887 0.881 0.788 0.629 0.756 0.793 0.501

T 0.792 0.834 0.81 0.784 0.8 0.821 0.793 0.653 0.52 0.67 0.665 0.5

R

C 0.788 0.803 0.779 0.784 0.802 0.778 0.741 0.694 0.509 0.577 0.58 0.501

F 0.856 0.938 0.913 0.782 0.864 0.939 0.911 0.701 0.678 0.87 0.846 0.506

O 0.795 0.806 0.779 0.791 0.796 0.781 0.747 0.781 0.53 0.603 0.594 0.52

P 0.808 0.842 0.809 0.784 0.819 0.836 0.788 0.721 0.561 0.666 0.646 0.511

T 0.785 0.801 0.767 0.785 0.745 0.773 0.723 0.615 0.501 0.586 0.561 0.5

W

C 0.892 0.946 0.918 0.798 0.889 0.946 0.916 0.766 0.79 0.891 0.859 0.583

F 0.987 0.989 0.992 0.872 0.987 0.989 0.992 0.866 0.975 0.976 0.986 0.773

O 0.923 0.961 0.939 0.821 0.923 0.961 0.938 0.803 0.844 0.918 0.891 0.653

P 0.906 0.956 0.939 0.803 0.91 0.957 0.938 0.775 0.795 0.904 0.891 0.588

T 0.834 0.918 0.865 0.796 0.839 0.917 0.858 0.763 0.839 0.917 0.858 0.763
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