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Preface

Personalized Medicine is transforming health care by using an individual’s unique
characteristics, environment, and genetic profile to guide the prevention, diagnosis,
drug discovery, and treatment of diseasemore efficiently.Advances inArtificial Intel-
ligence (AI) tools and techniques have provided a unique opportunity for researchers
and physicians, and health organizations to collect, process, and exchange the vast
amount of data necessary for complex decision-making in personalized medicine.
Ageing research is one of the complex issues in personalized medicine and like many
other complex challenges can benefit from advances in AI. AI and machine learning
tools can detect and specify patterns and assist scientists in better understanding the
ageing process. AI can also accelerate the development of effective interventions to
improve the well-being of individuals and extend their lifespan and health span.

This book aims to highlight the latest achievements in the use of AI in personal-
ized medicine and healthcare delivery. The edited volume contains selected papers
presented at the 2023 Health Intelligence workshop, co-located with the Thirty-
Seven Association for the Advancement of Artificial Intelligence (AAAI) confer-
ence, and presents an overview of the issues, challenges, and potentials in the field,
along with new research results. This book provides information for researchers,
students, industry professionals, clinicians, and public health agencies interested in
the applications of AI in medicine and public health.
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Artificial Intelligence for Personalized
Care, Wellness, and Longevity Research

Arash Shaban-Nejad, Martin Michalowski, and Simone Bianco

Abstract Artificial intelligence (AI) has the potential to transform personalized
medicine by enabling healthcare professionals to deliver more precise, targeted treat-
ments that are tailored to the individual needs of each patient. AI tools and techniques
are also revolutionizing research and development of technologies that contribute to
human longevity and healthy living in several ways, including, but not limited to,
predictive analytics, disease diagnosis, treatment, andmonitoring, anddrugdiscovery
and development. This chapter aims to explore the significance and applications of
artificial intelligence tools and techniques to improve personal care and wellness and
enhance human longevity research.

Keywords Artificial intelligence · Health AI · Personalized medicine · Ageing ·
Longevity · Healthy living

1 Introduction

Artificial intelligence (AI) and machine learning (ML) -based techniques are trans-
forming healthcare andmedicine by deriving novel insights from large sets of relevant
data for generating reliable predictive models, discovering new and more effective
treatments, reducing costs, and delivering a better quality of care. Nowadays AI
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contributes significantly to improving different aspects of human life, well-being,
healthy living, and longevity by enhancing medical diagnosis and treatment, chronic
disease management, drug discovery, and lifestyle and preventive health. AI can
further help healthcare professionals diagnose diseases earlier and more accurately
and efficiently, leading to precision care and more effective treatment, and improved
health outcomes. AI algorithms can also assist doctors and health providers in
developing treatment plans that are personalized to each patient’s unique medical
condition, profile, and personal health history [1], taking into account the patient’s
behavior and lifestyle and various determinants of health and risk factors. Physi-
cians use intelligent methods to track and analyze data from wearables, mobile, and
other smart devices to monitor patients’ health, detect potential health issues, and
send alerts, notifications, and educational messages to improve patients’ self-care,
chronic disease management, and health outcomes [2]. Public health professionals
and researchers can employ AI and ML methods to enhance disease surveillance
[3] and improve public health messaging after detecting the source of mistrust and
misinformation in online social media platforms [4, 5].

Moreover, AI and machine learning can accelerate the drug discovery process [6]
by finding potential drugs and predicting their efficacy, safety, and dose–response
characteristics. This in turn lowers the cost and time needed for drug discovery
and manufacturing. In addition, interactive AI-driven intelligent apps and devices
[7] can assist individuals in making better and more informed lifestyle choices
through personalized recommendations and custom advice for exercise, diet, weight
management, and other health-related actions.

Additionally, in recent years advances in the delivery of patient care [7] are being
felt at the organizational and patient levels. Thanks to these advances, people typi-
cally live longer and have increased chances of suffering from multiple manageable
health conditions. These patients suffer from multimorbidity, and AI methods are
needed that address multimorbidity by identifying and mitigating adverse interac-
tions occurring when standards of care for individual conditions are combined into a
single treatment plan. [8–10] Given the complexity of developing a treatment plan for
a multimorbid patient, explaining treatment decisions made by these methods estab-
lishes trust with the clinician and supports a shared decision-making process. As
such, AI is becoming more and more explainable [11, 12], collaborative, multimodal
[14], human-centered [15], equitable [16], ethical [17], and value-based [13]. In this
chapter, we outline recent progress in the use and application of AI in personalized
medicine and ageing research.



Artificial Intelligence for Personalized Care, Wellness, and Longevity … 3

2 The Role of AI and Data Science in Ageing and Longevity
Research

The ageing process is defined as “the progressive accumulation of changes with time
that are associatedwith or responsible for the ever-increasing susceptibility to disease
and deathwhich accompanies advancing age” [18]. Ageing is a very complex process
and like many other complex challenges can benefit from advances in AI. Nowadays
artificial intelligence tools and techniques play an important role in ageing research
and its relevant interventions. AI and machine learning can harvest, process, and
analyze extremely large datasets to detect and specify patterns and assist scientists
in better understanding the ageing process. Also, AI can accelerate the development
of effective interventions to improve the well-being of individuals and extend their
lifespan and health span. Artificial intelligence facilitates the discovery of new drugs,
compounds, and biomarkers [19] that can be used to track the aging process and
predict the risk of age-related health conditions and diseases, which is important in
the targeted design and implementation of relevant interventions to delay or reverse
the aging process.

Moreover, AI algorithms can analyze medical records, clinician’s notes, lifestyle,
social media use, environmental factors, social determinants of health risk factors,
and other data sources to predict a person’s risk of developing age-related diseases or
issues such asAlzheimer’s disease [20, 21], dementia [22],mild cognitive impairment
[23], and neurological disorders [24]. This is especially important in assisting physi-
cians and healthcare providers to implement personalized prevention, treatment, and
care plans to reduce the risk and likelihood of developing such diseases. Another
utility of AI is in image analysis to detect age-related physiological changes in the
body and identify potential markers of age-related diseases and conditions. Artificial
intelligence can also effectively identify digital biomarkers [25] from digital devices
and integrate them with sociomarkers [26] and other biomarkers to improve our
understanding and tracking of the ageing process and predict the risk of age-related
conditions.

Especially important is the role of computational methods in characterizing
biological age. Amultitude of biomarkers have been recently established to correlate,
often with very high accuracy, chronological and biological age, as well as aging in
general [27]. More importantly, biological clocks that use multimodal -omics data
are exceptional predictors of disease [28–30]. The use of AI in this field is, however,
limited [31–33], and both a theoretical and computational foundation is currently
missing. Another dimension of the work on aging is its therapeutic side, its latest
research and technology trend exemplified by partial cellular reprogramming and
rejuvenation [34–36]. To this date, there are no AI methods applied to the problem
of predicting a rejuvenation or reprogramming strategy that is successful, either in
the lab or therapeutically. This represents an exciting opportunity for research in this
space to emerge and, hopefully, drive the next revolution in aging therapeutics.
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3 Advances in AI Technologies and Data Analytics
in Healthcare

AI techniques and applications in machine learning, natural language processing
(NLP), knowledge representation, explainable AI, image processing, and pattern
recognition along with several advanced methods in data science and engineering
empowered researchers, healthcare providers, and public health organizations to
detect human diseases in a timelymanner and design and deliver preventivemeasures
and therapeutic interventions in more efficient ways. Although new technologies
bring new challenges, in general as a result of these AI innovations it is expected that
more and more people live better, longer, and healthier.

Through several chapters of this book, we will explore studies on the significance
of artificial intelligence tools and methods to tackle some of the pressing issues in
public health and personalized medicine.

Nguyen et al. [37] applied some eXplainable artificial intelligence (XAI) methods
to explain the prediction of the black-box AI models in the thyroid nodule diagnosis
application. More specifically they proposed a statistic-based XAI method, namely
KernelDensityEstimation andDensitymap, to explain the case of nonodule detected.
Stripelis et al. [38] proposed an architectural vision for an end-to-end Federated
Learning and Integration system, that enables geographically distributed data silos
to collaboratively learn a joint machine learning model without sharing data, to spur
further research on the intersection of health data management information systems
and machine learning.

Abdelwahab et al. [39] conducted a case study on drift detection based on textual
data from drug reviews created from the UCI ML Drug Review dataset. Moreover,
they proposed the sub-sampling method to assess implementing drift detection with
large datasets. Larouche et al. [40] proposed the OptimNeuralTS strategy to opti-
mize the search for potentially inappropriate polypharmacies (PIPs), a prevalent
phenomenon in older adults, defined as the simultaneous consumption of two ormore
drugs at once. This method mines claims datasets and builds a predictive model of
the association between drug combinations and health outcomes.

Identifying patient subtypes with similar disease trajectories in a heteroge-
neous population is an important step in personalized medicine. Rocheteau et al.
[41] presented an approach to clustering mechanical ventilation episodes, using a
multi-task combination of supervised, self-supervised, and unsupervised learning
techniques.

There is growing interest in quantifying stochastic and subjective concepts such
as trust using Bayesian networks (BN). Thomas et al. [42] proposed a data-driven
approach to estimate Bayesian parameters when trust needs to be quantified in the
domain of wearable medical devices (WMD). By integrating wavelet transform and
visual analysis on EEG signals, Ji et al. [43] introduced a method for understanding
disorders, such as neurodevelopmental disorders, ADHD, autism spectrum disorder,
depression, and other mental health diseases. Wavelet-based features are extracted
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to find informative information associated with any changes in the EEG signals to
differentiate them from healthy subjects.

Ovalle et al. [44] proposed supplementing ML4H auditing frameworks with
SLOGAN (patient Severity-based LOcal Group biAs detectioN), an automatic tool
for capturing local biases in a clinical prediction task. SLOGAN adapts an existing
tool, LOGAN (LOcal Group biAs detectioN), by contextualizing group bias detec-
tion in patient illness severity and past medical history. Werner et al. [45] presented
a pipeline in which unsupervised machine learning techniques were used to auto-
matically identify clinical subtypes of hospital in-patients in a large UK teaching
hospital admitted between 2017 and 2021. With the use of explainability techniques,
the identified subtypes were interpreted and assigned clinical meaning.

Machine learning can help radiologists to analyze CT scans faster and to detect
lung cancermore accurately.However, it usually requires laboriously labeled training
data. Wang and Tang [46] proposed the Expert System and Attention for Labelling
(ESAL)model that uses amix of experts and pre-trained BERT to retrieve the seman-
tics of different categories, enabling the model to fuse the differences between them
to improve medical information classification. Alwuthaynani et al. [47] proposed a
transfer learning method using class decomposition to detect Alzheimer’s disease
from MRI images. They used the entropy-based technique to determine the most
informative images for training the model. Kulkarni et al. [48] proposed an NLP-
based method ‘STBound’ that intelligently determines the optimal region for knowl-
edge augmentation and answers questions such as When to augment? for whom to
augment? and how much to augment? This proposed selective knowledge augmen-
tation method improves the early detection of depression. Lin et al. [49] proposed an
analytical framework of directly inferring the therapeutic working alliance from the
natural language within the psychotherapy sessions in a turn-level resolution with
deep embeddings such as the Doc2Vec and SentenceBERT models.

Lin et al. [50] compared different neural topic modeling methods in learning
the topical propensities of different psychiatric conditions from the psychotherapy
session transcripts parsed from speech recordings. The authors also incorporated
temporal modeling to improve interpretability by parsing out topic similarities as a
time series in a turn-level resolution.

vonNumers et al. [51] introduced an automated pipeline, namedBaseline-enabled
Action Unit identification for Facial Expression Recognition (BAUFER) consisting
of (i) a personalized baseline component to calibrate for the neutral expression
of a participant; (ii) predictions for anatomically-based facial muscle movement
labels (Action Units) that enhance interpretability; and (iii) A multi-stage training
approach with several types of annotations from different datasets. Jain et al. [52]
looked at a popular deep-learning model for ECG classification and observed its
performance on high-level perturbations. To improvemodel accuracy and adversarial
robustness the authors performed adversarial training on these clinically perturbed
ECG signals to enhance model robustness. Also, they used conventional adversarial
training against low-level perturbations simultaneously to ensure robustness against
adversarial attacks.
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Nagrebetsky et al. [53] developed a deep-learningmodel to predict the occurrence
and timing of one-lung ventilation (OLV) based on routinely collected intraoperative
data. Their approach combines the variables’ spatial and frequency domain features,
usingTransformer encoders tomodel the temporal evolution and convolutional neural
network to abstract frequency-of-interest from wavelet spectrum images.

During the COVID-19 pandemic, news stations have used social media platforms
such as Twitter to deliver information to the general public. To understand the trends
as well as the impact of these posts, Fisher et al. [54] analyzed 500 k tweets and
responses across 15 news outlets from the USA, Canada, and UK, and found that
vaccine was the most popular topic discussed, audiences in the USA and UK have
a considerable amount of differences in their responses and that the differences in
political leanings strongly match with differences in audience response. Gunal et al.
[55] introduced a new dataset of 1089 mental health-related post-response pairs
from Reddit in which the responses contain questions and annotated these questions
as rhetorical, information-seeking, or not applicable. Using linguistic features, the
authors distinguished between rhetorical and information-seeking questions.
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Abstract The ability to explain the prediction of deep learning models to end-
users is an important feature to leverage the power of artificial intelligence (AI) for
the medical decision-making process, which is usually considered non-transparent
and challenging to comprehend. In this paper, we apply state-of-the-art eXplainable
artificial intelligence (XAI) methods to explain the prediction of the black-box AI
models in the thyroid nodule diagnosis application. We propose new statistic-based
XAI methods, namely Kernel Density Estimation and Density map, to explain the
case of no nodule detected. XAI methods’ performances are considered under a
qualitative and quantitative comparison as feedback to improve the data quality and
the model performance. Finally, we survey to assess doctors’ and patients’ trust in
XAI explanations of the model’s decisions on thyroid nodule images.

Keywords Explainable artificial intelligence · Object detection · Thyroid nodule ·
Medical imaging

T. T. H. Nguyen (B)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: hung.tt.nguyen@fau.de

T. T. H. Nguyen · V. B. Truong · V. T. K. Nguyen · Q. H. Cao · Q. K. Nguyen
Quy Nhon AI, FPT Software, Quy Nhon, Vietnam
e-mail: binhtv8@fsoft.com.vn

V. T. K. Nguyen
e-mail: khangnvt1@fsoft.com.vn

Q. H. Cao
e-mail: hungcq3@fsoft.com.vn

Q. K. Nguyen
e-mail: khanhnq33@fsoft.com.vn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Shaban-Nejad et al. (eds.), Artificial Intelligence for Personalized Medicine,
Studies in Computational Intelligence 1106,
https://doi.org/10.1007/978-3-031-36938-4_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36938-4_2&domain=pdf
mailto:hung.tt.nguyen@fau.de
mailto:binhtv8@fsoft.com.vn
mailto:khangnvt1@fsoft.com.vn
mailto:hungcq3@fsoft.com.vn
mailto:khanhnq33@fsoft.com.vn
https://doi.org/10.1007/978-3-031-36938-4_2


12 T. T. H. Nguyen et al.

1 Introduction

Thyroid cancer is one of the most common cancer types and is the leading cause
of cancer death worldwide [5, 12], especially during the COVID-19 pandemic [7,
9]. Characterized by malignant cells formed in the thyroid gland tissues, the thyroid
cancer prognosis depends on the type and the stage at which the disease is detected.
Often, doctors rely on the medical images’ interpretation, such as thyroid ultrasound
images, to identify nodules’ presence and provide a diagnosis. However, in routine
cancer screening, the errors are mainly false negatives, in which a nodule is present
but undetected [11]. Due to recent advances in AI, deep learning models can now
serve as decision support means for medical experts. A medical diagnosis system
must be accurate, transparent, and explainable to gain end-users trust. Considering
the explainability capability, simple AI methods such as linear regression and deci-
sion trees are self-explanatory. Still, these methods lack the complexity required
for tasks such as classifying two and three-dimensional medical images. Given the
increasing ubiquity of advanced techniques such as deep neural networks (DNNs),
a new challenge for medical AI is its so-called black-box nature, with decisions
that seem opaque and inscrutable, even for experts to understand [8]. Thus, while
their opacity is deeply intertwined with their success, it poses a challenge for apply-
ing DNNs to high-stakes problems such as medical imaging until we can develop
methods that allow radiologists to develop understanding and appropriate trust. Fur-
thermore, newer regulations like the European General Data Protection Regulation
(GDPR) strictly require transparency in black-box models, especially in healthcare.
Thus, there is a growing chorus of researchers calling for XAI methods. Therefore,
in this paper, our main contributions are:

1. We applied severalXAImethods, namelyLIME [22], RISE [18],Grad-CAM[25],
Grad-CAM++ [4], Ada-SISE [28], LRP [3], and D-RISE [19] to explain the two-
stage model’s classification and localization of nodules.

2. Weproposed two statistic-basedXAImethods, namelyKernelDensity Estimation
(KDE) and Density map (DM), to monitor the two-stage model’s localization
process from the first stage to the second stage and further explain the case of no
nodule detected, especially false negative case.

3. We evaluated XAI methods’ performance and suitability for the specific nodule
detection cases with qualitative and quantitative results and a surveyedXAI’s trust
to end-users.

Our code is available for reproductivity on GitHub.1

1 https://github.com/hungntt/xai_thyroid.

https://github.com/hungntt/xai_thyroid
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(a) With nodule (b) Without nodule

Fig. 1 Examples of the Vietnamese thyroid ultrasound dataset. The green box is the ground truth
labeled by doctors

1.1 Dataset

We use the thyroid ultrasound dataset from [20] that contains 14171 thyroid ultra-
sound images of 970 Vietnamese patients. Samples are shown in Fig. 1, and medical
experts label the nodule locations.

2 Related Work

2.1 Backpropagation-Based Methods

Backpropagation-based methods calculate the gradients of the model’s output to the
input features or hiddenneurons.Hence, theyutilize the backwardpass of information
flow to understand neuronal influence and relevance of input towards the output. The
first gradients explanation technique proposed in [26] computes how much a change
in each input dimension changes the predictions in a small neighborhood around the
input. Some preceding backpropagation-based equations take relative importance
given to gradient value during backpropagation to generate saliency maps [27, 33].
While LRP [3] modifies backpropagation rules to measure the relevance or irrele-
vance of the input features to the models’ prediction.

2.2 CAM-Based Methods

Based on theCAMmethod [34], an extensive research effort onCAM-basedmethods
has been put to blend high-level features extracted byCNNs into a unique explanation
map. Grad-CAM [25] and Grad-CAM++ [4] are two improvements over CAM that
utilize backpropagation to provide a better visual explanation for classifiers.
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2.3 Perturbation-Based Methods

Perturbation-based methods are a class of techniques for explaining the decision-
making process of DNNs by modifying the model’s input and observing the output’s
changes. LIME [22] explains the prediction by learning an interpretable model that
approximates the model locally around a data point using occlusions of superpixels.
RISE [18] proposed amethod for producing saliencymaps using randomperturbation
techniques without having to analyze the model’s complex structure. D-RISE [19]
extended RISE to produce saliency maps for object detectors. SISE [23] improved
upon RISE’s fidelity and plausibility using attribution-based input sampling tech-
niques. Still, it has high computational costs when there are many activation maps
with positive slopes that are inefficient in the prediction process. Ada-SISE [28]
was developed to solve this problem by removing unnecessary objects, which saves
computational time and provides a better reasonable explanation.

2.4 Statistic-Based Methods

Kernel Density Estimation (KDE) is a non-parametric mathematical method for
estimating the probability density function of a continuous variable [29, 32] which
is one of the most common methods for estimating density level, set estimation,
clustering, or unsupervised learning [17]. Recently, KDE has been made explainable
with LRP for outlier and inlier detection in unsupervised learning models without
the ground-truth labels [15]. Density map is commonly used in crowd counting
literature, which is usually for estimating the distribution of objects, namely people
in the scene [13]. However, the idea of counting the model’s detected boxes to
estimate the distribution of predicted boxes as an explanation has not been applied
in previous works.

2.5 XAI in the Medical Diagnosis System

Several XAI applications for different cancer diagnoses are proposed to answer the
black-box AIs. In recent years, there have been 37 publications on how XAI is
applied in skin cancer detection [10]. More than half of the articles applied current
XAI methods to their model, nearly 40% tried to solve specific problems such as bias
detection and the effect of XAI onman-machine interactions, and the remaining 10%
offered novel XAI methods or enhanced existing techniques. Recently, during the
outbreak of COVID-19, LIME is also applied to explain the model’s interpretability
for screening patients with COVID-19 symptoms [2]. In the same context as our
study, AIBx [30] employed the image similarity model and physicians to create an
XAI model, increasing physicians’ confidence in the predictions during the thyroid
cancer diagnosis process.
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However, the application of a wide-ranged number of XAI methods to nodule
detection on thyroid ultrasound datasets has not been discovered yet. Urgently, very
little is known about the influence of XAI on the predictive performance, confidence,
and model trust of doctors and radiologists in an artificial setting, and nothing is
known about its effects in a clinical setting.

3 Methodology

3.1 Object Detector and XAI Categorization

3.1.1 Analysis of Images with Nodule

Our object detector employs state-of-the-art object detection networks based on the
Faster R-CNN [21] and RetinaNet [14] architectures to detect thyroid in ultrasound
images. The model detection process comprises two stages. In the first stage, the
Region Proposal Network generates object proposals from input images. Next, a
bounding box is predicted for each object proposal, with a probability of whether the
box contains a thyroid nodule. In the second stage, the Region-of-Interest pooling
layer implements bounding box regression and bounding box classifier. We catego-
rize XAI methods in terms of their applicability to three main blocks of an object
detector (as shown in Fig. 2):

• Region Proposal Generation (Which proposals are generated by the model during
the model’s first stage?): Kernel Density Estimation (KDE), Density map (DM).

• Classification (Which features of an image make the model classify an image
containing a nodule(s) at the model’s second stage?): LRP, Grad-CAM, Grad-
CAM++, LIME, RISE, Ada-SISE, D-RISE.

• Localization (Which features of an image does the model consider to detect a
specific box containing a nodule at the model’s second stage?): D-RISE.

Because XAI methods for the second stage (LRP, Grad-CAM, Grad-CAM++,
LIME, RISE, Ada-SISE, D-RISE) require the model’s output bounding boxes, they
are only applicable to positive cases, where the model detects a nodule in the image.

Region 
Proposal 

Generation

Localization

Classification

Input raw 
image

First stage

KDE, DM LRP

Backpropagation-based Perturbation-based Statistic-basedCAM-based

Grad-CAM, Grad-CAM++

LIME, RISE, Ada-SISE

D-RISE

Second stage

Explain positive and
negative cases

Explain positive cases

Fig. 2 Object detector’s architecture and XAI methods’ applicability to different tasks (red arrows)
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While XAI methods for the first stage (KDE, DM) directly extract the model’s
attempts to find a nodule, they can be further applied to negative cases where the
model does not detect any nodule.

3.1.2 Local Interpretable Model-Agnostic Explanation (LIME)

For any given instance and its corresponding prediction, LIMEutilizes Simple Linear
Iterative Clustering [1] as a segmentation algorithm to randomly sample data around
the neighborhood of the input instance for which produced predictions. These gen-
erated data are used to train a local model. The local model’s prediction generates an
explanation by weighting each sample according to the instance. Then, LIME uses
LASSO as a feature selection technique to choose the most important segments that
contribute the most to the prediction for the explanation.

3.1.3 Random Input Sampling for Explanation (RISE)

In the masking generation, we firstly use binary-bit masking (0, 1) to generate
N = 500 samples, where masks M = {Mi , 1 ≤ i ≤ N } for each superpixel with
a probability p = 0.5 [18]. We set each sample’s size as 8 × 8. We upsample these
masks using bilinear interpolation to ensure all values are in the range [0, 1]. Then,
we feed samples into the model to get the bounding boxes and the corresponding
score for each box Sb. Finally, RISE sums up all the masks using the box scores,
which are predicted on each sample as the weight of each mask to explain the target
box from the input image in the form of a saliency map.

3.1.4 Adaptive-Semantic Input Sampling for Explanation (Ada-SISE)

Ada-SISE selects multiple layers of the model and extracts feature maps by feeding
the input image into the model. Then, it samples subsets of the feature maps that
contain the most important features by partially backpropagating the signal to the
layer and calculating the average gradient scores for each feature map. It then col-
lects all feature maps with positive scores and applies an Otsu-based threshold [16]
to remove those with lower scores. It produces attribution masks by bilinearly inter-
polating and normalizing the positive feature maps. For each selected layer, it obtains
a layer visualization map by computing the weighted sum of the attribution masks.
Finally, it combines obtained saliency maps in a fusion module to produce a final
explanation.
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3.1.5 Gradient-Weighted Class Activation Mapping (Grad-CAM) and
Grad-CAM++

Grad-CAM [25] and Grad-CAM++ [4] are methods for producing a saliency map,
which is a visual representation of the regions in an input image that ismost important
for a particular task or model.

Grad-CAM is a technique that uses the gradients of the target class with respect
to the final convolutional layer of a CNN to produce a coarse localization map of the
important regions in the input image. The map is then upsampled and weighted by
the gradients to produce the final saliency map.

Grad-CAM++ is an extension of Grad-CAM that produces a more fine-grained
and accurate localization map by using the gradients of the target class to the lower
convolutional layers and the final convolutional layer. It also introduces a newway of
weighting the upsampled map using a weighted combination of the gradients of the
target class and the activations of the lower convolutional layers. The final saliency
map is also produced by upsampling and weighting the localization map using the
weighted combination of gradients and activations.

3.1.6 Layer-Wise Relevance Propagation (LRP)

LRP uses the weights and activations of a neural network to propagate relevance
scores from the output layer back to the input layer according to the conservation
rule, which states that a neuron that receives what is from the upper layer must be
redistributed entirely to the lower layer in equal numbers. The relevance scores are
propagated by calculating the quantity representing how much neuron j contributes
to making neuron k, where j and k are neurons in two consecutive layers of the
neural network. The propagation procedure terminates once the input features have
been reached. LRP has several propagation rules with different non-linear rectifiers,
but we use the epsilon rule, which adds a small positive term in the denominator of
the equation used to propagate the relevance scores, because it helps to solve cases
where the denominator is zero and typically leads to sparser explanations in terms
of input features and less noise.

3.2 XAI Methods for the Localization Task

3.2.1 Kernel Density Estimation (KDE)

KDE creates a distribution density map by weighting distances of all data points for
each specific location along the distribution. If more data points are grouped locally,
the estimation is higher as the probability of seeing a point at that location increases.

In the object detector’s first stage, we apply KDE to the center points of 300 inde-
pendent and identically distributed (b0, b1, . . . , b300) boxes to obtain the distribution
density map given by:
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(a) Consistent

(PCKDE=0.934)

(b) Non-consistent

(PCKDE=0.297)

Fig. 3 a Consistent: the model detection’s center point (red) is mostly at the same location as the
point achieving the highest KDE score (green). bNon-consistent: the model detection’s center point
is far from the point having the highest KDE score

p̂n(b) = 1

nh
·

n
∑

i=1

K

(

Bi − b

h

)

(1)

where K (b) is called the kernel function that is generally a smooth, symmetric
function such as a Gaussian and h > 0 called the smoothing bandwidth controls the
amount of smoothing.

We represent the distribution density map as multiple continuous probability den-
sity curves on the image. The KDE score of a point is computed as the log-likelihood
of that point under the KDE model. The score reflects the likelihood that any given
box has been drawn from the learned probability distribution. The higher the KDE
score is, the more the given box matches the distribution.

The prediction’s consistency KDE (PCKDE) is computed as the ratio between the
KDE score of the final box’s center point detected by the model and the KDE score
of the point achieving the highest probability value on the distribution density map.
Finally, we set the threshold as 0.5 to grade the PCKDE score. If the PCKDE score
exceeds 0.5, the model’s detection is considered consistent, as shown in Fig. 3a and
non-consistent in Fig. 3b.

3.2.2 Density Map (DM)

DM is commonly used in crowd counting context to estimate objects’ distribution
in an image [13]. We propose DM as a new statistic-based method in the context
of XAI by extracting the frequency value of each pixel from boxes predicted by
the model in region proposal generation, as shown in Fig. 4a. The pixel’s frequency
value is calculated by the number of boxes containing that pixel. For an input image
X ∈ R

3×H×W , the model detected n boxes after the first stage. For any box k, let
coork be the set of coordinates (i, j). Thus, DM’s output D of X is the H × W
matrix defined as DX = ∑n

i=1 Bk , where Bk is computed:
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(a) (b)

Fig. 4 a DM extracts all model’s regional proposals after the first stage. b DM’s explanation as a
saliency map

Bk = [ai j ]H×W , ai j = 1coork [(i, j)] (2)

The more focused boxes a pixel has, the redder colors are indicated in the DM’s
explanation. In Fig. 4b, the model detects two boxes containing nodules where the
blue box is correct with the ground-truth label, while the red box is false. The DM’s
saliency map can explain the blue box with redder colors, indicating that the model
focuses on this region to detect the nodule.

3.2.3 Detector Randomized Input Sampling for Explanation (D-RISE)

D-RISE is a method for producing saliency maps that explain the regions of an input
image that are important for a particular task or model. It is specifically designed to
produce saliency maps for object detectors, making it the first method. It involves
generating a set of binary-bit masks for each superpixel in the input image, upsam-
pling the masks using bilinear interpolation, feeding the samples into a model to
obtain bounding boxes and scores for each box, and summing up all the masks using
the box scores as weights to produce the final saliency map. The regions of the input
image that significantly impact the model’s prediction appear as darker colors on the
saliency map.

4 Results

4.1 Qualitative Evaluation

4.1.1 Analysis of Positive Cases (with Nodules)

In the positive case, we evaluate XAI explanations on two cases of true positive
classification, namely correct localization, and mislocalization, as shown in Fig. 5.
A correct localization is when the intersection over the union between the detected
box for a nodule and the ground-truth box is larger than 0.5. All our implemented
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Fig. 5 Qualitative comparison between XAI explanations. In the input images, blue boxes are
the correct model’s predictions, red boxes are the wrong model’s predictions, and green boxes are
ground truths. The first row is the correct localization case where the predicted box overlaps the
ground-truth label. The second row is themislocalization casewhere themodel predicted two boxes,
but the nodule only exists in the left box

XAI methods’ explanations are applicable in the correct localization case, and their
explanations are consistent with the model’s detected box in the correct localization
case. Because D-RISE is the only method having access to the localization block,
it can give end-users separate explanations for each detected object. Meanwhile, all
other XAI methods show explanations for all nodules since they explain to end-users
why the model classifies an image containing nodules.

To further observe D-RISE’s advantages, we consider the mislocalization case
where the model predicted two boxes, but the nodule only exists in the left box. In
this case, D-RISE is the only method to show the explanation solely for the correct
and incorrect boxes, while others explain both. Hence, D-RISE’s results are more
understandable to end-users when each nodule detection needs to be explained.
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Fig. 6 Explanations of KDE and DM for true negative and false negative cases

4.1.2 Analysis of Negative Cases (Without Nodules)

One serious error ofAI-assisted thyroid diagnosis is a false negative, where themodel
fails to detect any nodule. Hence, our proposed methods, KDE and DM, are the only
applicable for explaining negative cases, namely true negative and false negative.
As shown in Fig. 6, KDE estimates the distribution of the model’s prediction placed
around the image’s corner. The samemodel’s behavior is also reflected in DM, where
the saliency map shows hot regions around the image’s border. They both show that
the model does not concentrate on any part inside the image, as it does not detect
any nodules.

4.2 Quantitative Evaluation

Two critical aspects of XAI, plausibility, and faithfulness, are evaluated by quanti-
tative metrics. These metrics are used to justify the model by assessing the extent to
which the method satisfies the users by providing superior statistical explanations.
All methods are evaluated on the whole dataset.

4.2.1 Plausibility Evaluation

• Energy-Based Pointing Game (EBPG) evaluates XAI methods’ precision and
denoising ability [31]. Extending the traditional Pointing Game, EBPG considers
all pixels in the resultant saliency map S for evaluation by measuring the fraction
of its energy captured in the corresponding ground truth G.
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• Intersection over Union (IoU) analyses the localization ability and meaning-
fulness of the attributions captured in an explanation map. Initially, Otsu-based
binarization [16] is applied to convert ultrasound images into binary images. We
compute the mean IoU between the explanation box and the ground truth box.

• Bounding box (Bbox) is considered a size-adaptive variant of IoU [24], calculated
by selecting the top N pixels in the saliency map significantly influencing the
prediction results. It evaluates the regions captured by the bounding box which
contains the object.

4.2.2 Faithfulness Evaluation

We evaluate XAI’s faithfulness with the Drop and Increase [6]. The original image
is perturbed by masking the important areas marked by the explanation.

• Drop checks the target audience’s average predicted drop when using the explana-
tory as input.

• Increase measures the number of times the model’s confidence increases when
using the explanation as input.

4.2.3 Result

Table1 shows the quantitative comparison of XAI methods concerning their plau-
sibility and faithfulness. In detail, CAM-based methods achieved good results with
plausibility metrics, especially EPBG and IoU, in a reasonably short time. While
RISE andD-RISE perform better than other methods in terms of faithfulnessmetrics,
such as Drop and Increase, as they faithfully reflect the model’s behavior. Neverthe-
less, the computational time of D-RISE and RISE in specific and perturbation-based
methods, in general, are the highest due to their perturbation process. LRP achieved
the highest computation efficiency, which is its main advantage.

Table 1 Mean accuracy (%) of quantitative results and computational time of all XAI methods.
For each metric, the arrow ↑ / ↓ indicates higher or lower scores are better. The best is shown in
bold, and the second best is underlined
Metric KDE DM LIME Grad-

CAM
Grad-
CAM++

LRP RISE Ada-
SISE

D-RISE

EPBG ↑ 29.45 21.06 10.95 48.58 52.11 31.17 17.04 50.31 17.52

BB ↑ 49.16 40.09 14.49 60.51 47.65 38.45 62.41 55.87 63.42

IoU ↑ 18.94 18.73 10.09 45.22 49.55 44.98 12.06 14.99 12.07

Drop↓ 34.39 27.31 16.21 26.88 45.76 65.81 4.24 12.43 2.34

Inc ↑ 32.20 27.12 27.12 18.08 9.60 4.52 46.33 45.13 53.67

Time (s)
↓

66 28 380 0.75 0.8 0.55 245 295 319
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Fig. 7 The number of
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4.2.4 Evaluating User Trust

An essential question of XAI applications is whether explanations can build end-
users trust in the AI system. We invited 16 participants with previous experience
and familiarity with ultrasound images and AI models, namely three radiologists,
one patient, six medical students, and 6 AI scientists from different countries, to
take a survey. Six participants were self-reported as from Vietnam, five were from
European countries (Germany, Romania, Ukraine), four were from North American
countries (United States, Canada), and one was from Pakistan, as shown in Fig. 7.
In this survey, the trust of humans towards XAI’s explanation is evaluated in terms
of understandability, where this explanation helped us understand why the model
behaved as it did.

All participants answered seven questions categorized into four prediction cases,
namely True Positive (TP), False Positive (FP), True Negative (TN), and False Nega-
tive (FN). In detail, TP cases have four questions for the following specific cases: one
question for one nodule correctly detected, one question for two nodules correctly
detected (correct localization), and two questions for one nodule correctly detected
but another falsely detected (mislocalization). While there is one question for each
FP, TN, and FN. Each question represents a specific case of the model’s classifica-
tion and localization where the model’s prediction, ground truth, and explanations of
applicable XAImethods are shown. Participants rated their trust of eachXAI’s expla-
nation on a labeled, 5-point Likert scale, ranging from 1 (very unlikely) to 5 (very
likely). The box plots in Fig. 8 statistically report the score of participants’ ratings
of XAI methods on four prediction cases. All box plots use the Altman whiskers
to display the spread of participants’ ratings, which can be particularly useful for
showing outliers.

In general, XAImethods using a saliencymap as the explanation have consistently
higher understandabilitywith highermedians towards humans thanothers in all cases.
D-RISE gains the most trust from users in TP and FP cases, where its interquartile
ranges are from 4 to 5, While in TN and FN cases, DM overall surpasses KDE. Still,
despite not having a user-friendly explanation, KDE’s maximum whisker reaches 5,
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Fig. 8 Participants ratings of XAI methods in aTrue Positive, b False Positive, c True Negative,
and d False Negative

which means that it still gains some high trust from users. Also, note that all methods
contain low-rating outliers, which means that probably few users are still confused
with explanations. Thus, the future of different explanation types is still wide-open.

5 Conclusion

We applied several XAI methods and proposed two new statistic-based methods,
namely KDE and Density map, in the context of XAI to explain the model’s predic-
tions on the Vietnamese thyroid ultrasound dataset. Our implemented and proposed
XAI methods can cover all prediction cases with high consistency with the object
detector and doctors’ knowledge. Consequently, according to our evaluations and
surveys, we recommend end-users use Grad-CAM++ as the default method since it
requires a very short time to explain plausibly per case. At the same time, D-RISE is
suitable when we require explicitly separate explanations for each nodule due to its
faithfulness but high computational time. In future works, we would like to integrate
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XAI methods into the diagnosis process in real-time scenarios, so the transparency
of AI decisions to doctors and patients can be improved. Also, we aim to conduct a
more comprehensive survey that spans multiple countries and continents involving
more various user subjects to increase the representativeness and reliability of XAI
in the medical field.
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Federated Learning over Harmonized
Data Silos

Dimitris Stripelis and José Luis Ambite

Abstract Federated Learning is a distributed machine learning approach that
enables geographically distributed data silos to collaboratively learn a joint machine
learning model without sharing data. Most of the existing work operates on unstruc-
tured data, such as images or text, or on structured data assumed to be consistent
across the different silos. However, silos often have different schemata, data formats,
data values, and access patterns. The field of data integration has developed many
methods to address these challenges, including techniques for data exchange and
query rewriting using declarative schema mappings, and entity linkage. We propose
an architectural vision for an end-to-end Federated Learning and Integration system,
incorporating the critical steps of data harmonization and data imputation, to spur
further research on the intersection of data management information systems and
machine learning.

Keywords Federated learning · Data integration · Data imputation

1 Introduction

Federated Learning (FL) [35] and Analytics [37] is a distributed learning approach
that allows to collaboratively train machine learning and other statistical models
from decentralized data. Since different sources often cannot share their data due to
competitiveness, legal, and privacy constraints, Federated Learning keeps the data at
its original source, and pushes the learning process, usually training a neural network,
down to each source. A central server coordinates the distributed training among the
participating data sources and aggregates the locally learned neural models (or other
statistics) to compute a globalmodel. Training can be performed under strong privacy
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guarantees through homomorphic encryption [40]. Federated learning [23, 28, 55]
has been very effective both for edge and mobile devices [31], and for federations of
business organizations [32], or biomedical research consortia [24, 39].

The same privacy constraints that prevent data sharing across sources also inher-
ently create isolated data environments, i.e., data silos [22]. Most work in Federated
Learning focuses on solving challenges related to the distributed learning optimiza-
tion problem [28, 49], but the core challenge of data harmonization across silos
is overlooked. Existing systems [27] assume that the local data at the participating
sources (which are the input into the learning model) follow the same schema, for-
mat, semantics, and storage and access capabilities. Such an assumption does not
hold in realistic learning scenarios, where geographically distributed data sources
have their own unique data specifications; a challenge that is commonly observed in
Federated Database Management Systems [21, 43], Data Integration [12], and Data
Exchange [14]. Therefore, we present an architecture for a Federated Learning and
Integration with data harmonization and data imputation as its core components.

Figure1 shows our high-level architecture. The Data Harmonization component
maps each local schema (and values) to a common schema (and values) agreed by
the federation, which we advocate should be done through declarative schema map-
pings [12–14, 17, 19, 52]. This common schema intends to support multiple learning
scenarios over the domain of the data. Since not all sources may have values for all
the attributes in the common schema, it is often necessary to impute missing values
to improve the precision of statistical studies [26] and reduce prediction bias [3], spe-
cially in clinical studies. This has implications for the data integration methods used:
instead of removing answers with skolems/labelled nulls, these can be preserved and

Fig. 1 A harmonized
federated learning workflow
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the missing values imputed. Altogether, we identify the following core challenges
that need to be solved to facilitate the deployment of Federated Learning solutions
in real-world settings:

• Private and secure data harmonization and normalization across federated learning
silos.

• Enable federated training overmissing values using imputation to improve learning
efficiency and reduce bias.

• Improve data query access patterns for efficient ingestion of training data into
siloed learning models.

Our architecture is general, butwe focus onbiomedical domains, since they require
all the aspects of the architecture and have significant social impact. In the remainder,
we provide the necessary background of Federated Learning optimization, discuss
the need for federated data integration and imputation, and describe our proposed
architecture.

2 Background

In a Federated Learning environment consisting ofN participating learners, we want
to minimize the objective function [35, 49]:

F(x) = Ek∼K [Fk(x)] Fk(x) = Eξ∼Dk [�k(x, ξ)] (1)

where x represents themodel parameters andK the learner distribution selection over
the population ofN learners. Every learner computes its local objective by minimiz-
ing the empirical risk Fk over its local data distribution Dk , with Di �= D j ,∀i �= j
and �k(x, ξ) the local loss function. The global objective function F(x) can take the
form of an empirical risk minimization objective F(x) = ∑P

k=1
pk
P Fk(w) with pk

denoting the contribution value of learner k in the federation and P = ∑
pk the nor-

malization factor; hence
∑K

k
pk
P = 1. In the original Federated Average (FedAvg)

algorithm [35], the contribution value of every learner k equals its local training
dataset size, pk = |Dk | and a central server aggregates local models updates at given
synchronization points known as federation rounds.

Federated optimization methods need to address several challenges that do not
usually arise in centralized settings, namely learners’ communication constraints,
local data and computational heterogeneity, learning topology, and security and pri-
vacy. To provide convergence guarantees in the presence of these learning con-
straints, existing methods decouple the federated optimization problem into global
(server-side) and local (client-side). Server-side optimization, e.g., [38], refers to
the algorithm applied while merging learners’ local models, and client-side opti-
mization, e.g., [29], to the algorithm applied during learners’ local training. Recent
surveys [23, 49] provide further details.
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FederatedLearning systems can be structuredwith different topologies depending
on the communication constraints [23, 39]. In a centralized (star) topology learners
communicate through a central entity (controller). In a decentralized topology learn-
ers communicate directly with each other (peer-to-peer) without any central coordi-
nator. Hierarchical and hybrid approaches [4, 39], where multiple sub-aggregators
can co-exist [7], have also been explored.

Federated Learning has been applied in two environments with complementary
properties: cross-silo FL consisting of tens or hundreds of reliable, stateful learn-
ers with ample computational resources (e.g., geo-distributed datacenters, hospital
networks), and cross-device FL consisting of thousands or millions of unreliable,
stateless learners with limited computation and communication capacity (e.g., IoT
sensors, cell-phones) [23]. For simplicity of exposition, we focus on a cross-silo
centralized topology where all learners train the same neural network.

Federated training can follow different communication protocols. In a syn-
chronous protocol [35], each learner trains for a given number of epochs. The con-
troller waits for all learners participating in the current round to finish their local
training before computing a new global model, which may cause fast learners to
remain idle while waiting for slow learners. In an asynchronous protocol [53], each
learner trains for a given number of epochs and immediately sends its local model to
the controller. There is no idle time, but the global model may be computed over stale
local models. In a semi-synchronous protocol [47], all learners train for the same
time period before sharing their local models with the controller. This approach
avoids idle time, but learners may perform different amounts of work. Empirically,
this approach often performs better.

To improve privacy and security during federated training, a range of privacy-
preserving federated learning algorithms have been recently proposed [23] based on
private-aware training and secure aggregation. To ensure protection against different
attack scenarios, such asmembership inference attacks [18] or collusion attacks [34],
a Federated Learning solution needs to incorporate both approaches. In the case
of private training, learners can train the global model on their local data using
(differential) private-aware methods, such as DP-SGD [1]. In the case of secure
aggregation, the aggregation of local models by the controller can be performed
through Secure Multi-Party Computation [8] or Fully Homomorphic Encryption
(FHE) [46, 60] schemes. In the FHE setting [46], the controller sends the encrypted
globalmodel weights (ciphertext) to each learner, a trusted entity generates the public
andprivate keypair and shares the keypairwith everyother learner andonly the public
key with the controller. The learners decrypt the encrypted weights using a private
key, train the decrypted model on their local dataset, encrypt the new local model
(ciphertext) using the public key and send it back to the controller. Upon receiving
the encrypted local models, the controller performs a private weighted-aggregation
step over the ciphertexts to compute the global model.

Depending on the distribution of the training records used to train the federated
model across the participating learners, different data partitioning schemes have
been investigated [55, 57]. Let I denote the id (entity) space, X the feature space
and Y the label space of the training records, these schemes are:
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• Horizontal Federated Learning (HFL). Learners own data with the same feature
and label space but different id space, e.g., participants in a research consortium
with multiple sites.

Xi = X j , Yi = Y j , Ii �= I j , ∀Di ,D j , i �= j (2)

• Vertical Federated Learning (VFL). Learners own data from the same id space
but with different feature and/or label space, e.g., same patients across different
hospitals.

Xi �= X j , Yi �= Y j , Ii = I j , ∀Di ,D j , i �= j (3)

• Federated Transfer Learning (FTL). Learners own completely disjoint datasets,
with different id, feature and label space, e.g., different customers across different
organizations.

Xi �= X j , Yi �= Y j , Ii �= I j , ∀Di ,D j , i �= j (4)

Most federated learning algorithms focus on the HFL domain [23, 49] while VFL
and FTL introduce additional federated optimization challenges that require more
complex and expensive training protocols. Vertical federated learning requires an
aggregation of the different features across learners and privacy-preserving compu-
tation of training loss and gradients across learners with [55] or without [51, 56]
a third-party coordinator. The most critical step in this domain is record linkage
at the start of federated training through privacy-preserving entity resolution tech-
niques [20, 54]. Federated transfer learning needs to learn common representations
from the diverse learners’ feature spaces and obtain predictions through one-side
features [55]. Depending on the minimization domain, FTL methods can be further
categorized into instance-, feature- or parameter-based [57]. In this work, we focus
on the data integration and imputation challenges that arise in the Horizontal Feder-
ated Learning domains, but we hope our proposed solutions to spur further research
into the VFL and FTL domains as well.

3 Federated Learning and Integration

A scalable federated learning solution should adhere to the architectural principles of
modularity, extensibility, and configurability [6]. Modularity refers to the develop-
ment of functionally independent services (micro-services) that allow finer control of
system components’ interoperability. Extensibility refers to the functional interface
expansion of each service. Configurability refers to the ease of deployment of new
federated models and procedures. Following these principles, we propose a Feder-
ated Learning and Integration (FLINT) architecture (Fig. 2). We describe the core
functions in service of learning, data harmonization, and data imputation.
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3.1 Federated Learning Programming Model

Following the successful programming model of Apache Spark [59], the Federation
Controller operates as the cluster manager of the federation, Learners as the com-
puting nodes, and the Driver as the entry point of the federation launching various
operations in parallel.

Federation Controller. The controller orchestrates the distributed training of
the federated model across learners. It comprises four main components. First, the
Model Aggregator mixes the local models of the learners to construct a new global
model. Second, the Training Task Scheduler manages learners’ participation and
synchronization points and delegates local training tasks. The Model Store saves the
local models and the contribution value of each learner in the federation to improve
the efficiency of model aggregation over multiple training protocols [47]. TheModel
Store component can be materialized through an in-memory or on-disk key-value
store, depending on the number of learners and the size of the models (key: learner
id, value: model and its contribution pk). The controller may also operate within
an encrypted environment, in which case it needs to store encrypted local models
and the global model aggregation function needs to be computed with homomorphic
operations, such as the commonly-used weighted average methods [24, 46, 60].
Finally, the Evaluation Task Scheduler is responsible to dispatch the evaluation tasks
to the learners and collect the associated metrics.

Learner. Every data silo acts as an independent learning entity that receives the
global model and trains the model on its privately held local dataset through its
Model Trainer component. A learner can also support a Model Evaluator component
to evaluate incoming models on its local training, validation and/or test datasets.
Such evaluation can provide a score to weigh the models on actual learning perfor-
mance [44]. The Dataset Loader feeds harmonized data to the training and evaluation
components with the appropriate format. Section3.2 discuss the harmonization and
imputation process in detail.

Driver.TheDriver defines the high-level control flow of the federated application.
Its main tasks are to initialize the Federation Controller and Learner services, and
define and initialize the neural network architecture (with a random or a pretrained
model). The driver also collects real-time metadata associated with the federated
training process and stores them inside the Catalog for further bookkeeping. In our
design, we consider the driver to be an independent trusted entity that can generate
the key pairs of the encryption scheme.

Evaluation. An evaluation of the presented Federated Learning Programming
Model is shown in Fig. 3. The figure shows the convergence of federated learning
training policies for different communication protocols and model aggregation func-
tions (FedAvg, FedRec, FedAsync) on standard benchmarks and a neuroimaging
domain using the MetisFL system [47]. For this evaluation, we consider a horizon-
tal data partitioning scheme with all datasets conforming to the same schema, and
training performed over complete data records with no missing values. CIFAR is a
benchmark for object detection in images (with 10 or 100 object classes). Extend-
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Fig. 3 Federated models convergence in MetisFL

edMNIST [9] is a benchmark for recognition of handwritten letters and digits (we
use ExtendedMNST ByClass with 62 unbalanced classes). BrainAge [45] is a neu-
roimaing task for predicting the age of a human brain from a structural MRI scan.
The difference between the predicted and chronological age value is a biomarker of
brain pathologies. For CIFAR and ExtednedMNIST, we consider a computationally
heterogeneous federation (5 CPUs and 5 GPUs) and for BrainAge a computationally
homogeneous federation (8 GPUs). In all environments, the training data is non-
IID across learners and learners hold different amounts of training samples (rightly
skewed assignment; see plots’ insets). The SemiSync policy has faster convergence,
particularly in heterogeneous data and computational environments [47].

3.2 Data Harmonization and Imputation

All recently proposed Federated Learning systems [27] assume that the local training
dataset of every silo conforms to the same data specifications. Such a scenario is not
always true in real-world settings. Each silo is an independent entity and it is therefore
natural to have its own unique data specifications. For example, in an international
federation of hospitals, each institution may adhere to data specifications unique to
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the geographical region it operates on [11, 33]. Creating a consensus data model that
can harmonize the nuances of such regional data specifications is a not an easy task,
but it is critical for meaningful data analysis. Therefore, we propose to incorporate a
data harmonization and integration component as a core feature of our architecture.

Source Modeling/Schema Mapping. The federated machine learning model
needs a harmonized input across all participating sites (sources). Although this could
be accomplished by ad-hoc ETL pipelines at each site, such pipelines introduce
maintenance and extensibility challenges. To mitigate this, we advocate for a more
principled declarative approach based on formal schema mappings following the
vast work in data integration [12–14, 17, 19, 52]. First, we define a common schema
(aka global, domain, mediated, or target schema) that represents an agreed-upon
view of the application domain for the purposes of the federation. Such a common
model may follow established standards (e.g., the OMOP Common Data Model and
Vocabularies [42], or be defined pragmatically by the members of the federation. The
target schema is a degree of freedom of the formalism. It does not necessarily need to
provide the “perfect” model for the domain, but it needs to provide sufficient details
to support the expected queries and analysis, and a reasonable expectation of exten-
sibility as new sources are added. Second, we define declarative schema mappings
to translate the data from the sources into the common schema. These mappings are
existential formulas of the form: ∀x, y φS(x, y) → ∃zψG(x, z), where φS andψG are
conjunctions of predicates from the source and global (common) schemas, respec-
tively, and x, y, z are tuples of variables. These mappings can be used for virtual data
integration using query rewriting [12] or for data warehousing/data exchange [14].
Complex constraints can be enforced on the target schema (i.e., being an ontology)
and corresponding query answering methods exist [17, 52]. Declarative mappings
have the advantage of being easier to generate, maintain, and provide opportunities
for automatic learning and optimization (e.g., [25]). Figure4 shows an example of
a global schema, schema mapping rules, and how queries on the domain schema
support multiple learning tasks.

Entity Linkage/Data Normalization. It is also important to recognize when
objects from different sources correspond to the same entity in the real world. For
example, a patient may have interacted with several doctors, hospitals, testing facil-
ities, pharmacies, etc., each of which may have created different records of these
interactions. The data integration system must recognize that all theses records refer
to the same patient, and link them into a complete medical history for the patient.
When we deal with complex structured objects, such as patients, this problem is
called entity or record linkage [13, 15, 36]. A simpler version of the problem also
occurs with atomic values; different sources may use different strings to refer to
the same value. For example, in a radiation oncology domain, one source may code
an anatomical structure with a value “LTemp lobe,” while another uses the value
“LTemporal.” To provide clear semantics for analysis, we need to map these two
values to a normalized value such as "Left Temporal Lobe" (UBERON:0002808).

Figure2 shows the detailed data harmonization components in our architecture.
Each learner has an instance of a local mediator [12, 50] with access to the schema
mappings from its local source/s to the global schema.We envision that the federation
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will tackle different learning problems, at different times, over the same common
view of the data that the mediator produces. Each learning problem would require a
different neural network with different input. Thus, we obtain the required input data
for each problem through a query over the common schema, as opposed to ad-hoc
ETL processes. The local data is never changed; however, our system can answer
such queries using the schema mappings (and target schema constraints, if any)
through query rewriting and data exchange techniques [12–14, 17, 19, 52]. For data
normalization, in simple cases we can use a local database with mappings between
the values used in each source and normalized values, or use functional predicates
that compute a similarity function between the source and the global values in more
complex cases. These normalization relations can easily be added to the schema
mappings (Fig. 4) and the query answering procedure as interpreted predicates, e.g.,
[2]. The target query, which computes the input to the neural network, ismaterialized,
so that the model trainer can efficiently operate over it.

Entity linkage across learners is more complex. So far we have discussed hori-
zontal federated learning, where sites have similar id, feature and label space that is
needed as input to the learning algorithm, possiblywith imputed values. However, the
required input data (i.e., data of a single learning example) may be distributed across
several sites, so called vertical federated learning, where true private cross-source
record linkage is needed [20, 51, 54–56].

Data Imputation.After data harmonization, the machine learning model input is
uniform and meaningful, since it is the output of a query over the common schema
and values haven been normalized. However, real sources often have missing values,
either missing at random or systematically. One option is to remove rows or columns
with missing values, but that diminishes the utility of the data and the quality of the
learned models. It is generally preferable to impute the missing values, that is, to find
the most likely value for that given attribute and example [48, 58]. Models learned
with imputed values can lead to better performance [5]. In the context of federated
learning, participating sourcesmay have limited information, and statistically diverse
data distributions, and therefore their local recordsmay not be used to imputemissing
values/attributes. In these learning settings, an imputation function can be learned
at the federation level. By training such a federated imputation function we can
leverage the information from all sources, improve data quality and provide better
data distribution coverage.

Data imputation interacts with formal query rewriting methods in an interesting
way that opens new avenues for research. Since formal schema mappings have exis-
tential variables in the consequent, the query rewriting process may generate null
values (skolems) in the answers to a query. Tuples with such null values are dis-
carded, since they are not certain answers (i.e., true in all possible worlds) [12, 14].
However, for the purpose of learning, such null values can be imputed probabilisti-
cally. Therefore, we advocate to modify query answering algorithms to preserve null
values and incorporate imputation procedures. Interestingly, the target query may
need to retrieve attributes beyond those required by the input of the machine learning
algorithm in order to improve the quality of the imputation.
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Fig. 4 Global schema and schema mapping rules

Example. Figure4 shows a notional example of horizontal federated learning and
integration (FLINT) on sources with medical data. The federation designers define a
(harmonized) global schema with 3 relations: subject, which models subject demo-
graphics; clinical, which models clinical assessments and diagnoses, and imaging,
whichmodels different types of medical imaging. The federation expects normalized
icd10 codes for diagnoses, and standardizes on the Montreal Cognitive Assessment
(MoCA) as a measure for dementia. There are two sources: s1, which represents
a clinic specializing in the treatment of Alzheimer’s Disease that captures mag-
netic resonance imaging (MRI) and administers a Mini-Mental State Examination
(MMSE) for each patient, both on a single visit; and s2, which represents a hospital
that treats a wider variety of diseases. The two sources are mapped to the global
schema using formal schema mappings that include both data transformation and
imputation functional predicates. The first mapping uses a simple functional pred-
icate (minus) to compute the age at assessment from the difference of the patient
date of birth and the visit date, as well as an imputation procedure (impute_f1) that
imputes both theMoCA score and possibly missing diagnosis codes from theMMSE
score, age, sex, race/ethnicity, and existing diagnosis. Since s1 contains only MRIs,
this is the recorded type of the resulting imaging in the harmonized schema. The sec-
ond mapping joins 3 tables from source s2 comprising demographics, imaging, and
diagnoses. Assume the federation is only interested in neuroimaging of Alzheimer’s
Disease, so it chooses to populate the global schema only with MRI scans and rel-
evant diagnoses (AD: Alzheimer’s Disease, MCI: mild cognitive impairment, and
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controls). An interpreted predicatemaps the source’s diagnoses to appropriate ICD10
codes. Finally, a second imputation function (impute_f2) imputes the MoCA values
from sex, age, race/ethnicity and diagnosis. Note that since the MoCA score is not
produced by the source, but it is required by the global schema predicate clinical, it
would have been represented by an skolem function in a traditional data integration
system, and query tuples with such skolem would have been removed. Here, we
impute the MoCA score, so no tuples are lost.

The global schema, through the schema mappings, enables a variety of queries
that support different learning tasks within the federation. Figure4 shows two such
queries. The first computes the training data for a classification learning task that
predicts an AD status (AD/MCI/CT) diagnosis based on the MRI, sex, age, and
race/ethnicity of a subject. The second query computes the training data for a regres-
sion learning task to predict cognitive decline based on an MRI at an initial time
point and the ages and cognitive assessment values at two timepoints.

Privacy. Federated learning assumes that data from one site cannot be leaked to a
different site. Therefore, in our system, federated training encrypts the neural network
parameters (weights, gradients) and the aggregation of neural models from different
sites is done under homomorphic encryption. We refer the reader to [46] for details.
To enforce data privacy, query rewriting and data normalization need to be performed
locally at each site and therefore the schema mappings and the normalization tables
need to be kept local at each site and only the global model schema is shared across
sites. Similarly, record linkage can be done in a privacy-preserving manner [16, 30,
41] but federated training becomes significantly more complex, which is an active
area of research [10, 20, 54, 55].

4 Discussion

We presented an architecture for a Federated Learning and Integration (FLINT)
platform for distributed training across a federation of data silos, including data inte-
gration and imputation components, which are critical for meaningful analysis. We
advocated using principled data harmonization methods, leveraging the vast liter-
ature on data integration [12–14, 17, 19, 52]. Specifically, we proposed to model
the application domain through a target schema and formal schema mappings, and
to execute target queries to provide the input data for the federated learning model.
Since the purpose of data integration is analysis, we propose new research directions
for query answering techniques to incorporate statistical imputation (instead of dis-
carding answers with labeled nulls). We plan to release MetisFL as an open-source
prototype FLINT to stimulate further research on the interaction of databases and
machine learning.
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Investigation of Drift Detection
for Clinical Text Classification

Hammam Abdelwahab, Claudio Martens, Niklas Beck, and Dennis Wegener

Abstract Today, machine learningmodels are applied in various healthcare applica-
tions in productive use. The availability of extensive patient information in electronic
formatsmakes it possible to utilize them and developmachine learning-basedmodels
for data analysis. However, the performance of an operational model is continuously
subject to degradation due to unforeseen changes in the input data flow. Therefore,
monitoring data drift becomes essential to maintain the desired performance of the
trained models. In the context of monitoring and drift detection, statistical hypoth-
esis testing enables us to examine whether incoming data deviate from training
data. Recent studies show that Kernel Maximum Mean Discrepancy (KMMD) and
Kolmogorov–Smirnov (KS) can reliably measure the distance between multivariate
distributions, hence drift detection. In this work, we conduct a case study on drift
detection based on textual data from drug reviews and propose the sub-sampling
method to stabilize drift detection. The results of our experiments show that both
KMMD and KS detect changes in the text reviews with a limited number of these
reviews in both the reference and test data.
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1 Introduction

Machine learning communities are growing tremendously every day, as many real-
world problems can be solved through machine learning. Several fields such as
computer vision, natural language understanding, time series analysis, and healthcare
analytics have adopted machine learning as the primary technology for data-driven
solutions. The availability of extensive patient information in electronic formats
makes it possible to utilize them and develop machine learning-based models for
data analysis [1]. Still, most of the ongoing development of solutions is mostly in an
academic context with less detail on how to automate the deployment, monitoring,
or maintaining the performance of a model in production [2].

Once a trained model is deployed in the real world, several new challenges arise.
A key challenge is the degradation of the model [3] and therefore its reliability.
This must be recognized by monitoring. While traditional monitoring utilizes per-
formance metrics such as request latency, memory, and serving frequency, machine
learning applications require specialized metrics. These metrics include model per-
formance, data-relatedmetrics, driftmetrics, and explainabilitymetrics [4].However,
the assessment of a model’s performance mainly depends on the ground truth of the
incoming production data. Given a model deployed in the real world, it is there-
fore often not possible to evaluate the model’s performance until the ground truth
is collected. However, drift detection can help predicting poor model performance
by detecting changes in the incoming data. This enables monitoring of the model
independently of collecting the true labels [4].

In the following we present a case study of how drift detection can be applied in
a text classification scenario.

Since the Kernel Maximum Mean Discrepancy (KMMD) [5] and Kolmogorov–
Smirnov (KS) [6] have proven to be reliable distance measures for statistical hypoth-
esis testing, we have chosen these as the basis for our drift detection. In detail, we
will perform drift detection experiments based on the Drug Review Dataset [7] and
evaluate the performance of the drift detectors. We then modify the drift monitoring
process by introducing sub-sampling to improve detection performance. In addi-
tion, we will evaluate the performance of our drift detectors using different sample
size configurations. Finally, we will compare our drift detectors in terms of time
performance.

The structure of this paper is as follows: We will first discuss related work on
drift detection in Sect. 1. After that, in Sect. 2, we present the methodology used,
which focuses on how we perform statistical hypothesis testing. Then we describe
our case study and in particular the experimental setup in Sect. 3. We then present
the execution of our experiments as well as their results and evaluation in Sect. 4.
Finally, we summarize the lessons learned and discuss future work in Sect. 5. It is
worth mentioning that the work in this paper is based on applied research from [8].
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Related Work

In this sectionwe highlight previous research on drift detection. Before using the term
drift in the context of machine learning-based pipelines, the problem of detecting
drifts has been widely and explicitly discussed in the field of data mining. According
to Barddal et al., the most common learning problem when it comes to streaming
is classification. In a classification problem, a learner learns from features extracted
from the data streams. Therefore, the drift detection is defined by the changes in
the extracted features from the streaming data (feature drift) [9]. In addition, Jose
G. Moreno-Torres et al. defined the term drift as the change in the joint statistical
distribution between the training data and the test data [10]. They categorize drifts
into covariate drifts for inputs’ distribution, prior drifts for labels’ distribution, and
concept drifts for predictions’ distributions.

According toHu, Hanqing et al. in [11], themethods of detecting drifts can be bro-
ken down into performance-based and distribution-basedmethods. The performance-
based detection methods monitors the drifts of the performance metrics of a machine
learning model such as accuracy, precision, and F-score. Examples of these meth-
ods are Early Drift Detection Method (EDDM) and Adaptive Windowing (ADWIN)
which are used to detect drifts in event streams [12, 13]. This category requires
obtaining the ground truth of the prediction to fire a signal in case a drift occurs.
Hence, it is defined as a supervised approach. In contrast, distribution-based detec-
tion methods are defined as unsupervised approaches in which the change in a data
distribution is monitored to identify drifts. Examples of these methods are the Semi-
supervisedAdaptiveNovel class detection (SAND), 1-normSupport VectorMachine
(SVM), and Kolmogorov–Smirnov (KS) [14–16]. These categories are explained in
depth in [11].

Furthermore, in [10] Jose G. Moreno-Torres et al. investigate neural network-
based approaches for high-dimensional data usingdeep learning for feature extraction
and training the model. Utilizing the extracted features for deep learning models has
pushed recent advances in different fields such as computer vision, natural language
processing and understanding, and reinforcement learning. Nevertheless, a proper
drift detection technique can mitigate the drop in performance of neural network-
based models. The underlying concept in drift detection for deep learning-based
solutions is that the closed-world assumption does not apply in the real world [17].
An example of using neural networks for drift detection is the use of Auto-Encoders
to investigate prediction quality by using the encoder part to regenerate features that
are passed to a multilayer perceptron for prediction. The output is then passed to a
decoder to forecast the quality of the prediction [18].

In addition to the mentioned solutions, uncertainty-based techniques have been
investigated to detect concept drifts under the conditionof the true label beingunavail-
able or scarce. According to Baier et al., Monte-Carlo Dropout is used such that the
model can provide predictions with high entropy in case of unknown inputs by
randomly switching the neurons of the neural networks on and off [19]. Similarly,
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Monte-Carlo DropConnect is used to identify unknown inputs, but by randomly
switching the weights of the neural networks on and off [20].

Finally, to detect drift occurrences in a machine learning-based system before
obtaining the ground truth, Rabanser et al. investigated using two-sample statistical
hypothesis testing [21]. In their paper, they investigate several drift detectionmethods
including theAuto-Encoder, the label classifier, the domain classifier, the Chi-Square
test, MaximumMean Discrepancy, and the Kolmogorov-Smirnov test. According to
their results, Maximum Mean Discrepancy and the Kolmogorov–Smirnov test give
comparable performances and can be used to detect drifts from images such as
the MNIST dataset. Therefore, we use these techniques as they work with high-
dimensional data. Besides, these statistical-based approaches can perform indepen-
dently from any model we deploy and don’t require training, but rather a proper data
handling for drift monitoring. It is worth mentioning that in the context of this paper,
we focus on covariate drifts as we desire independence from collecting labels by
focusing on the incoming data. Moreover, we will be using the term drift to indicate
covariate drift as defined in [10].

2 Two-Sample Statistical Hypothesis Testing

In the following, we describe the process of the two-sample test which we implement
to investigate drifts. The two-sample test is a statistical hypothesis testing process
that mainly focuses on assessing the similarity of statistical distributions from which
the samples are observed [22]. Therefore, the two-sample test enables us to assess the
similarity between the distribution of the data we monitor for drifts and a reference
data distribution.

In a two-sample test twohypotheses are defined as follows: let P be the distribution
from which the first sample is drawn, while Q is drawn from the second. Then the
Null hypothesis states that P = Q. In contrast, the Alternative hypothesis states
that the two samples observed are drawn from different distributions, P �= Q. The
decision on whether these two samples are drawn from the same distribution or not
relies on rejecting the Null hypothesis.

Following the standard hypothesis testing method, we use the p-value to estimate
the probability of the correctness of the test statistics. The p-value is expressed as the
probability of multiple test statistics measures T taken at different situations being
greater or equal to a calculated threshold measure ̂T as demonstrated in Eq.1. To
calculate the measures T and ̂T , and estimate the p-value, the following steps are
implemented.

• The measure T is estimated as the initial calculation taken by the test statistics.
• The set of measures T will then be taken after permuting the sample sets.
• After that, a probability of compliance with the null hypothesis is estimated, that
is the p-value.
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• This p-value is then compared to the significance level α. The significance level
determines whether the Null hypothesis is rejected or not.

p-value = P(T ≥ ̂T ) ≥ α (1)

As discussed in Sect. 1, we select and compare Kernel-based Maximum Mean
Discrepancy and Kolmogorov–Smirnov to calculate the distance T . Both algorithms
are able to detect drifts for high-dimensional features which enables testing them on
different drift scenarios [21].

2.1 Kernel Maximum Mean Discrepancy

The Kernel-based Maximum Mean Discrepancy (KMMD) is a distance measure
used to differentiate between two statistical distributions. In this paper, we refer to
it also as (MMD). For high-dimensional data, kernel functions such as the squared
exponential kernel are used to calculate what is called the “mean embeddings” of the
distributions in a reproducing kernel Hilbert space H [5]. For the two distributions of
high-dimensional data p and q, and a function F , the MMD is defined in the Hilbert
space by the following Equation.

KMMD[F, p, q] = ||μ[p] − μ[q]||H (2)

To calculate the MMD using a kernel function k as the function F , we use the
following Eq.3 which calculates a squared MMD with samples x from distribution
p and samples y from the distribution q [5].

MMD[F, p, q] =
⎡

⎣

1

n

n
∑

i, j=1

k(xi , x j ) − 2

nm

n,m
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k(xi , y j ) + 1

m2

m
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⎤

⎦

1
2

(3)
To calculate the p-value using the MMD distance, we use the bootstrapping tech-
nique. In bootstrapping, we shuffle the values from both distributions and remeasure
the MMD distance multiple times (e.g 1000 times). Then we calculate the p-value
according to the steps explained in Sect. 2.

2.2 Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov (KS) test is fundamentally a non-parametric test that
computes the largest distance between the Cumulative Density Functions (CDFs)
over all the values within the distributions [23]. For the distributions p and q which
contain the values x and y respectively, the distance D can be calculated as follows.
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D = sup |F(X) − F(Y )| (4)

where F is the CDF for samples x in X and the samples y in Y . For high-dimensional
data such as high-dimensional features extracted from images, KS calculates the
distances dimensional-wise. Namely, if we have features of K dimensions, then K
distances will run. Then only the highest distance is considered. To calculate the p-
value using KS, we use the inner (or inside) method which is a numerical technique
that uses graphical topologies to estimate the p-value [6, 24]. This method is claimed
to perform fast for high-dimensional data [6, 25].

3 The Clinical Case Study

In the following, we first present the monitoring schema that explains the compo-
nents of the drift monitor as part of machine learning-based architecture. After that,
we show how we explore the data and prepare it to test drift detectors by simulat-
ing different drift scenarios. Finally, we carry out the experiments through several
experimental phases.

For the text-based case study we use the Drug Review Dataset [7]. We take the
patient reviews from this dataset as input text and their corresponding conditions as
labels. For the input, we calculated an average token length of 126. We extracted the
10 most frequent classes for text classification to demonstrate several drift scenarios.
The labels are ADHD, Acne, Anxiety, Bipolar Disorder, Birth Control, Depression,
Insomnia, Obesity, Pain, and Weight Loss. To classify these reviews to the given
conditions we finetuned a pre-trained BERTModel [26]. We also use this pre-trained
BERT Model as the feature extractor by omitting its last layer. This produces the
document embeddings that will later be used as input to the drift detectors.

Our goal is for the Drift Detector to indicate whether the input data differs from
the training data and whether these changes affect the model performance.

3.1 The Drift Monitoring Schema

For the given text classification use case, the experimental drift monitor is developed
as shown in Fig. 1. The Training Data Batch is taken from the data our model used for
training. The Input Batch represents the production data. Drift detection starts when
both batches enter the monitoring system. The feature extractor takes the raw text
as input and produces the corresponding embeddings. Then the hypothesis testing
is conducted to compare the Training Data Batch and the Input Batch. Based on the
result of the statistical hypothesis testing a drift alarm is triggered.
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Fig. 1 A schema of the monitoring pipeline for drift detection

3.2 Drift Data Setup

By utilizing KMMD and KS as distance measures, we can implement statistical
hypothesis testing to inspect drifts. Here, it is important to specify the reference set
with which we compare the test data. Therefore we take samples as a batch from
the training set with a specified size of 50. Here, we select the sample by random
selection from the training set. Simulating drift data for testing is challenging because
it is difficult to include all kinds of drifts that can appear in real-world scenarios.
Therefore, we limit the drift detection experiments to three scenarios:

• Scenario 1: NoDrift: In this scenario, the test text reviews are definedwith similar
labels as the reviews in the reference set. Namely, the incoming text reviews and
the reference reviews both describe symptoms of ADHD, Acne, Anxiety, Bipolar
Disorder, Birth Control, Depression, Insomnia, Obesity, Pain, and Weight Loss.
Hence, the monitor should not define these reviews as drifts.

• Scenario 2: Total Drift: In this scenario, the reference text reviews describe
symptoms of ADHD, Bipolar Disorder, Birth Control, Depression, and Obesity.
On the other hand, the test reviews describe symptoms ofAcne, Anxiety, Insomnia,
Pain, and Weight Loss. Since the symptoms of these conditions are not present in
the reference set, the monitor should define these reviews as drifts.

• Scenario 3: Partial Drift: In this scenario, the reference and test reviews share
partially similar conditions. Namely, the reference reviews include symptoms of
ADHD, Bipolar Disorder, Birth Control, Depression, Insomnia, Obesity, and Pain.
The test reviews include also Insomnia, Obesity, and Pain, with additional symp-
toms about Weight Loss, Acne, and Anxiety which are not present in the reference
reviews.

Finally, we also investigate the needed amount of drifting data within a batch to
detect a drift with the given drift detectors. For this, we adjusted the Drift Data setup
to different batch sizes of 10, 50, 100, 500, and 1000 texts.
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3.3 Sub-sampling

To get around the problem of figuring out the sample sizes for statistical hypothesis
testing, we are comparing the test batch to multiple reference batch samples rather
than just one batch. By doing so, we try to cover as many relevant examples from
the reference reviews as possible. We call this sub-sampling. The idea is based on
the ensembling method. The resultant p-value will be the average p-values from all
the conducted drift tests and the multiple batches are randomly selected from the
reference set.

4 Analysis

In this section, we demonstrate the results of the run experiments and analyze the
behavior of the drift detectors throughout the experiment’s different phases. Fur-
thermore, we show and compare the performance of the drift detectors using the
sub-sampling technique. Additionally, we investigate the influence of the number
of drift texts within the input batch. Namely, we investigate what is the minimum
amount of drift data needed to fire a drift alarm by the drift detector. To examine
the impact of drifts, we divide each experiment into 3 phases of 5 runs each. The
experiment indices are categorized into the 3 phases, namely No Drift, Total Drift,
and Partial Drift. A single run is called a drift test. With this setup, we measure the
ability of the drift detector to detect drifts by observing if the p-value falls below the
predefined threshold α (0.05). Additionally, we observe the model’s accuracy, the
monitor’s p-values, and the measured distribution distance. In each of the 3 phases,
we test the drift detector 5 times using different text reviews as batches from the pro-
duction data. On the associated graphs, we plot 15 results per experiment in this way.
It is worth mentioning that each batch included in these experiments has 50 texts,
namely a sample size of 50. If the drift detector’s p-value drops below the threshold,
this indicates that the text reviews might include information that was not included
in the reference text reviews, e.g. symptoms. For predictions linked to such a low
p-value, it is possible that the classification model has predicted false conditions.

The results of the executed experiments are demonstrated in the Figs. 2 and 3. On
the horizontal axis of each figure, we show the drift test index such that each index
represents an execution of a drift testwithin the experiment.Moreover, every 5 indices
cover one of the categories of input batches to be tested. The green background
represents the No Drift phase, while the second and third backgrounds represent
the Total Drift and Partial Drift phases respectively. On the vertical axis the drift
detector’s measured distances, the p-values as well as the p-value threshold, and the
model’s classification accuracy are displayed. For each experiment, we include the
model’s accuracy to visualize the model’s behavior through the input batches during
the experiments.



Investigation of Drift Detection for Clinical Text Classification 51

Fig. 2 Performance of theKMMDdrift detectors beside themodel through the experiment’s phases
before and after sub-sampling

Fig. 3 Performance of the KS drift detectors beside the model before and after sub-sampling

In Figs. 2a and 3a we display the results of using KMMD and KS respectively.
We see that in the No Drift phase, the p-values for KMMD fluctuate highly within a
range from around 0.1 and 0.8. For KS we have p-values that only fluctuate once at
drift test index 4 to a value of around 0.45. However, for both detectors, the p-values
stay above the set threshold α. For the Total Drift and the Partial Drift phases, we
find that the p-values drop below the threshold to 0.0 for both detectors and stay there
for all drift tests. Moreover, we see that the distribution distances for KMMD and
KS rise higher for the Total Drift phase in comparison with the Partial Drift phase.
Finally, we see that the model’s classification accuracy stays high between 0.9 and
1.0 for the No Drift phase and drops to 0.0 for the Total Drift phase while fluctuating
between 0.35 and 0.65 for the Partial Drift phase. The distance values for KS are
higher compared to the KMMD distance values. For implementing the sub-sampling
technique we observe in Figs. 2b and 3b that the p-values remain above the threshold
without fluctuation for the No Drift phase. For the Total Drift phase and Partial Drift
phase, the p-values still drop below the threshold and stay at 0.0 as before. In general,
we notice for all experiments that the distribution distances rise higher for the Partial
Drift phase and Total Drift phase in comparison to the No Drift phase. From these
results, we observe that both KMMD and KS detectors perform as desired without
falsely detecting drifts.

When applying the other batch sizes 10, 50, 100, 500, and 1000 to the experiment,
we only experienced significant deviations with a batch size of 10. For the other batch
sizes, the behavior was comparable with a batch size of 50. In Fig. 5a we notice that
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Table 1 Minimum drift ratios for drift tests per sample sizes

Sample size Ratios

KS (%) KMMD (%)

10 90 90

50 40 30

100 30 20

500 10 10

1000 10 10

KS produces p-values below the threshold (0.5) two times during No Drift phase and
also two times above the threshold during the Total Drift phase. Also for KMMD
we recognize one value above the threshold for the Total Drift phase in Fig. 5a. On
the other hand, Figs. 4b and 5b show that on the same experiments KS and KMMD
perform as desiredwhen using sub-samplingwith stable p-values above the threshold
within the No Drift phase and below the threshold within the Total Drift and Partial
Drift phases.

4.1 Analysis with Different Drift Ratios

The results from investigating the drift ratio are summarized in Table1. We observe
that for using 10 samples from the Drug Review dataset for drift testing, the KMMD
and KS detectors can detect drifts if there exist at least 90% drifting samples within
the 10 test samples. Furthermore, if we increase the sample size up to 100, both
the KMMD and KS detectors can detect drifts with less drifting samples down to
20% and 30% drifting samples respectively. Finally, if we increase the sample size
to 1000, we observe that the KMMD can fire drift alarms with having 10% drifting
samples just like the KS. By doubling the sample size from 500 to 1000 texts, no
reduction of the required drift data can be achieved, so it remains at 10%.

4.2 Analysis of Time Performance

In Table2 we show the average time taken to calculate the distances and the p-values
by KMMD and KS using sample sizes of 10, 50, 100, 500, and 1000. From the table,
we see that KMMD takes an average time between 0.135 for a batch of 10 samples
and 2.715 seconds for a batch of 1000 samples while KS takes between 0.001 for a
batch of 10 samples and 0.149 seconds for a batch of 1000 samples.
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Table 2 Time Performance for drift tests per sample sizes

Sample size Time (s)

KS KMMD

10 0.001 0.135

50 0.008 0.191

100 0.013 0.202

500 0.061 0.845

1000 0.149 2.715

4.3 Discussion

By visualizing the results in Figs. 2a and 3a we notice that for the No Drift phase,
both KMMD and KS detectors without sub-sampling indicate that the test batches
are not drifting from the reference (training) batches. We derive this evidence by
finding the p-values being above the predefined threshold and the model’s accuracy
remaining between 0.9 and 1.0. The opposite holds for the Total Drift and Partial
Drift phases. In Figs. 2b and 3b we observe that using multiple sub-samples enables
us to calculate p-values that are entirely below the threshold for the Total Drift and
the Partial Drift phase and above it for the No Drift phase. In addition, we observe
that both KMMD and KS’s p-values do not drop below the threshold for the No Drift
phase. As a result, we find that using more than one sub-sample from the reference
set results in more consistent performance. This remark is more decisive for batch
sizes of 10. Figure5a shows unstable performance with false negatives at drift test
indices 1 and 4 and false positives at drift test indices 6 and 8 for KS. Additionally,
Fig. 4a shows a false positive at drift test index 6. The fluctuations until index 9 can
be resolved by using sub-sampling that also leads to the elimination of the false
negatives and false positives for both KS and KMMD and therefore to better overall
performance. Furthermore, we can see from Table1 that the performance of KMMD
and KS depends on the sample sizes used for drift detection. Given small sample
sizes, a high amount of the input batch has to be drifting to detect this drift. For big
sample sizes it is sufficient if only a small amount of the input batch is drifting for
detecting the drift. Finally it seems that even for big sample sizes at least 10% of the
data has to be drifting to detect the drift. Although this seems as the detector can detect
drifts perfectly, it also indicates the possibility of false drift alarms since KMMD and
KS fire drift alarms even when no drifts occur for small sample sizes of 10. Finally,
we can see from Table2 that with all selected sample sizes, KS outperforms KMMD
in terms of time performance which indicates that the inner method used to calculate
the p-value in KS is faster than the bootstrapping method used in KMMD. From the
table, we notice that KMMD responds to changes earlier than KS.

The discussion shows that drift detection is feasible for similar use cases in health-
care and highlights levers for adjusting to a specific use case, such as the required
amount of drifting data in the production batch or the approach of subsampling for
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Fig. 4 Performance of the KMMD drift detectors beside the model before and after sub-sampling
(batch size = 10)

Fig. 5 Performance of the KS drift detectors beside the model before and after sub-sampling (batch
size = 10)

more stable performance. It is quite conceivable that this approach can be used to
detect new symptoms, conditions, and also other features in text-based healthcare
applications during operation.

5 Conclusion and Future Work

In this paper, we examined the ability to monitor drifts for clinical text classification
models. In our case study, we used the Drug Review dataset to detect changes in
the reviews. Based on the investigation of state-of-the-art techniques, we focused on
the distribution-based approaches using statistical hypothesis testing on the features
extracted from the input data. By following [21], we showed that we can use Kernel
MaximumMeanDiscrepancy (KMMD) andKolmogorov–Smirnov (KS) in different
drift experiments involving different types of drifts with different sample sizes of the
test data. Finally, we showed that we can implement sub-sampling to cover more
reference data from the reviews for better comparison with fewer false alarms.

For the given clinical case study, we learned that both KMMD and KS were able
to detect drifts successfully when reviews describing new conditions were used. We
have also found that the unstable performance of both detectors can be circumvented
by using the sub-sampling method so that false positives and false negatives are
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mitigated. Furthermore, we found that it is challenging to generalize the minimum
amount of drift data needed to guarantee firing a drift alarm. The reason lieswithin the
dependency of the performance on the sample size used to implement drift detection.
From the results, we have shown that for larger batch sizes, the required number of
drifting text in a batch decreases to detect drifts. We also found that KS works faster
than KMMD for the given implementation.

In future work, finding the right sample size to implement accurate drift detection
needs to be investigated. Since our results showed that using multiple sub-samples
yield better performance than using a single sub-sample, we can improve the use
of sub-sampling by determining the optimal number of sub-sample groups to draw
from the reference data. Furthermore, an appropriate feature extraction technique
should be used—based on the nature of the input data. Therefore, the development
of a feature extractor that optimally facilitates drift detection from text reviews is
required. In addition, although we used the p-values as an indicator of drifts, we need
to investigate how to choose ametric that better describes the severity of the drift, e.g.,
using the measured distance itself. In addition, we need to investigate approaches to
select the reference data from the reference dataset instead of the random selection
approach so that the extracted features can facilitate drift detection. For text data,
in particular, one can select tokens from which the extracted features help detecting
drifts in the incoming data easily. Also we can explore, if the token input length
affects the detection results. Finally, we need to take a closer look at how to explain
the results of a drift detector, e.g., why drifts occurred or in which parts of the
incoming data the drift occurred.

The approach presented can be used to determine drifts regardless of the presence
of labels for production data and can be mapped to a variety of similar use cases to
enhance healthcare applications by adding a drift detection component for operation.
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Neural Bandits for Data Mining:
Searching for Dangerous Polypharmacy

Alexandre Larouche, Audrey Durand, Richard Khoury, and Caroline Sirois

Abstract Polypharmacy, most often defined as the simultaneous consumption of
five ormore drugs at once, is a prevalent phenomenon in the older population. Someof
these polypharmacies, deemed inappropriate, may be associated with adverse health
outcomes such as death or hospitalization. Considering the combinatorial nature of
the problem as well as the size of claims database and the cost to compute an exact
associationmeasure for a given drug combination, it is impossible to investigate every
possible combination of drugs. Therefore, we propose to optimize the search for
potentially inappropriate polypharmacies (PIPs). To this end, we propose the Optim-
NeuralTS strategy, based on Neural Thompson Sampling and differential evolution,
to efficiently mine claims datasets and build a predictive model of the association
between drug combinations and health outcomes. We benchmark our method using
two datasets generated by an internally developed simulator of polypharmacy data
containing 500 drugs and 100 000 distinct combinations. Empirically, our method
can detect up to 72% of PIPs while maintaining an average precision score of 99%
using 30 000 time steps.
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1 Introduction

Polypharmacy is most often defined as the simultaneous consumption of five or
more drugs at once by a patient [18] and is a prevalent phenomenon in the older
population. In the USA, 65.1% of older adults experience polypharmacy, with most
of them using more than 5 medications at once [26]. In Canada, older adults in long
term care facilities use on average 9.9 drug classes, while older adults living outside
of these facilities use on average 6.7 drug classes [2]. Some polypharmacies can
be dangerous, in the sense that they can lead to to negative health outcomes, like
death or hospitalization. Fortunately, screening tools exists to avoid prescription of
potentially inappropriate drugs (e.g., opioids and benzodiazepines [21]). These tools
essentially consist of finite lists of individual drugs and drug pairs that have been
identified as dangerous by experts during pharmaco-epidemiological studies as well
as from experience. By definition, this means that potentially dangerous combination
resulting frommore than two drugs interacting together cannot be identified using the
screening tools, in addition to other currently unknowndangerous drug combinations.
In order to prevent the prescription of potentially harmful polypharmarcies, it would
be important to expand the screening tools until they ideally contain all potentially
dangerous combinations. Unfortunately, given all the possible drug combinations as
well as their varying effects depending on different patient characteristics, pharmaco-
epidemiologists cannot investigate all of them.

The goal of this work is therefore to build a predictive model able to identify drug
combinations at risk of being harmful, so that they can be investigated further. We
propose to achieve this by leveraging neural networks to predict an association mea-
sure to a health outcome given any input describing an arbitrary number of drugs.
In practice, such model would be trained using historical data on drugs prescribed
to patients, their clinical and sociodemographic characteristics, and their health out-
comes. These datasets are typically very large, which makes the association measure
expensive to compute, and highly unbalanced.

We therefore tackle the general problem of efficiently mining historical data to
train a generalizable and useful model. To achieve this, we formulate the problem
under the neural bandit setting so that it can be addressed with the Neural Thomp-
son Sampling (NeuralTS) [27] strategy. However, using this strategy on a very large
action space (such as the one considered here) also raises challenges, which we
address by combining NeuralTS with differential evolution (DE) [24]. The proposed
OptimNeuralTS approach finally results in an ensemble predictor made of the evolv-
ing sequence of models trained on all the intermediate data subsets. We evaluate
the potential of OptimNeuralTS in simulated experiments. Our results show that our
approach can be used to iteratively build an information-rich dataset that can in turn
be used for training a predictive model, resulting in an ensemble model capable of
extracting new potentially inappropriate polypharmacies (PIPs). We finally provide
an overview of related work in machine learning (in general) applied to polyphar-
macy discovery and bandit strategies applied for data mining. We highlight two
contributions:
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1. Tackling the problem of efficient creation of information-rich datasets under the
contextual bandit setting.

2. Introducing the OptimNeuralTS approach to learn predictive models by mining
relevant data from very large unbalanced datasets.

2 Problem Formulation

Let D denote a historical dataset containing information about drug combinations
and health outcomes. Table1 shows a simple example of such a historical dataset,
where each line corresponds to a drug combination identified in a binary format,
(i.e. 0/1 indicate whether a drug was taken or not by an individual) along with a
binary variable indicating whether the individual developed (or not) a given health
outcome while consuming the drug combination. In the targeted application, the
measure of association is called the relative risk (RR) and is described as the risks
for a given health outcome in the exposed population over the risks in the unexposed
population [23].Anexposedpatient is a patientwhich takes a givendrug combination.
The exposed population is simply the portion of the population which consumes the
combination of drugs. Mathematically, given Table2, the RR is defined as:

RR = a(c + d)

c(a + b)
.

RR has the advantage of having an implicit threshold: if RR > 1 then a drug
combination is associated with a given health outcome, therefore it is potentially

Table 1 Simple example of historical dataset

ID Drug 1 Drug 2 … Drug N Outcome

1 1 0 … 1 0

1 1 0 … 1 1

2 0 1 … 1 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Table 2 Example of contingency table. An exposed patient is a patient taking a given combination
of drugs. A health outcome is computed as a yes if the health outcome occurred during the duration
of the prescription of the drug combination (1 in the corresponding line in Table1)

Health outcome

Yes No

Exposed a b

Not exposed c d
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Fig. 1 Example of a typical
distribution the estimated RR
for historical data. A drug
combination with a RR > 1
is considered harmful while
if RR < 1, the combination
is considered safe 0 1 2 3

RR

D
en
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ty

Safe
Harmful

harmful, while RR < 1 implies that a drug combination protects against a given
health outcome, therefore it is safe. RR= 1 means that a drug combination is neither
protective against nor associated with a given health outcome.

Inpractice, historical datasets are extracted frommedico-administrative databases.
Therefore, medication claims data typically contain hundreds of columns related to
drug usage and millions of rows enumerating all possible simultaneous drug combi-
nations taken by all patients in a large population, but no precomputed association
measure. Unfortunately, computing the association measure for a given drug combi-
nation is computationally expensive since it requires enumerating every row in the
dataset. Therefore, as the size of the data grows, it becomes harder to compute. This
raises a challenge when aiming to train a model capable of predicting an association
measure to the considered health outcome for any drug combination provided as
input because it is not computationally realistic to compute the RR for the whole
datasetD. The training of a predictivemodelmust therefore be performed on a subset
of at most T samples from D, where T � |D|. This opens the question of how to
sample such subsets from D.

In addition, one must note that the historical dataset D is highly unbalanced.
Indeed, prescribers usually prescribe drugs which do not interact together in a harm-
ful way, thus most drug combinations have a low measure of association to health
outcomes such as hospitalization and death. Figure1 displays a simulated but typical
distribution of the estimated association measures observed in the real data. There-
fore, randomly sampling from D would yield a training dataset containing mostly
combinations of drugs with low measures of association as PIPs associated with
adverse health outcomes are rare. However, it is well known that the performance
of a predictive model highly depends on the quality of the underlying data [10]. In
other words, if the training dataset contains few to no PIPs associated with adverse
health outcomes, the predictive model is very unlikely to learn to identify such PIPs.
Therefore we need a strategy capable of sampling a training dataset with higher odds
of containing PIPs associated with adverse health outcomes.
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3 Proposed Approach

We tackle this challenge by formulating the training dataset creation problem as a
contextual bandit problem [14],wherewe leverage theNeuralTS [27] action selection
strategy combined with DE [24] to select drug combinations for which to compute
the RR.

3.1 Neural Contextual Bandits

A contextual bandit environment is described by a collection of actionsA, a feature
spaceX, and an unknown reward function h : X �→ R, such that each action a ∈ A is
associatedwith a feature vector, or context, xa ∈ X. At each time step t = 1, 2, . . . , T
of the contextual bandit game, the player (agent interacting with the environment)
is presented with a subset of actions At ⊂ A. It then selects an action at ∈ At to
play and observes a noisy reward rt = h(xat ) + ξt , where ξt is a σ -sub-Gaussian
noise (e.g., ξt ∼ N(0, σ )). The goal of an agent playing this game is to maximize
the cumulative reward, defined as:

T∑

t=1

rt (1)

The obvious solution is to simply play the optimal action a∗
t at every round, which

has the highest expected reward for this round. That is a∗
t = argmax

a∈At

h(xa). However,

function h is not known a priori, therefore, the agent must learn by trial-and-error in
order to improve its behavior over time.

In the training dataset construction problem from historical data, A corresponds
to the set of all possible drug combinations,At corresponds to the set of drug combi-
nations that are available to explore at time t , the features xa correspond to amulti-hot
representation of drug combination a, and the reward function h corresponds to the
measure of association between a drug combination and a given health outcome, i.e.,
the RR. At each time step t , the agent selects a drug combination at for which to
compute the RR. Since computing the RR on the historical dataset is computationally
expensive, it is instead computed on a subset of the data, hence the noisy reward rt .

Neural bandit strategies, such as NeuralUCB [28] and NeuralTS [27], rely on a
neural network f (·; θ) : X �→ R to model the reward function h in order to predict
the expected reward given any feature x ∈ X. More importantly, these approaches
can estimate the confidence interval around the prediction of the neural network
to guide the exploration. They achieve this by using the gradient on the activation,
g(·; θ) : X �→ R

|θ |.
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3.1.1 NeuralTS

NeuralTSuses the gradient to estimate the distribution of reward for an action. Indeed,
at step t , the parameters of a normal prior N( ft , st ) are estimated as follows:

ft (·) = f (·; θt ) and (2)

st (·) =
√

λg(·; θt )	U−1
t g(·; θt )/m, (3)

where Ut = λIm +
t∑

i=1
g(xai , θi−1)g(xai , θi−1)

	 is a design matrix containing the

gradient computed for the inputs (selected actions) up to time t , λ is a regulariza-
tion parameter and m is the number of parameters in the neural network. NeuralTS
selects the action at to play by sampling a value from N( ft (xa), st (xa)),∀a ∈ At

and picking the action with the highest value. After an action at is played, the asso-
ciated context xat as well as the observed reward rt are added to the training dataset
Dt = Dt−1 ∪ {(xat , rt )} used for computing the new network parameters θt , before
moving on to the next time step.

Since the bandit strategy will seek to play actions which yield high rewards, this
should lead to a dataset DT containing a reasonable amount of drug combinations
with high measures of association to a given health outcome. We therefore hypoth-
esize that such a dataset will make it possible to train a predictive model capable of
identifying PIPs with high precision. However, for the bandit strategy to be able to
recommend actions with high RR, such actions need to be contained in the set of
available actions At .

3.2 Generating Relevant Available Action Sets

From the neural contextual bandit problem formulation, action at is selected from
the subset At ⊂ A containing all available actions at time t . This is due to the fact
that the bandit strategy must consider each action a ∈ At in order to recommend at ,
and that the complete action set A is typically too large to be entirely considered
at every time step. This is also the case in the considered application due to the
combinatorial nature of polypharmacy. For the same reason that the predictive model
training dataset cannot be sampled at random from D, we cannot generate At by
randomly sampling from A due to the highly skewed distribution of RRs. We must
therefore generate subsets At such that the presence of potentially harmful drug
combinations is favored.

To achieve this, we propose to generate subsets of available actions At using
differential evolution (DE) [24], an evolutionary optimization algorithm which does
not rely on a gradient signal to converge to a solution. The general principle behind
DE is to maintain a population and mutate its members, which are feature vectors,
according to a strategy. Here, we consider the best/1/bin strategy [24] described in
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Algorithm 1 DE best/1/bin
Input: Population size N , crossover rate C , differential weight F , number of optimization steps
S, objective function q(·) to maximize
Output: Best member b� in the final step

1: Initialize population W with N feature vectors sampled from the domain X.
2: for s ← 1. . .S do
3: Let b ← argmax

wi∈W
q(wi )

4: for wi ∈ W do
5: Sample v ∼ U(0, 1)
6: Randomly select indices l, r1 and r2 in [N ] − [i]
7: Generate a new feature vector:

mi ← b + F(wr1 − wr2 )

8: Generate a mutated feature vector where components j are computed as follows:

ui, j ←
{
mi, j if j = l or v ≤ C

wi, j otherwise

9: wi ←
{
ui if q(ui ) ≤ q(wi )

wi otherwise
10: end for
11: end for
12: b� ← argmax

wi∈W
q(wi )

13: return b�

Algorithm1, where the objective function q : X �→ R corresponds to an action value
function sampled from a neural network. The DE optimization process is therefore
conducted on function q.

DE with best/1/bin therefore corresponds to considering |At | = N × S available
actions at each time step t . Parameters N and S are typically chosen such that N ×
S � |A|. The best member returned after the S steps of DE corresponds to the action
features maximizing q, which is a value function given by the neural network model.
Therefore the best member would correspond to at . For example, with NeuralTS,
q(·) corresponds to a sample from the distribution N( ft−1(·), st−1(·)) at time step t
(see Eqs. 2 and 3). Now, computing rt on-the-fly on D requires the selected action
to be contained in D. However, DE (best/1/bin) is not constrained to D, so this
condition may not be fulfilled. In order to account for this situation, we propose to
select the action at as being the 1-nearest-neighbor inD to the action returned by DE
(best/1/bin) with ties broken arbitrarily. This ensures that the association measure
for the drug combination can be computed.
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Algorithm 2 OptimNeuralTS
Input: Dimension of feature vectors d, number of time step T , number of warm-up steps τ ,
regularization term λ, exploration factor ν, number of training epochs J , learning rate η, DE
population size N , DE crossover rate C , DE differential weight F , number of DE steps S, historical
datasetD
Output: Generated dataset DT = {(xai , ri )}Ti=1 and ensemble neural network models {θi }Ti=1

1: Initialize neural network parameters θ0
2: U0 ← λI|θ0| and D0 ← {}
3: for t ← 1 . . . τ do
4: Randomly play action at ∈ D, observe rt
5: Ut ← Ut−1 + g(xat ; θ0)g(xat ; θ0)

	
6: Dt ← Dt−1 ∪ {(xat , rt )}
7: end for
8: θτ ← Train network with parameters η, J,Dτ , θ0
9: for t ← τ + 1 . . . T do
10: ât ← DE(N ,C, F, S,N ( ft−1, νst−1))

11: Ut ← Ut−1 + g(xât , θt−1)g(xât , θt−1)
	

12: Set at as the 1-nearest-neighbor of ât in D
13: Play at , observe rt
14: Dt ← Dt−1 ∪ {(xat , rt )}
15: θt ← Train network with parameters η, J,Dt , θt−1
16: end for
17: return DT , {θi }Ti=τ

3.3 OptimNeuralTS

Algorithm2 describes the resulting OptimNeuralTS. The agent warms up by ran-
domly sampling actions during the first τ steps, observing their rewards and updating
the internal parametersU (lines 3–7). The neural network is then trained for the first
time on the random data using a standard gradient descent with the L2 regularization
scheme of NeuralTS (line 8), before the agent starts playing actions according to the
NeuralTS and DE strategy. We slightly abuse the notation when calling DE (line 10)
to indicate that the objective function q evaluated at features x consists in a normal
distribution centered at ft−1(x) with standard deviation st−1(x) (see Eqs. 2 and 3).
The design matrixU of the agent is then updated (line 11), the agent plays the trans-
formed action at , observes the reward rt , and updates the datasetDt before updating
the neural network parameters with the same procedure as previously stated (lines
13–15). OptimNeuralTS finally returns the dataset generated by the algorithm as
well as the ensemble model corresponding to all the intermediate models (θτ . . . θT )
encountered along the search (line 17). Indeed, as experiments will show, the subsets
of data encountered along the neural contextual bandit game will result in neural
network models that are specialized in different relevant regions of PIPs. Combining
these models in an ensemble therefore results in a strong predictive model with a
good coverage of the input space, which can then be used to predict a RR for any
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given drug combination. Detecting new PIPs is then only a matter of applying a
threshold over the predicted RR’s lower confidence bound, which can be computed
from ft (·) and st (·).

3.3.1 Warming-Up

Previous work showed that non-informative priors can impact performance [17]. To
mitigate this,we allow the agent towarm-up by selecting τ randomactions a ∈ D and
observe their rewards as a way to initialize its belief about the data. This effectively
creates a small randomly sampled dataset composed of the seen contexts and the
observed rewards. This is helpful, as the data gathered after this point is dependent
on the previously gathered data, therefore breaking the i.i.d. assumption of data in
supervised learning. This in turn can lead to a failure in learning as an agent without
any representation of the relationship in the data may sample it poorly when playing,
leading to a poor representation and so on.

3.3.2 Transforming Recommended Actions into Playable Actions

Aspreviouslymentioned, our problem requires thatwe transform ât into at . However,
Ut is updated with g(xât ; θt−1) instead of g(xat ; θt−1) (line 12). Two facts motivate
this choice of update. The first is that if the entirety of A was present in D, then no
transformation would be needed. Indeed, the transformation is only implemented in
order to train the neural network on a relationship existing in the historical data and
so ât is the recommended action. Secondly, due to the distribution of RRs on our
data, the gradient of at often contains very little information. This is due to the fact
that the RR is concentrated around the mean, which leads to the last bias term of
the neural network being almost the only participating term in the prediction. The
gradient vector g(xat ; θt ) is then almost barren, which in turn leads to a design matrix
containing little information. In practice, updating Ut with g(xat ; θt ) works, but we
have found it leads to much less new PIPs detected much later during the bandit
algorithm’s training.

4 Experiments

Evaluating the proposed approach requires a dataset with a ground-truth and a struc-
ture similar to the real world data. As no such dataset is readily available, we first
develop a simulator to generate synthetic data.
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Fig. 2 Overview of the simulated assignment of RR to drug combinations. The RR attributed to
a combination C is proportional to its similarity to its nearest dangerous pattern P , shown as the
parent in the resulting tree. σinter, σdisjoint and μdisjoint are user-defined parameters

4.1 Synthetic Data Generation

Our main hypothesis guiding data generation is that a drug combination similar to a
drug combination with a high RR should have a similarly high RR. Consequently,
we generate by sampling from binomial distributions the set P of what we call
“dangerous patterns”, which are characterized by a high RR. Likewise, we randomly
generate the set of distinct drug combinations C without attributing them a RR. The
similarity between each drug combination C ∈ C and each dangerous pattern P ∈ P
are then computed using the Hamming distance. Two cases can arise from this: (1)
either drug combination C has some drug(s) in common with the nearest pattern
or (2) it does not. If it does, then the drug combination is said to intersect with the
pattern and is attributed a RR proportional to its similarity to its nearest pattern P .
Alternatively, if a combination is disjoint of the nearest pattern, then its RR is sampled
from a normal distribution N(μdisjoint, σdisjoint). This procedure results in a dataset
with only distinct combinations with a precomputed RR. The Hamming distance, by
definition, favors dangerous patterns containing smaller subsets of drugs during the
nearest pattern search. As a result, a combination’s nearest dangerous pattern is not
always the one with the biggest overlap in terms of drugs. This results in a dataset
with a RR not necessarily increasing proportionally to the size of the intersection
between combinations and patterns, which adds difficulty to the problem. Figure2
gives the overview of the RR generation process.

4.2 Experimental Setup

We devise one experiment on two datasets generated by the simulator. The goal of
the experiment is to detect drug combinations with an RR above a certain threshold.
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Fig. 3 Distribution of RRs
for the neutral and protective
datasets
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In our work, we consider a threshold of 1.1 for the RR since we consider a RR
between 1.0 and 1.1 to be too low to be significant. The most important aspect
here is not to find every PIP but to detect them with as few false positives as
possible. This is crucial, as in practice these findings need to be further studied by
healthcare experts and it is laborious to do so. Furthermore, since we plan on using
samples of the real dataset in our practical application, we also add a noise term
ξt ∼ N(0, 0.1) to the observed RR for a drug combination to simulate sample noise.
Therefore, to ensure a low false positive rate, a drug combination a is only classified
as potentially harmful if ft (xa) − 3st (xa) > 1.1, to emulate a pessimistic 99% lower
confidence bound. The choice of σ = 0.1 for the normal distribution is so the noise
does not dominate the reward signal while still resulting in a challenging instance in
the datasets described below.

We generate two datasets each representing a different hypothesis on the effect of
the consumption of drugs: a neutral effect instance,where most RRs are near 1, and
a protective effect instance (where most RRs are concentrated near 0). The average
RR in the latter is well below the dangerous RR threshold, as would be expected in
a real dataset. However, to study the robustness of the proposed approach, we also
consider a neutral effect dataset where the distribution of RRs is concentrated around
the threshold. This leads to amore challenging instance as the noise ξt ismore likely to
make a safe combination appear potentially harmful. Figure3 shows the distribution
of RRs in both datasets. Both datasets contain 100k distinct combinations of 500
possible drugs, with RRs computed from 10 random dangerous patterns that do not
appear in the distinct combinations. The two datasets are highly unbalanced, with
the neutral and protective datasets respectively containing 2082 and 7805 distinct
dangerous drug combinations (RR > 1.1).

Table3 shows the OptimNeuralTS parameters used in this experiment. The num-
ber of time steps T is chosen such that only a small fraction of the entire drug
combination space can be investigated during the bandit game. Indeed, in real life
applications, millions of drug combinations are typically available. Setting T to a
small number compared to the number of possible combinations thus requiresOptim-
NeuralTS to be efficient in its choice of drugs to investigate at every round in order
to succeed. The results shown here are for a warm-up duration of τ = 10 k samples
and an exploration factor of ν = 1 taken as the best configuration from a grid search
of the space τ ∈ {1 k, 10 k, 20 k, 30 k} and ν ∈ {1, 10}.1 All the configurations in

1 The total number of configurations tried is thus 7, as τ = 30 k is the same for any ν.
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Table 3 OptimNeuralTS parameter values; left side are specific to the DE component

DE best/1/bin OptimNeuralTS

Parameter Value Parameter Value

N 32 d 500

C 0.9 T 30 k

F 1 τ 10 k

S 16 λ 1

ν 1

J 100

η 0.01�

�η is reduced when the loss reaches a plateau during training

the grid search succeed in finding variable amounts of PIPs with high precision,
except when the warm-up phase is too long (e.g. τ = 30 k), highlighting the need
for a bandit strategy. Furthermore, the considered space for the grid search of ν is
never below 1 to discourage greedy action (i.e. exploiting the already known PIPs).
Furthermore, we schedule the learning rate η = 0.01 to decrease as the loss reaches
a plateau during training. This parameter was found by a hyperparameter search
guided by OpTuna [1] and Tune [15]. As for DE, the parameters were selected man-
ually to maximize the mutation of the population at each optimization step while still
maintaining a very small population and a quick runtime.

As previously mentioned, by applying a threshold over the lower bounds on neu-
ral network predictions, the regression problem of learning a mapping from drug
combinations to a RR can be turned into a binary classification problem where a
prediction lower bound over a threshold (e.g. 1.1) corresponds to a PIP, else to a safe
drug combination. Therefore, classical classification performance metrics such as
precision and recall are used here to evaluate the model trained by OptimNeuralTS.
In addition to these two metrics, we also report the ratio of dangerous patterns used
to generate the data that were found (Ratio P), as well as the ratio of PIPs detected
in D that are not in DT (Ratio /∈ DT ). These last two metrics aim to evaluate the
generalization to PIPs unseen during training as the dangerous patterns P are not in
D but are still known to have a high RR. All the results are reported for 25 repetitions
of the experiments and every evaluation metric is computed at every 200 time steps
of training. Furthermore, in order to quantify the benefits of using an ensemblemodel
we compare the metrics of the ensemble approach to that of the latest trained model
(i.e. the single model trained by OptimNeuralTS before the evaluation).

4.2.1 Implementation Details

Since feature vectors are multi-hot vectors, the recommended drug combination (ât )
is transformed into the most similar one inD (at ) using the Hamming distance. Fur-
thermore, unlike the original NeuralTS training routine that trains for a set amount
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of gradient steps and then returns the last parameters θ computed with the gradient
step, our implementation keeps the parameters θ associated with the lowest loss on
the training dataset as this maximizes likelihood [9]. As training is time consuming,
the neural network is retrained every 10 steps and uses the Adam [12] optimizer
due to its faster convergence than regular SGD. Finally, in order to simplify and
accelerate computation, we rely on the same tricks as the original NeuralTS imple-
mentation [27]: we approximate the matrixU by taking only its diagonal, remove the
division by m (see Eq.3) and only compute the L2 penalty on the current weights θt .

5 Results

Figures4 and5 respectively display theprecision and recall of the ensemble predictive
model produced using the OptimNeuralTS training procedure over the growing time
horizon.Weobserve amonotonic improvement of the recall over time in both settings,
while managing to keep the precision excellent. The lower recall and slightly lower
precision in the neutral instance is expected and is due to the possibility of the
observed RR crossing the threshold because of the noise term ξt . Indeed, as time
progresses, the agent must focus on drug combinations near the RR threshold, thus
leading to slightly more false positives.

Fig. 4 Precision on the
neutral and protective
instances using the ensemble
predictive model

Fig. 5 Recall on the neutral
and protective instances
using the ensemble
predictive model
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Fig. 6 Precision on the
neutral and protective
instances using the single
latest model

Fig. 7 Recall on the neutral
and protective instances
using the single latest model

5.1 Impact of Ensemble

To highlight the benefits of using the history of generated models as an ensemble
rather than simply relying on the most recent model, Figs. 6 and 7 respectively show
the precision and recall obtained at each time step by using only the most recent
model instead of the ensemble. We first observe (Fig. 7) that the most recent model
is not consistently getting better at detecting PIPs on its own. Indeed, later models
sometimes have worse recall than those of earlier iterations, suggesting that they
did not retain knowledge acquired earlier. However, we observe (Fig. 6) that high
precision is maintained throughout the time steps, although with more noise com-
pared with the ensemble (Fig. 4). That is, every individual neural network trained
by OptimNeuralTS has a low false positive rate. The ensemble leverages this fact
efficiently by using a single vote to classify a combination as potentially harmful.
Moreover, we observe in general that the precision for single models fluctuates more
for the protective instance than for the neutral instance. This behavior is most likely
due to the wider range of RR of the protective dataset which results in drug com-
binations having similar components but very different RR. Even so, the precision
remains high enough to have very little false positives in practice for both datasets
when using ensembles. Indeed, the ensemble approach results in 819 ± 47 correctly
detected PIPs for 20 ± 9 false positives on the neutral instance while it yields on
the 1504 ± 481 correctly detected PIPs for 1 ± 0 false positives on the protective
instance. The bigger fluctuation in the number of true positives for the protective
instance can also be attributed to the bigger range of RR to cover.
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Fig. 8 Ratio P on the
neutral and protective
instances using the ensemble
predictive model

Fig. 9 Ratio /∈ DT on the
neutral and protective
instances using the ensemble
predictive model

5.2 Generalization

Figure8 shows the ratio of dangerous patterns P identified as PIPs by the resulting
model. As previouslymentioned, the dangerous patterns used to generate data are not
inD. However, although they can never be observed directly, the ensemble is capable
of detecting dangerous patterns. Furthermore, we observe that a good percentage of
the detections made by the ensemble are not contained in the training data DT .

We observe (Fig. 9) that on average up to 39% (on the protective instance) of
detected PIPswere not even inDT upon the completion of training. This is promising,
as it indicates that the resulting ensemble can pick up on observed trends to predict
unseen patterns. In practice, this would represent drug combinations that have never
been prescribed together before, but whose combination could be dangerous, and so
detecting them will prevent health risks for patients.

6 Related Work

There exists prior work on data mining in the polypharmacy context. Methods have
been proposed to detect new potentially inappropriate medications or model the
association of polypharmacy to side effects using small datasets [11, 25]. General
machine learning techniques have also been used to model polypharmacy and its
side effects [13, 19, 30] by using complex drug data that are usually not contained in
claims database. Therefore, efficiently learning from large datasets such as those con-
sidered in the current work require new approaches, hence motivating the proposed
bandit angle.
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Several contextual bandit strategies have been proposed previously to handle
combinatorial problems with linear rewards [3, 7]. The linear reward assumption is
common and allows for efficient computations of action recommendations. However,
the tackled application requires the estimation of a (possibly) non-linear reward func-
tions. Although there exists non-linear reward combinatorial bandit strategies [6],
they rely on oracles to recommend an action to play. Such oracles are typically
designed for specific problems and unfortunately, our problem is not one of them.
Alternatively, strategies to extract the top-K best actions [22] do not assume linearity
of the reward function and do not rely on an oracle. However, they require to preset
the K -order magnitude of relevant actions, which is a priori unknown in the current
application. Considering K too low would result in missing PIPs, while setting it too
high would result in false positives.

As our objective is not to maximize the cumulative rewards (Eq.1), but rather
explore drug combinations in order to detect potentially dangerous ones, the pure
exploration setting would also be a natural formulation for the current application.
Several combinatorial pure exploration bandit strategies have been proposed [4, 5,
8] previously. However, due to their combinatorial nature, they all exhibit a depen-
dency on an oracle, which makes them then unusable in the tackled problem. Pure
exploration neural bandits have also been studied previously [29]. Although theoreti-
cally relevant, these methods bear important implementation challenges that prevent
them from being used efficiently. The proposed OptimNeuralTS strategy is simpler
to implement while still maintaining high precision and a capacity to generalize to
unseen data.

Finally, thresholding bandits [16] is another relevant setting where the objective
is to extract actions with a mean value estimate over a certain threshold. However,
proposed approaches for this setting [16, 20] only maintain mean estimates of every
actions encountered during the game and could therefore not lead to a model that
can predict the association measure for any new drug combination. Without such
a model it becomes impossible to generalize to unseen actions as required by the
tackled application.

7 Conclusion

This paper introduces the OptimNeuralTS approach combining NeuralTS [27] and
differential evolution [24] to data mine relevant data from very large unbalanced
datasets. This method leverages the neural contextual bandit formulation to create
an information-rich dataset on which to learn an ensemble predictive model. Optim-
NeuralTS is a general method for data mining that can be applied to any unlabelled
dataset with a combinatorial structure. We conduct experiments using simulated
datasets representing both protective and neutral settings. Results show that the pre-
dictive model learned with OptimNeuralTS is empirically capable of detecting PIPs
with high precision. More importantly, the model is able to identify underlying dan-
gerous patterns that are not observed directly in the data. These encouraging results
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suggest that OptimNeuralTS is a promising approach for guiding pharmaceutical
research by recommending potentially dangerous drug combinations to investigate
further and therefore contribute to safer prescriptions.

In future work, one could attempt to improve the sample efficiency using pure
exploration neural bandits methods. Furthermore, while we do not take them into
account, other important factors other than the presence of drugs (e.g. sex, age,
medical conditions) contribute to whether a combination should be considered a PIP.
Therefore, our simulation data can still be improved to portray a more complete
setting.
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Dynamic Outcomes-Based Clustering
of Disease Trajectory in Mechanically
Ventilated Patients

Emma Rocheteau, Ioana Bica, Pietro Liò, and Ari Ercole

Abstract The advancement of Electronic Health Records (EHRs) and machine
learning have enabled a data-driven and personalised approach to healthcare. One
step in this direction is to uncover patient sub-types with similar disease trajectories
in a heterogeneous population. This is especially important in the context of mechan-
ical ventilation in intensive care, where mortality is high and there is no consensus
on treatment. In this work, we present a new approach to clustering mechanical ven-
tilation episodes, using a multi-task combination of supervised, self-supervised and
unsupervised learning techniques. Our dynamic clustering assignment is explicitly
guided to reflect the phenotype, trajectory and outcomes of the patient. Experimen-
tation on a real-world dataset is encouraging, and we hope that we could someday
translate this into actionable insights in guiding future clinical research.

Keywords Electronic health records · Temporal clustering

1 Introduction and Related Work

Patients onmechanical ventilation are a highly heterogeneous group, withwidely dif-
fering outcomes. Some have relatively healthy lungs e.g. if they are recovering from
surgery on another organ; whereas others have varying degrees of pulmonary failure.
Pulmonary failure can be acute e.g. Acute Respiratory Distress Syndrome (ARDS)
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and deteriorate rapidly, or chronic, typically evolving slowly. Unfortunately, patients
on ventilators have high mortality [14, 17] and there is no established consensus on
optimal treatment strategies from randomised controlled trials [2]. Therefore, there
is great potential benefit to be gained from phenotype discovery in order to guide
future clinical studies.

To this end, we have developed a dynamic clustering approach for mechanically
ventilated patients. Previous work using simple clustering techniques has revealed
actionable sub-phenotypes by secondary analysis of RCT data. For example, latent
trajectory modelling of inflammatory biomarkers has revealed sub-types of ARDS
[8]. Clustering of transcriptomic data has revealed patient populations in which
steroid therapy may be beneficial in sepsis [1]. Routinely collected data has also
been used to find trajectory clusters in sepsis based on physiological parameters [3].

We know that temporal neural network architectures can handle the heteroge-
neous population in the Intensive Care Unit (ICU), both using supervised [10, 19]
and unsupervised [15, 27] approaches. Temporal clustering approaches have been
applied successfully to other domains e.g. in Parkinson’s [29], diabetes [20] and
cystic fibrosis [12] and increasingly in intensive care as discussed above.

We have designed our clusters to share similarities in phenotype, trajectory and
outcomes. We generate a cluster for each hour of a patient’s stay, meaning that if
an event happens which alters the predicted trajectory and outcomes, there will be
a shift in the cluster assignment. This is interesting, not only because it can reveal
which events are associated with these shifts, but also what might have happened if
the ventilation strategy had been different. We hope that our work could someday
translate into actionable insights in guiding future clinical research.

2 Methods

Broadly, our strategy was to train a temporal encoder to embed the patient data at
every timestep (this is analogous to returning all the hidden states for an LSTM
model). We used a mixture of supervised, unsupervised and self-supervised learning
to do this (see Sect. 4 below). Once the encoder training was complete, we used an
unsupervised method to cluster the embeddings, so that we get a cluster for every
timestep in the patient’s ventilation episode. The code can be found at: https://github.
com/EmmaRocheteau/Mechanical-Ventilation-Clustering.

The data consisted of both timeseries and static features. The supervised tasks
included two binary tasks: predicting hospital mortality and the risk of receiving
a tracheostomy,1 and two duration tasks: the remaining length of stay (LoS) from
timestep t , and their remaining ventilation duration (VD). This ensured that the
patient outcomes are stored within the embedding. In addition, we trained a decoder
to reconstruct timestep t and the static data. This unsupervised approach encourages

1 A tracheostomy is a procedure designed for long term mechanical ventilation of a patient.

https://github.com/EmmaRocheteau/Mechanical-Ventilation-Clustering
https://github.com/EmmaRocheteau/Mechanical-Ventilation-Clustering
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Fig. 1 Overview of our model. Only one timestep, t , is shown for simplicity. F and S are the
number of time series and static variables respectively. At timestep t , the static variables (yellow)
and preceding time series variables (grey) and their corresponding decay indicator variables (orange,
explained under ‘Time Series’ in the Supplementary Material) are given to the encoder, which
produces an embedding (green) for timestep t . This is then given to the decoder networks (yellow),
forecasting network (purple) and the predictor network to obtain the four patient outcomes (red).
After training is complete, the test embeddings are used for clustering

the embedding to retain the patient phenotype. Finally, we predicted timestep t + 1,
a self-supervised approach designed to embed the patient trajectory (Fig. 1).

Encoder In recent years, LSTMs have been by far the most popular model for pre-
dicting clinical outcomes and have achieved state-of-the-art results [10, 18, 21, 25].
They have also been applied to other patient prediction tasks e.g. forecasting diag-
noses and medications [6, 13], and mortality prediction [5, 10, 22]. More recently,
the Transformermodel [26] hasmarginally outperformed the LSTMwhen predicting
LoS [23]. Rocheteau et al. [19] showed that Temporal Pointwise Convolution (TPC)
outperformed both the LSTM and Transformer models on mortality and LoS. There-
fore, we chose to investigate these three encoders. Details of their implementation
are given under ‘Additional Implementation Details’ in the Supplementary Material.

K-Medoids ClusteringWe used k-medoids clustering to cluster the learned embed-
dings. K-medoids is similar to k-means, except that it operates with medoids rather
than centroids. This means that the medoids will always be a true observation in
the data, while that is not usually the case for centroids. The main advantage is that
k-medoids are less sensitive to outliers than k-means, which is more suitable in this
context where the data is noisy and heavily skewed.2

Both k-means and k-medoids operate on pairwise similarities. We decided to use
Euclidean distance rather than cosine similarity. This is because intuitively, it is not
only the direction that the patient ismoving in thatmatters, but also the distance along
that axis. For example, if a particular ‘direction’ represents acute decompensated
heart failure, we also care how severe the decompensation is.

2 Preliminary experiments revealed that k-means were more likely to produce small clusters which
lay far away from the rest of the data, because it ismore affected by outliers. Thismade the clustering
process less reliable and reproducible.
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We applied batch normalisation [11] to the embeddings, to ensure that the embed-
ding distribution remainedwithin a reasonable range. The value of k (5 for allmodels)
was chosen using the elbowmethod (see ‘Number of Clusters’ in the Supplementary
Material).

3 Data

We used the Amsterdam UMC database version 1.0.2 [24], which contains 23,106
ICU admissions from 20,109 patients admitted between 2003 and 2016. We selected
all of themechanical ventilation episodeswith aminimumduration of 4 h, capping the
maximum duration after 21 days to reduce computational costs. This corresponded
to 14,836 episodes which occurred during 13,502 ICU admissions from a cohort of
12,597 unique patients. We selected 31 time series features and 14 static features.
The data were split such that 70%, 15% and 15% were used for training, validation
and testing respectively. These were split by patient, not ventilation episode, to avoid
data leakage from the train set. Further details of the data are provided under ‘Data
Preprocessing’ in the Supplementary Material.

4 Prediction Tasks

Remaining Length of Stay and Ventilation Duration We assigned a remaining
length of stay (LoS) and remaining ventilation duration (VD) target to each hour of
the ventilation episode, ending when the patient dies or is extubated. We only trained
on data from the first 21 days of the ventilation episode to protect against batches
becoming overly long and slowing down training.

The remaining LoS and VD each have a significant positive skew which makes
the duration tasks more challenging. We partly circumvent this by replacing the
commonly usedmean squared error (MSE) losswithmean squared log error (MSLE),
as in Rocheteau et al. [19]. We reported on 2 LoS and VD metrics: mean absolute
deviation (MAD) and mean squared log error (MSLE). The MAD was used as the
primary metric in Harutyunyan et al. [10] but MSLE is arguably the more holistic
metric [19].

Mortality and Tracheostomy Unlike the duration tasks, these tasks are static, i.e.
the labels do not change during the ventilation episode. Both tasks have significant
class imbalance (only 14.6% and 7.4% of patients died or received a tracheostomy
respectively). In order to encourage the model to prioritise learning these important
outcomes, we applied class weighting to the task. We used binary crossentropy as
the loss function. We report the area under the receiver operating characteristic curve
(AUROC) and the area under the precision recall curve (AUPRC) as metrics.
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ReconstructionandForecastingAs shown inFig. 1,weuse the embedding to recon-
struct the timestep t , and forecast one timestep (t + 1) ahead. For the reconstruction
of t and forecast of t + 1, we apply the mean squared error. We also reconstruct
the following static features: sex, urgency of admission, agegroup, weightgroup, and
heightgroup. The first two are binary, and so we apply the binary crossentropy loss
function. The other three are ordered categorical (as explained under ‘Static Fea-
tures’ in the Supplementary Material), therefore we use the mean squared error loss
function. Since these tasks are auxiliary (we are not interested in the performance as
an outcome of the model), we reported their loss function values as ‘metrics’ since
they do not need to be interpretable.

The relative weightings of all of these tasks are given under ‘Hyperparameter
Search Methodology’ in the Supplementary Material.

5 Results

In this section, we highlight important performance differences between the three
encoders, analyse an ablation study on the tasks, and provide a detailed analysis of
the clusters produced by the TPC model. A deeper evaluation of the results can be
found in the discussion.
(a)—Full Task Setting The TPCmodel performs significantly better than the LSTM
and Transformer on the outcome tasks (Table 1a), which is in line with previous
findings in MIMIC-IV and eICU [19]. The superiority of the TPC model is also
evident in the variational and ablation experiments. Interestingly, the Transformer
performs poorly on the binary tasks but better on the duration tasks with respect
to the LSTM. Additionally, the LSTM performs the best on the reconstruction and
forecasting tasks (Table 2a). Possible reasons for these findings are explored in the
discussion.
(b)—Variational Embedding Spaces We experimented with making the embed-
dings ‘variational’, by representing the embedding as a set of means and standard
deviations to allow sampling of embedding coordinates. The rationale was that by
forcing the embedding space to be smoother, we might improve the quality of the
clustering as the distances between patients in the embedding space become more
reliable. However, this was found to universally hurt performance (Tables 1b and 2b)
and it produced clusters which were more homogeneous in terms of outcomes and
features, which was counter to the aim of producing clinically distinct clusters.

Ablation StudyWe performed an ablation study on the tasks used to train the repre-
sentation space. The results are shown in Table 3. Firstly, we see that the best results
for all tasks (except for the duration tasks) are achieved in the full multi-task setting.
Not a single metric improves in the other ablation settings, and yet at least one metric
showed a deterioration in performance (the exception in task setting (g) is discussed
below). Overall this indicates that having multiple competing learning objectives has
a stabilising effect on learning the representation.
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Table 2 Losses for the reconstruction tasks and forecasting task averaged over 5 independent
training runs. The error margins are 95% confidence intervals. See Sect. 4 for explanations of the
losses shown. The meaning of (a), (b), the colour scheme and statistical tests are defined in the
legend to Table 1

Model Reconstruction tasks Forecasting
Last timestep Static (Binary) Static (Other)

TPC 0.334±0.004 0.013±0.000 0.210±0.038 0.334±0.005

(a) Transformer 0.351±0.005 0.013±0.000 0.354±0.005 0.347±0.001

LSTM 0.297±0.006‡ 0.012±0.001† 0.078±0.010‡ 0.299±0.004‡

TPC 0.345±0.002‡ 0.013±0.000 0.332±0.006‡ 0.345±0.003‡

(b) Transformer 0.355±0.006 0.013±0.000† 0.356±0.001 0.353±0.005†

LSTM 0.322±0.003‡ 0.012±0.000 0.266±0.004‡ 0.323±0.003‡

(c)—No Forecasting Experiment (c) included all the tasks except forecasting one
timestep ahead. When we compare experiment (c) to (a), we see that the results are
mostly similar, but there is a consistent decrease in performance, which is statisti-
cally significant at the p<0.05 level on the tracheostomy task (AUPRC in the TPC
model and AUROC in the Transformer model). On the reconstruction task, again the
performance is similar but statistically worse in the last timestep reconstruction in
the LSTM model. This means that the forecasting task is contributing slightly to the
performance in (a), but the benefit is small.
(d)—NoReconstruction Experiment (d) removes both the timestep t reconstruction
and the static data reconstruction tasks, but keeps the forecasting task. The effect size
is larger than in (c), but again is only statistically significant on the tracheostomy
task. The forecasting task performs significantlyworse in the Transformer andLSTM
models without the reconstruction.
(e)—Prediction TasksOnlyExperiment (e) includes the binary and duration predic-
tion tasks, but no reconstruction or forecasting. The performance again deteriorates,
particularly on the tracheostomy task, we also start to see a more noticeable deteri-
oration in the duration tasks, although this is not yet statistically significant.
(f)—Binary Tasks Only Experiment (f) also shows worsening performance as tasks
are removed. This means that the mortality and tracheostomy tasks consistently
benefit from supplementary tasks which help to distinguish signal from noise.
(g)—Duration Tasks Only Experiment (g) shows unexpected results; all of the
models return better results when only predicting LoS and VD. This is not what has
been observed previously in multitask settings ([10, 19]). This is explored further in
the discussion.

However, overall the trend is such that the more tasks that are included, the better
the average results across tasks.

Cluster Analysis As the best performing encoder, we have focused on analysing
the clusters produced by the TPC model. In order to analyse the average differences
between the patients in each cluster, it was necessary to flatten the clustering into one
‘primary’ cluster per patient. This was to prevent confusion, since patients can enter
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Table 4 Average outcomes by cluster± 95% confidence intervals for the TPCmodel. Each patient
has been classified into a primary cluster, which is the cluster that they spent the majority of their
time in. LoS and VD are shown in days

Cluster Patients Mortality
(%)

Tracheostomy (%) Length of
stay

Vent.
duration

1 232 72.0±5.8 1.3±1.5 3.8±0.8 2.4±0.3

2 133 34.6±8.2 38.3±8.4 30.0±3.6 21.4±2.2

3 1,292 1.9±0.7 1.5±0.7 2.8±0.3 0.7±0.0

4 347 4.0±2.1 31.1±4.9 22.0±1.8 7.4±0.9

5 227 26.0±5.7 8.4±3.6 13.0±1.6 7.2±0.9

Table 5 Key features averaged by cluster ± 95% confidence intervals. ‘Urgency’ is a flag given to
the patient at admission. Mandatory Ventilation (MV) settings are provided in the Supplementary
Material. The peak inspiratory pressure, P/F Ratio and PEEP are expressed in mmHg. A normal P/F
ratio at sea level is ≈400–500mmHg; whereas 200–300mmHg is consistent with mild ARDS [9].
Lung compliance is expressed inml/cmH2O (normal for amechanically ventilated patient is 50–100
ml/cmH2O)
Cluster Age

70+ (%)
Sex
(% male)

Urgency
(%)

MV (%) Peak Insp.
pressure

Lung
Comp.

P/F Ratio PEEP

1 52.2±6.5 59.7±6.3 63.4±6.3 68.3±0.8 25.3±0.2 32.7±0.5 217±2 10.09±0.07

2 54.1±8.6 65.8±8.1 39.1±8.4 43.2±0.4 23.2±0.1 36.8±0.3 220±1 9.97±0.03

3 39.8±2.7 69.7±2.5 14.9±1.9 38.6±0.6 16.1±0.1 58.8±0.7 260±1 6.78±0.03

4 25.9±4.6 68.4±4.9 41.5±5.3 22.1±0.4 17.8±0.1 57.5±0.4 237±1 8.19±0.28

5 40.1±6.4 69.6±5.9 43.2±6.5 41.8±0.5 20.3±0.1 47.1±0.4 243±1 8.83±0.38

multiple clusters during their ICU stay (sometimes only for one or two timepoints),
and this is disproportionately true of the long stay patients. The cluster in which each
patient spent the majority of their time in was assigned its primary cluster. If there
were multiple modes, then the mode experienced later in the sequence was chosen.
The next two sections characterise the behaviour of the primary clusters. Subse-
quently, we analyse the dynamic aspects of the clustering from multiple different
perspectives.

Differences in Phenotype and Outcomes Table 4 shows the mean outcomes for
each cluster. We also analysed some key features in the original data, to visualise
differences in patient phenotype that the model identified. The average values of key
features in patients divided by primary cluster are shown in Table 5. Broadly we can
say that:

• Cluster 1 contains the sickest patients, with an average mortality of 72.0%. They
are short stay patients with low rates of tracheostomy as most do not survive or
stay long enough to require complex respiratory weaning. Table 5 shows they are
primarily ventilated with ‘mandatory’ ventilation settings, meaning the machine
is breathing for the patient. Furthermore, they have evidence of mechanical and
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functional damage to the lung parenchyma. This is in keeping with severe res-
piratory distress. We could describe this phenotype as a ‘early, life-threatening
pulmonary injury’ patient group.

• Cluster 2 display substantial mortality and severe pulmonary dysfunction like
cluster 1. However this phenotype is characterised by very long LoS and VD, with
consequent high rates of tracheostomy: this represents patients who are difficult
to wean from mechanical ventilation. This might be described as a ‘pulmonary
critical illness’ phenotype.

• Cluster 3 have the best outcomes, with short LoS and low mortality. They are
extubated without tracheostomy. This appears to be a ‘short stay’ phenotype who
require a brief period of organ support, perhaps after significant surgery.

• Cluster 4 have relatively low mortality but high rates of tracheostomy. Table 5
shows modest levels of respiratory failure and good lung compliance. Thus, whilst
these patients are difficult to wean from mechanical ventilation (like cluster 2),
this is due to factors that are not primarily related to pulmonary pathology. We
could therefore describe them as a ‘general critical illness’ phenotype.

• Cluster 5 shows a moderate to severe group, who are not as acutely unwell as
cluster 1, but are still high-risk. From Table 5 we see that pulmonary injury is not a
prominent feature sowe could characterise these patients as ‘early, life-threatening
non-pulmonary injury’ patients.

Overall, the findings fromTables 4 and 5 show that there are clinically meaningful
differences between the clusters. These can be visualised in Fig. 2.

Medoid Analysis The medoids produced by the clustering algorithm are shown in
Fig. 3 and give a description of a representative patient in each cluster. Note that each
medoid corresponds to a specific time-point in their ventilation episode.

• The medoid patient for cluster 1 (female, age 60–69) died 4 h after the episode
shown without a tracheostomy. Infection (highWBC) and pulmonary dysfunction
are particularly noteworthy.

• The typical medoid patient representing cluster 2 (male, 80+ years old) received
a tracheostomy 19 days after the episode shown, and was discharged at 23 days.
This patient required late aswell as earlymandatory ventilation suggestingpossible
infectious complications (his CRP is also high).

• The medoid patient in cluster 3 (female, age 60–69) was discharged from hospital
the day after her brief window of ventilation. She does not display substantial
physiological derangement.

• The patient in cluster 4 (female, age 60–69) received a tracheostomy 3 days after
the sequence shown. Her lung compliance and P/F ratio are both high, indicating
good lung function. Therefore, we can conclude that she needed a tracheostomy
for reasons other than lung injury.

• Lastly, the patient in cluster 5 (female, 80+ years old) stayed for 9 further days in
hospital before being discharged. The short duration of ventilation and relatively
normal pulmonary physiology is consistent with a non-pulmonary phenotype.
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Fig. 2 t-SNE plots for the embeddings produced by the TPCmodel. For these figures, 1500 random
samples were selected from the test set and projected. In each plot, a different attribute is highlighted

TemporalAnalysisBroadly, there are two perspectiveswhen evaluating the dynamic
aspects of this clustering.

One is the ‘Markovian’ perspective, where we can examine the transition function
between clusters. This is shown in Fig. 4. Unsurprisingly, this reveals that the patient
is always most likely to remain in the same cluster. However the most common inter-
cluster transitions are from cluster 5 to cluster 4, and cluster 1 to cluster 5. Note that
these clusters are next to one another and share lengthy borders in Fig. 2. Most of the
patients who transition to ‘Died’ come from cluster 1, and most of the ‘Discharged’
patients come from cluster 3.



86 E. Rocheteau et al.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Time since ICU admission (hours)

Fig. 3 Raw data from each of the medoids. The data have been standardised around the mean value
for each feature. Red means the value is high and blue means low. We can see that each medoid
largely follows the average pattern for the cluster shown in Table 5. WBC is white blood count,
CRP is C Reactive Protein, ABP is arterial blood pressure

Fig. 4 A transition matrix for the TPC model, showing the probability of entering each cluster at
time t + 1, plus the categories ‘discharged’ or ‘died’, given their cluster at time t

The other perspective is to look at the number of patients in each cluster at differ-
ent time points after admission, and observe the transitions between them (Fig. 5).
Transitions from cluster 3 to ‘extubated’ are very common within the first day, but
then they almost disappear by 3 days. This cannot be seen with the Markovian per-
spective in Fig. 4. Cluster 2 contains patients with the longest ventilation episodes,
which can be seen by its low rate of attrition over time.

Number of Clusters per Patient Figure 6 shows that most patients remain in only
one cluster during their ventilation episode. However, when the distribution is broken
down by primary cluster, we can see that this is heavily driven by the behaviour of
cluster 3 patients, which tend to remain in cluster 3 for their entire ventilation duration
(note that they tend to have short VDs so this is not so surprising). In contrast, clusters
2 and 5 most commonly appear alongside other clusters during a single ventilation
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Fig. 5 A sankey plot showing the evolution of the clustering across time. We begin at 4 h to allow
the clustering to stabilise at the start of the time series. At 21 days there are still some patients
without a final outcome (mostly from cluster 2) but this is because they are ventilated for longer
than 21 days and have been right censored

Fig. 6 Distribution of the number of clusters that the patient enters during their ventilation episode,
separated by primary cluster (shown by the colour key). For example, cluster 3 (purple) mainly
appears on its own i.e. the patient starts the episode in cluster 3 and remains in cluster 3 for the
whole duration, whereas cluster 5 (red) rarely appears on its own

episode. This means that for most episodes attributed to cluster 2 or 5, there are
transitions either into or out of these clusters. These are explored next.

Cluster Transitions The clusters produced by the TPC model are remarkably stable
over time, given that there is no explicit loss incentive to constrain the representation
to behave in this way. Figure7 shows the distribution of timepoints that the patients
first enter their primary cluster. Clusters 2 and 3 are particularly likely to accurately
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Fig. 7 Percentage of patients who have entered their primary cluster against time

assigned during the first hour of ventilation (87 and 89% respectively), while cluster
4 is the least likely to be identified early (64%).

Next, we investigatedwhat wewill refer to as ‘stable’ transitions between clusters.
In order to be characterised as stable, the origin cluster needed to remain stable in the
5 h preceding the transition, and the patient was not permitted to re-enter the origin
cluster for 5 h following the transition. This was primarily to screen out patients
who were at the boundary between two clusters, continually crossing back and forth
but not representing a true transition from one to the other. Before screening, there
were 22,036 cluster transitions, corresponding to 870 separate ventilation episodes
(39% of the total in the test set). Of these transitions, only 291 represented stable
movement between clusters.We further removed any transitions between two clusters
that had fewer than 15 transition examples, as this would be insufficient to analyse.
The remaining 230 transitions are shown in Table 6.

Firstly, it is noteworthy that the outcomes reflect the destination cluster, not the
origin cluster. The exception to this is the ‘urgency’ column, which is not an outcome,
but a label assigned at admission and hence is more likely to reflect the origin cluster.

Cluster 5 stands out as being disproportionately involved in inter-cluster transi-
tions. Of these, the most common is 5→3, which occurs when the model overesti-
mates the risk to the patient early on in the ventilation episode. Not shown in Table 6,
is that the average predicted risk of death drops from 56.4% 5 h prior to the transi-
tion, to 41.7% at the point of transition. There is also a corresponding reduction in
tracheostomy risk (–13%), LoS (–17.1% after adjustment3) and VD (–26.4% after
adjustment) as predicted by the model, and dramatic improvements in physiological
parameters such as lung compliance (+35%) and P/F ratio (+15%).

Another interesting transition is 3→1, which happens when the model initially
believes the patient to be relatively healthy, but then quickly re-adjusts to predict

3 There is a 5 h gap between these predictions, therefore this time difference needs to be removed
from the first prediction.
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Table 6 Stable cluster transitions (origin cluster → destination cluster) with a count of ≥15,
sorted by destination cluster. The median rather than the mean time is displayed to show a more
representative time of transition (as there is positive skew)

Transition Count Median
time

Mortality
(%)

Tracheostomy
(%)

Urgency
(%)

VD LoS

3→1 17 3 76.5 0.0 47.1 0.5 0.7

5→1 29 16 51.7 10.3 55.2 4.3 5.3

1→3 28 11 10.7 0.0 67.9 1.0 2.6

5→3 46 9 15.2 4.3 41.3 1.2 6.5

2→4 28 17 10.7 21.4 42.9 6.2 12.8

5→4 27 10 11.1 7.4 48.1 3.4 9.1

1→5 25 3 44.0 4.0 68.0 3.9 6.5

3→5 15 4 13.3 13.3 53.3 1.9 4.6

4→5 15 56 26.7 26.7 46.7 6.6 11.5

poor outcomes. Looking in more detail at the raw data, we discovered that these
patients are younger (only 23.5% are 70+), which could explain why the model
was initially optimistic and why the deterioration is so rapid.4 We also observed a
deterioration in the lung compliance (–26.3%) and P/F ratios (–12.8%), and a change
in the ventilator settings—namely higher PEEP and peak inspiratory pressure and
lower tidal volumes—reflecting a drop in lung compliance of the patients. Most of
these patients died within 12 h of the transition to cluster 1.

Reliability We investigated the reproducibility of these phenotypes. We chose to
analyse the clusters in the following settings: (i) alternative encoder models, (ii)
retraining the TPC model with different random seeds and (iii) varying the value
of k. The clusters were found to be surprisingly stable, with key features of the
extracted phenotypes remaining similar between models. With increasing value of
k, we noticed that rather than completely rearranging the position of the clusters,
increasing k progressively subdivides existing clusters, hinting that the clusters are
hierarchically organised. The full analysis is included in the SupplementaryMaterial.

6 Discussion

We evaluated the use of TPCmodel, trained using supervised, unsupervised and self-
supervised learning techniques, for the purposes of phenotype discovery in mechan-
ically ventilated patients. We discuss the most important findings in turn.

Firstly,we reaffirmed that theTPCmodel performsbetter than alternative encoders
on EHR data for patient outcome prediction.

4 This is because younger patients can mask a problem by compensating deceptively well, until
they reach a point where the homeostatic mechanisms can no longer cope.
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Secondly,we found that theTransformer outperformedLSTMonLoS andVD, but
performed much worse on the mortality task, and slightly worse on the tracheostomy
task. This may be because the task weighting wasmore favourouble to the LSTM and
TPC models, whereas the Transformer would have benefited from greater weighting
towards the binary tasks. Another possibility is that the binary tasks benefit from
biases in the LSTM and TPC encoders, because these models naturally emphasise
recent timepoints (and these are especially important for solving the mortality task).
As for the reason that the Transformer performs better on tracheostomy than mor-
tality, it could be because there is positive correlation between the LoS, VD and
tracheostomy tasks. Solving the duration tasks makes the tracheostomy task easier,
whereas the relation to mortality is more complex (Fig. 2).

To briefly comment on the reconstruction results in Table 2; itmay seem surprising
that the LSTM model performs best on the reconstruction and forecasting tasks.
However, this could be explained if theLSTMis creating ‘lower level’ representations
that are easier to translate back to the original data with the decoder networks.

Thirdly, Table 3 reveals a general trend that the more tasks that are added, the
better results across all the tasks,with particular benefits to the tracheostomy task. The
exception to this was the duration only setting. There are two possible explanations:

1. The weighting of the duration task was not sufficient.
2. The tracheostomy task reduces the performance on the duration tasks.

The former does not seem likely, because the Transformer is probably over-weighting
the duration tasks, and yet, it follows the same trend as the LSTM and TPC. The
latter may appear to be counter-intuitive, because the duration tasks are correlated
with tracheostomy. Usually this is an advantage in multitask learning, because it
can enhance the signal:noise ratio. However, looking closely at Fig. 2, we can see
that there is an area of patients in cluster 5 who have long VD and LoS but have
been separated from the other long stay patients in clusters 2 and 4. The separation
can be attributed to these patients never receiving tracheostomies, therefore the tra-
cheostomy task forces the representation space to separate these groups when they
would be otherwise be aligned. Given the simple nature of the predictor networks,
this may harm the performance on the duration tasks because the predictor can-
not effectively map these patients to appropriately long LoS. This theory could be
formally tested by accompanying the duration tasks with the mortality task only.

Finally, regarding the repeatability of the clustering with different encoders and
TPC instances, we demonstrated that key aspects of the representations are consis-
tently recognised. Whereas the separation between the sickest patients and moder-
ately ill was more malleable. This suggests that there may not be a clear distinction
but rather a scale of deterioration through which an arbitrary line can be drawn.
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7 Limitations and Future Work

Hierarchical Clustering It is evident that certain clusters are more related than
others. A tree based hierarchy of clusters seems more natural than a flat structure.
We are particularly interested in modifying an approach for genetics data [4, 7, 16].

Contrastive Learning Currently, there is no explicit loss to enforce relative posi-
tioning of the embeddings. Despite this, we have empirically found the clusters to be
very stable, both temporally and to encoder type. This is likely because our predictor
and decoder networks are very simple, which already constrains the network to place
similar patient trajectories in similar parts of the representation space. Nevertheless,
contrastive learning (e.g. Yèche et al. [28]) may provide further regularisation.

8 Summary

While we acknowledge important limitations in our work, we have shown that:

1. The TPC model outperforms alternative encoders on patient outcome prediction.
2. We can generate clinically meaningful and interpretable clusters.
3. The phenotypes are similar across choices of encoder and number of clusters.
4. The cluster assignment is remarkably stable over time, and membership is deter-

mined early on. This is particularly encouraging as a substrate for future inter-
vention studies, because they rely on phenotyping before any intervention.

5. Stable cluster transitions do occur but they are infrequent. Studying these transi-
tions is an important avenue for future work.

Supplementary Material

These can be accessed at: https://emmarocheteau.com/publication/cluster_
supplementary.pdf.
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7. G. Corso, R. Ying, M. Pándy, P. Veličković, J. Leskovec, P. Liò, Neural distance embeddings
for biological sequences (2021). https://doi.org/10.48550/ARXIV.2109.09740, https://arxiv.
org/abs/2109.09740

8. K.R. Famous, K.Delucchi, L.B.Ware, K.N.Kangelaris, K.D. Liu, B.T. Thompson, C.S. Calfee,
A. Network, Acute respiratory distress syndrome subphenotypes respond differently to ran-
domized fluid management strategy. Am. J. Respir. Crit. Care Med. 195(3), 331–338 (2017)

9. A.D.T. Force, V.M. Ranieri, G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell,
E. Fan, L. Camporota, A.S. Slutsky, Acute respiratory distress syndrome: the Berlin defini-
tion. JAMA 307(23), 2526–2533 (2012). https://jamanetwork.com/journals/jama/articlepdf/
1160659/jsc120003_2526_2533.pdf

10. H. Harutyunyan, H. Khachatrian, D.C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and
benchmarking with clinical time series data. Sci. Data 6(96) (2019)

11. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing
internal covariate shift, in Proceedings of the 32nd International Conference on International
Conference on Machine Learning vol. 37, JMLR, ICML’15 (2015), pp. 448–456

12. C. Lee, M. van der Schaar, Temporal phenotyping using deep predictive clustering of disease
progression (2020). arXiv.org/abs/2006.08600

13. Z.C. Lipton, D.C. Kale, C. Elkan, R.C. Wetzel, Learning to diagnose with LSTM recurrent
neural networks (2015). CoRR. arXiv:1511.03677

14. J. Máca, O. Jor, M. Holub, P. Sklienka, F. Burša, M. Burda, V. Janout, P. Ševčík, Past and
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Abstract In this paper, we propose a data-driven approach to estimate Bayesian
parameters when trust needs to be quantified in the domain of wearable medical
devices (WMD). Our approach extracts the probability of a trust determinant (e.g.,
reliability or robustness) being in a specific state from the data. Then, we use the
Bayesian approach to estimate the parameters for the intermediate nodes in the net-
work and ultimately compute the trust score. The trust score we compute is used as a
relative measure of trustworthiness between different WMDs evaluated in the same
test conditions and with the same Bayesian network (BN). To evaluate our approach,
we develop a BN for the trust quantification of similar wearable medical devices
from two manufacturers under identical test conditions. The results demonstrate the
learnability and generalizability of our data-driven parameter estimation approach.
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1 Introduction

Advances in sensor technology have revolutionized wearable medical devices
(WMD) capability to monitor patients’ health remotely. In addition to technical
advances, trust in WMD is essential for their continued acceptance and adoption by
patients, health professionals, and institutions. The trust depends on multiple factors,
including the secured and reliable collection of data by the network of sensors and
the flow of data through several layers and units of a WMD. If the data generated
by WMD cannot be trusted, it could jeopardize the trustworthiness of the entire sys-
tem. However, trust is stochastic and subjective, as demonstrated in the following
motivating scenario. Assume Alex, an athlete, and his family, trainer and physician
(primary stakeholders) are considering different WMDs to monitor Alex’s health
during indoor and outdoor activities. Alex and his family’s trust in the WMD may
depend on the device’s safety and privacy. At the same time, Alex’s trainer and physi-
cian may select a WMD depending on the device’s accuracy and quality of collected
data. The important question in this scenario is how these stakeholders, each with
possibly different and subjective views of trustworthiness, select the suitable device.

There is a growing interest in using BN [29] to quantify trust inWMD. In a recent
study, [31] proposed a BN to quantify trust where each node in the network repre-
sents a trust determinant, as shown in Fig. 1a. The BN is structured so that the nodes
in the first layer (X1 − X4) capture trust factors that are directly measurable (e.g.,
quality of the heart rate signals as a trust determinant) while the remainder of the
network represents the probability of subjective belief on the state of each refined
attributes such as reliability (X5) and robustness (X6). Then, the trustworthiness of
a WMD from a stakeholder’s perspective is represented in terms of the probability
of a subjective belief in trust to be in a specific state (e.g., low or high). Computing
this probability requires access to all intermediary prior and posterior probabilities
of the BN parameters, which appear to be a major challenge [11]. As a result, usually
arbitrary values from experts [11] or random values assuming some Gaussian distri-
bution have been used [31]. The latter can lead to over-fitting and biased objective
quantification. The former requires experts to provide an exponential number of prior
and posterior probabilities, which is impractical and may lead to expensive, biased,
or contradictory estimates.

This paper addresses this gap by proposing a data-driven parameter estimation
approach for BN to quantify trust. As shown in Fig. 1a, our goal is to compute the
probability of X7, which represents the trustworthiness of a WMD, from a stake-
holder’s perspective, to be in a specific state (e.g., low or high). We extract prior
probabilities of the measurable attributes (X1 − X4) directly from the data collected
from the WMD sensors. For example, in Fig. 1b, the probability that the quality of
the heart rate sensor is high is calculated by comparing our data to the manufac-
turer’s specifications. We capture the subjectivity of stakeholders’ perspectives by
asking the experts to provide the impact of each measurable attribute on its imme-
diate intermediary node. For example, how X1 and X2 impacts reliability (X5). This
is a known method in software engineering to investigate the impact of a specific
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Fig. 1 BN to quantify trust (T) in WMD by analyzing heart (H) and breathing (B) rate sensor
validation, heart (HQ) and breathing (BQ) rate quality, reliability (Re), and robustness (Ro)

software architecture on quality attributes such as privacy, security and trust [24] or
in understanding the alignment of different business models with a corporate strat-
egy [25]. In this way, instead of expecting experts to estimate numerous probabilities,
their subjective views are captured by a minimal number of qualitative labels. Then,
we use the Bayesian approach [14] to estimate the parameters by calculating the
joint probability distributions. Since trust is subjective, the computed probability of
trustworthiness for one device may not be interpretable. Instead, the trust probability
provides a relative measure of trustworthiness when probabilities are computed for
differentWMDswith the same test conditions, i.e. sameBNand subjectivemeasures.

To evaluate our approach, we developed a hierarchical four-layered BN.We iden-
tified trust factors from the literature and mapped them to the regulatory standards’
requirements for trustworthymedical devices [4, 6–8, 10].We learned theBNparam-
eters, including the probability of trust on each device, using our data-driven approach
with the data collected from two WMDs. We evaluated the learnability and gener-
alizability behaviour of our BN. For learnability, we measured the similarity of the
quantified trust probability for the two WMDs under the same test conditions, such
as sitting, standing, and walking. For generalizability, we assessed how decreasing
the WMDs’ sampling rates impacts our quantified trust probability. We successfully
trained a BN using our Bayesian parameter estimation approach. The quantified
trust score for the two WMDs was similar for predefined activities, demonstrating
high learnability. The results also showed that the trust scores did not depend on the
sampling rate, demonstrating high generalizability.

Wemake the following contributions. First, we present a data-driven approach for
estimating the parameters of the BN with data collected from the WMDs. Second,
we present a compact BN structure for computing the probability of trust using
factors from the literature mapped to regulatory guidelines. Finally, we present a
proof-of-concept BN to compare the trust score between two WMDs.
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2 Parameter Estimation of Bayesian Network

The stochastic nature of trust can be viewed as probabilities represented by a set of
random variables [31]. A BN [29] is a probabilistic graph model that represents a
set of random variables and their conditional dependencies in a compact way using
nodes and edges. Formally, a BN is represented as G = (X, E), where X is a finite
set of n discrete random variables as nodes and E is a finite set of directed edges. For
each randomvariable i , the prior probability is defined as P(Xi ), capturing the node’s
aleatory uncertainty and edges representing a causal relationship between the nodes.
Following terminologies in [16], we have two types of nodes: non-descendant (have
no parents) and descendant (have parents), with the assumption of independence
between the non-descendant nodes. Let PaXi denote the set of parents of a node Xi .
Figure 1b shows an example of aBNwith sevennodes (X1 to X7) and six edges.Nodes
X1 to X4 are non-descendant and X5 to X7 descendant nodes, PaX5 = {X1, X2},
PaX6 = {X3, X4}, and PaX7 = {X5, X6}. We can see a BN as a structure (G) with
a set of prior probabilities (P(Xi )) for non-descendant and a set of parameters (θ )
for descendant nodes. The structure encodes the probability density of the random
variables with their conditional dependencies in the form of a directed acyclic graph
(DAG) [16]. The prior probabilities are the given evidence, and the BN parameters
are the intermediate (descendant) nodes’ conditional probabilities computed as:

P(Xi |PaXi ) = P(PaXi |Xi )P(Xi )

P(PaXi )
, ∀i = descendant, (1)

where P(PaXi |Xi ) is the likelihood probability of the evidence for a particular data
based on θ , P(Xi ) is the prior probability before the evidence is considered, and
P(PaXi ) is the marginal probability of the evidence under any circumstance [16].
Then the joint probability distribution for the BN can then be expressed as:

P(X1, ..., Xn) =
n∏

i=1

P(Xi |PaXi ). (2)

2.1 Data-Oriented Bayesian Parameter Estimation

With its simple structure, a BN can capture many random phenomena in the presence
of multiple interrelated aspects that relate to a specific reasoning task. For example,
we might be interested to know the probability of a patient having flu given several
interrelated pieces of evidence, including the season and symptoms where the same
symptoms might also indicate another diagnosis, such as hay fever ([16]-Chap.1).

In our approach, we define the trustworthiness of a WMD in a similar way and in
terms of the probability of the trust node in the BN (X7) to be in a specific state (e.g.,
low, medium, or high). The first step is to define the BN structure to capture how trust
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is interrelated to other phenomena, whether they are directly measurable or not. For
example, in Fig. 1b, trust (X7) cannot be measured directly and also it is not directly
related to measurable observations such as the heart rate sensor validation (X1) or
the quality of heart rate signal (X3). However, we know the relationship between the
relative reliability of two devices (X5), the measured observations in X1 and X2, and
the relationship between reliability (X5) and trust (X7). Undoubtedly, this structure
is subjective both in terms of structure and also the qualitative levels that we define to
indicate the relative trustworthiness of a WMD. However, we will show that if these
subjective aspects are given by the domain experts, then the parameters of the entire
structure can be estimated, i.e. the conditional probability of all descendant nodes,
including the trustworthiness captured in the ultimate node of the BN. In this way,
instead of domain experts subjectively guessing the trustworthiness of a device, they
use observed data from the device’s behaviour, which are informative but not fully
indicative of the device’s trustworthiness, to quantify and measure trust.

Before formalizing our notion of parameter estimation for the trust network, we
should point to a specific constraint. The parameter estimation approaches such as
maximum likelihood estimator (MLE) [14, 16] rely on the availability of observations
for all nodes in the network. However, in our trust network, the data is available only
for the non-descendant nodes. Therefore, our formalism should include methods for
generating data for all intermediary nodes, e.g., generating indirect observations for
reliability (X5) using direct observations of X1 and X2.

Let y be a constant integer that represents the number of qualitative levels of an
observed or inferred evidence in the BN, i.e. values of every node in the BN are
always mapped to a fixed set of discrete values, k = 1, ..., y. Therefore, after the
BN structure is developed, our first step is to discretize the data collected by the
WMD to y mutually exclusive levels to perform parameter estimation. For every i
representing a non-descendant node, let Si = {S1i , ..., S

m
i } represent the raw samples

of m number of observations. Then the equivalent discretized values of S will be
computed as:

Dq
i(nondescendant) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, li,1 ≤ Sqi < ui,1
2, li,2 ≤ Sqi < ui,2
...

y, li,y ≤ Sqi < ui,y
0, otherwise

, (3)

where Dq
i is the discrete data with operational range values for q = 1, ...,m, which

is equal to the number of non-discretized observed values of Sqi , and li,k and ui,k , are
the lower and upper thresholds for each discrete level of Sqi , for k = 1, ..., y discrete
levels, respectively. These two values are defined as:

li,k = min(Oi ) + �H ∗ k, ui,k = li,k + �H, (4)
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where Oi = {min,max} is the set of the minimum and maximum operating values
with user-defined thresholds based on the manufacturer’s datasheet or a validation
device,min(Oi ) is theminimum threshold value,max(Oi ) is themaximum threshold
value, and �H = (max(Oi ) − min(Oi ))/ y is the step size between the levels. For
example, in Fig. 1b, if the rawheart rate sensor validation data collected for X1 is S1 =
{40, 78, 100, 115, 150} the discrete sample observation for y=3 is D1={0, 1, 1, 2, 0}
with l1,1 = 76.66 and u1,1 = 113.32.

After the values of non-descendant nodes are discretized, we generate sample data
for each immediate descendent node. As part of the BN structure, we assume the
domain experts provide information on the impact of each parent of an intermediate
node. The impact is defined as positive (+) or inverse positive (–). For example, in
Fig. 1b, an expert may (subjectively) interpret that measurement of X1 and X2 has
synergy with the measurement of reliability (X5). Thus the discrete values of X1 and
X2 for all observed instances in the dataset will be added to generate the instances of a
random variable (X5). On the other hand, if the two parents were inversely impacting
the descendant node, then the values of instances will be subtracted. This approach
can be extended to more than two parents with different impacts as follows:

Sqi(descendant) =
t+∑

j=1

(Dq
Pa(i), j ) −

t−∑

j=1

(Dq
Pa(i), j ), ∀q = 1, ...,m, (5)

where t+ and t− are the number of parents of a descendant node i which positively or
inverse positively impact the node i and DPa(i) is the discrete value of the instance q
of the parent of node i . The result of Eq. 5 will be a generated sample data for each
intermediate node. To get Dq

i(descendant), the generated data needs to be discretized
to y level following Eq. 3. Following our example, the generated data for X5 can
be computed based on the impact of the immediate parent nodes X1 and X2, which
in this case, both impacts are considered positive. Assume D2={1, 0, 1, 1, 2}, then
following Eq. 5 S5 = {1, 1, 2, 3, 2} and if we follow Eq. 3 to discretize these values
to y = 3 levels, D5 = {0, 0, 1, 2, 1}.

Now that we have data (observed and generated) for all nodes of our BN, our next
step is to compute prior and posterior probabilities for all nodes. The prior probability
for node Xi in our BN with multinomial data set Di that takes y discrete levels is
computed as:

P(Xk
i ) =

m∑

q=0

(Dq
i = k)/m, ∀k = 1, ..., y, (6)

where P(Xk
i ) is the short form for P(Xi = k). For example, the prior probabilities

of nodes X1, X2, and X5 for three levels of y are P(D0
1) = P(D1

1) = P(D0
5) =

P(D1
5) = 0.4, P(D2

1) = P(D0
2) = P(D2

2) = P(D2
5) = 0.2 and P(D1

2) = 0.6.
Next, we estimate the parameter θi for each descendant node. Note that we cur-

rently have discrete data set for all nodes, i.e. {Di [1], ..., Di [m]} for i = 1, ..., n.
The structure of BN allows us to reduce the parameter estimation to a set of unre-
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lated (disjoint) problems. Let P(Dk
i [1], ..., Dk

i [m]) represent the joint probability of
instances of node i to have value k. The joint distribution for the data set of Dk

i and
θi is then given as:

P(Dk
i [1], ..., Dk

i [m], θi ) = P(Dk
i [1], ..., Dk

i [m]|θi )P(θi ),

= P(θi )

m∏

q=1

P(Dk
i [m]|θi ), ∀i = descendant,

(7)

where
∏m

q=1 P(Dk
i [m]|θi ) is the likelihood function L(θi : Dk

i ) of the parameters,
and P(θi ) is the prior probability of the descendant node in concern [16]. Then the
posterior probability of θi given the instances of Dk

i is computed as:

P(θi |Dk
i [1], ..., Dk

i [m]) = P(Dk
i [1], ..., Dk

i [m]|θi )P(θi )

P(Dk
i [1], ..., Dk

i [m]) , (8)

where P(Dk
i [1], ..., Dk

i [m]) is themarginal probability [16]. If we follow these equa-
tions, in our example, we can compute θ5 to be in state 0 for the descendant node X5

as: P(θ0
5 |D0

1[1], ..., D0
1[5]) = 0.04.

2.2 Constructing the Trust Network

In this section, we describe a proof-of-concept BN by extracting trust factors from the
American (USA) [6, 7], Canadian [8–10], and European Union (EU) [4] regulatory
requirements for trustworthy medical devices. To quantify the regulatory require-
ments in our BN, we mapped the requirements to more granular trust factors from
the literature until we reached factors that can be directly measured on a WMD, as
shown in Fig. 2. The trust-determining factors in this study are not exhaustive due
to domain dependency. Nevertheless, our proposed mapping enables stakeholders to
define their own trust network for WMDs.

We identified four main trust-determining factors: reliability, operations, security
and privacy. Reliability is the measurement of the capacity of the WMD network [1,
21]. We refined reliability in terms of network quality and loss, to evaluate the
efficiency [15, 18] and effectiveness [3, 26] of the network, respectively. For network
quality, we measure network latency [18], power consumption [19]. For network
loss, we measure received signal strength [31], memory consumption [12] and the
signal loss [1]. Operations is the measurement of the sensor performance [26, 27].
We refined operations in terms of sensor accuracy to assess if the sensor behaves
according to themanufacturer’s specifications [19, 22], and sensor quality to evaluate
the recorded signal data quality compared to a baseline [19].We further refined sensor
accuracy to measurable factors such as bio-signal data from multiple sensors [18],
time since the last calibration [27], age of the sensor [27] and sensor profile [27]. For



102 M. Thomas et al.

Fig. 2 Mapping USA, Canada, and European Union regulatory requirements to trust factors from
the literature that can be directly measured on the devices. Dots denote mapping between regulatory
requirements and reliability (R), operations (O), security (S), and privacy (P) trust factors

sensor quality,wemeasure the bio-signal quality data [26] and the sampling rate of the
sensors [27]. Security is the measurement of how safe and protected communication
is between different parts of the system [12, 28]. We refined security in terms of
standards and data protection to evaluate compliance with security protocols and
confidentiality [28]. Standards and data protection were further refined to evaluate
system encryption [30], integrity [30] (unauthorized parties do not change sensor
data), and anonymization [12]. Privacy assesses that personal data in the system
is treated safely and securely [2, 31]. We refined privacy in terms of data utility to
evaluate if the data is used only by authorized users and for its approved purpose [13].
Data utility was further refined to safe data storage [13], transparency [2] (data flow
is visible to stakeholders) and authorized data usage [12].

Figure 3 presents an instantiation of a subset of the trust factors mapped in Fig. 2.
For our proof-of-concept BN,we considered twomain trust-determining factors: reli-
ability and operations. The refined measurable factors forming the non-descendant
nodes are the heart (X1) and breathing rate sensor validation (X2) heart rate (X3)
and breathing rate quality (X4); memory consumption and signal loss (X5, X6), and
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Fig. 3 Bayesian network to
quantify trust (T) in WMD
analyzing heart (H) and
breathing (B) rate sensor
validation, heart (HQ) and
breathing (BQ) rate quality,
signal loss (S), memory (M)
and power (P) usage, latency
(L), sensor accuracy (SA)
and quality (SQ), network
loss (NL) and quality (NQ),
operations (O), and
reliability (R)

power consumption and latency (X7, X8). The instantiated trust factors forming the
intermediary nodes are sensor accuracy, sensor quality, network loss, and network
quality (X9 − X12). The intermediary nodes contribute to the trust-determining fac-
tors reliability and operations (X13 − X14), which determine the overall trust (X15)
of a WMD. Although some trust factors may be dependent (e.g., network loss and
quality), we assume the dependency may distribute evenly among the trust determi-
nants.

3 Experimental Evaluation

In this section, we evaluate our data-driven approach to estimate Bayesian parameters
in terms of learnability and generalizability. For learnability, we determine how
similar the trust probability is for the twoWMDs under the same test conditions. We
hypothesize that the probability of trust to be in a specific state will be similar across
devices in the same usage conditions (e.g., walking in the evening). We also compare
the BN quantified scores for individual nodes (e.g., reliability) between the wearable
devices. We expect the inferences made on the same node to be similar for different
devices under identical use cases. For generalizability, we assess how decreasing the
WMD’s sampling rates in orders of ten impacts the trust scores. We expect the trust
score will be similar with reduced sample sizes.
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3.1 Parameter Estimation

We developed BNs for the trust quantification of the Zephyr BioHarness 3.0 device1

(Device 1) and Astroskin Vital Signs Monitoring System2 (Device 2). The Apple
Watch Series 73 was used as our Validation Device. We evaluated the devices in two
use cases. Use Case 1 is a set of pre-defined activities (sitting, standing, and walking
at a speed of 4 MPH) performed by the participants for 30 minutes each indoors and
outdoors. An indoor condition is when the activities were performed when two or
fewer people were within a room of 50 m by 50 m to investigate the impact on sensor
accuracy. An outdoor condition is when the activities are performed with at least ten
people and wireless devices (e.g., phones, smartwatches, and laptops) in a park to
investigate the effect on signal quality, loss, and latency of the devices. The outdoor
activity was performed in the morning (6–8 AM) and evening (6–8 PM) when the
park had 10–12 and 40–50 people with wireless devices, respectively. In Use Case
2, activities (e.g., sleeping, sitting, and walking) were performed by the participants
wearing the devices for up to 24 h in hybrid (indoors and outdoors) conditions.

The study involved a cohort of three subjects, one female (45-55 years) and two
males (20–30 years). The recruited participants wore the Astroskin (right side of the
lower abdomen), Zephyr (left side of the upper abdomen) and Apple Watch (left
wrist) at the same time. We collected data {S11 , ..., S

m
8 } for the non-descendant nodes

(X1 to X8) of our BN from each wearable device under different conditions. The
raw samples of the data collected are converted to discrete-valued data set using
Eqs. 3–4. Data set Dq

1 and Dq
2 for nodes X1, X2 are obtained by comparing the heart

and breathing sensor validation data with user defined thresholds li,k and ui,k1,2,3 [5].
For Dq

3 and Dq
4 (X3 and X4), we generate the data set by comparing the heart and

breathing rate quality level with a pre-determined noise threshold4,5. For Dq
5 (X5),

the memory consumed was compared with user-defined thresholds. For Dq
6 (X6),

we consider the null or missing data [17, 32]. For Dq
7 (X7), we compare the battery

level with a pre-determined threshold.6 For Dq
8 (X8), we compare the latency with

the acceptable threshold for the application. During data collection, both devices’
orientations were kept constant and the devices were synchronized at the beginning
of each recording session. Sixteen sets of data (Sqi ) for the use cases and conditions
were collected. Priors and parameters were then estimated using our methodology
described in Sect. 2. The experimental analysis was conducted on a 64-bit Windows
10 laptop with a 2.5 GHz Intel Core i9 CPU. The study was approved by the local
research ethics committee, and all subjects gave consent.

1 Zephyr Bioharness 3 User Manual.
2 Hexoskin 3.0 User Manual.
3 Apple Watch 7 User Manual.
4 Hexoskin Datatype.
5 Zephyrn Bioharness 3 Log Data Description.
6 https://docs.rs-online.com/585c/0900766b81249809.pdf.

https://tinyurl.com/ycyud72y
https://www.hexoskin.com/pages/astroskin-vital-signs-monitoring-platform-for-advanced-research
https://support.apple.com/kb/SP860?locale=en US
https://api.hexoskin.com/docs/resource/datatype/
https://www.zephyranywhere.com/media/download/bioharness-log-data-descriptions-07-apr-2016.pdf
https://docs.rs-online.com/585c/0900766b81249809.pdf
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Fig. 4 Trust scores for
WMDs in indoor, outdoor,
and hybrid use cases. The
lines within the boxplot
boxes denote medians;
bottom and top border
denote the 25 and 75th
percentiles, respectively.
Dots represent outliers

Table 1 Query-based inference results on trust

Inference Astroskin Zephyr Use Case

P(X1
15|X0

13, X
0
14) 0.88 0.86 1 (Indoors)

P(X1
9 |X1

1, X
0
2) 0.90 0.90 1 (Indoors)

P(X1
15|X1

13, X
0
14) 0.88 0.82 1 (Outdoors)

P(X1
11|X0

5, X
1
6) 0.88 0.86 1 (Outdoors)

P(X1
14|X0

11, X
0
12) 0.87 0.68 2 (Hybrid)

P(X1
13|X0

9, X
1
10) 0.90 0.79 2 (Hybrid)

3.2 Results and Discussion

Figure 4 and Table 1 present our learnability results. Figure 4 shows the trust prob-
ability for Use Cases 1 and 2. The learned parameters for our BN resulted in similar
trust probabilities on both devices under the same use cases. Our results indicate that
though the data collected from the two WMDs differed, the parameter estimation
approaches were generalized to produce similar results under the same conditions.
Table 1 shows the individual scores in the BN by querying the nodes in high and low
states. The inferences of individual nodes for both devices were also similar under
the same condition. However, the results for Use Case 2 (Fig. 4) did not align with
our expectations. The average trust value for Astroskin is higher than Zephyr. This
was surprising andmay be due to the difference in parameter estimation with the data
collected under hybrid conditions for normal daily life activities for a long duration.
Our BN may also be capturing actual behaviour differences between the devices.
More data collection with refined use cases is required to investigate the results for
Use Case 2 thoroughly. Our results to assess generalizability are shown in Table 2.
Our results demonstrate the suitability of the Bayesian-based parameter estimation
with fewer training samples as compared with discriminative models [20]. Reducing
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Table 2 Trust scores for different sample sizes for Use Case 1 (indoors) with Astroskin and Zephyr

Samples Astroskin Zephyr

10,000,000 0.88 0.87

1,000,000 0.88 0.87

10,000 0.86 0.87

1,000 0.85 0.84

100 0.59 0.53

10 0.52 0.50

the sampling had little impact on Bayesian parameter estimation because it is based
on distributions, not individual samples, for learning the parameters.

Our proposed BN provides a mechanism for the stakeholders in our motivating
scenario to select a trustworthyWMD. The relative trust helpsAlex choose theWMD
based on trustworthiness factors such as operation. Alex’s doctor and the trainer also
decide which WMD can be used for monitoring Alex’s health during indoor and
outdoor activities based on the WMD’s sensor accuracy and reliability.

Our trust probabilities provide a relative measure of trustworthiness between
WMDs. We presented a BN structure for trust quantification identified from our
mapping of regulatory requirements, trust factors from the literature and measure-
ments from WMD. Using a BN structure enables stakeholders to explicitly define
the trustworthiness factors used to assess the WMD. Our data-driven approach can
then estimate the parameters for any BN structure using data collected with the
WMD instead of defining the parameters based on Gaussian distributions or expert
knowledge.

Given these results, we are currently assessing our proposed data-driven approach
by comparing the trust probabilities of the WMD with data collected under normal
working conditions with the scores obtained by artificially injected noisy data. The
noise represents missing data due to signal loss by connectivity problems, data over-
written due to memory shortage, or battery failure due to excessive power consump-
tion. We expect that the trust probabilities will decrease with increased noise.

Our study exhibits some limitations: First, our BN is based on a fixed structure.
Second, our evaluation is based on limited data sets. Third, we evaluated the com-
parative behaviour of our network on two WMDs.

4 Conclusion and Future Work

In this paper, we present a data-driven approach to estimate Bayesian parameters
when subjective and stochastic concepts such as trust need to be quantified. To
assess our data-driven parameter estimation approach, we developed a proof-of-
concept BN structure based on trust factors in the literature we mapped to regulatory
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standards. We then learned the BN parameters using our data-driven approach for
two WMDs under identical use cases. Our results demonstrate the learnability and
generalizability of our data-driven approach. Future work will investigate our data-
driven approach to estimate Bayesian parameters for more WMDs, use cases, and
participants. We will also extend our data-driven parameter estimation approach to
concepts such as ethical machine learning, security, and privacy. Finally, we will
investigate learning the BN structure from data directly instead of using a fixed,
user-defined network.

Acknowledgements This work is supported by the Natural Sciences and Engineering Research
Council of Canada Discovery and Innovation for Defence Excellence and Security grants.
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EEG Analysis of Neurodevelopmental
Disorders by Integrating Wavelet
Transform and Visual Analysis
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and Dong H. Jeong

Abstract Identifying neurodevelopmental disorders, ADHD, autism spectrum dis-
order, and other disorders (e.g., depression andmental health diseases), are important
for planning appropriate treatments and early intervention. EEG is a commonly used
method that measures the electrical activity of a brain to examine such disorders.
This study introduced an approach to understanding the disorders by integrating
wavelet transform and visual analysis on EEG signals. Wavelet-based features are
extracted to find informative information associated with any changes in the EEG
signals to differentiate them from healthy subjects. The effectiveness of the features
is determineed by proposing two different feature selection methods (DWT-PCA
and DWT-ANOVA) and evaluated by applying ML classification algorithms, such
as KNN and Naive Bayes. Also, visual analysis is conducted to assess the features
and to enhance the understanding of the features. We found that the classification
with DWT-PCA features provided better performances. Although there was no clear
distinction between normal (i.e., healthy) and abnormal (i.e., disorders), similari-
ties and differences between them were identified through visualization. Overall, the
integration of using both wavelet-based feature extraction and visual analysis was
effective in identifying diagnostic neurodevelopmental disorders.
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1 Introduction

Workingmemory (WM) stores andmanipulates data needed to performcomplex cog-
nitive tasks in our daily lives [2]. As a functional brain system, the deficiency of the
WM can affect our lives due to limited cognitive abilities and, eventually, reduced
life satisfaction. In addition, it could cause neurodevelopmental disorders such as
autism and attention deficit hyperactivity disorder (ADHD) or mental illnesses such
as depression [6], major depressive disorder [19], and obsessive-compulsive dis-
order [1]. Thus, early detection of such disorders has gained increasing attention
from researchers across different disciplines in recent years.Workingmemory (WM)
stores and manipulates data needed to perform complex cognitive tasks in our daily
lives [2]. As a functional brain system, the deficiency of the WM can affect our
lives due to limited cognitive abilities and, eventually, reduced life satisfaction. In
addition, it could cause neurodevelopmental disorders such as autism and attention
deficit hyperactivity disorder (ADHD) or mental illnesses such as depression [6],
major depressive disorder [19], and obsessive-compulsive disorder [1]. Thus, early
detection of such disorders has gained increasing attention from researchers across
different disciplines in recent years.

ADHD affects approximately 10.0% of children and 6.5% of adolescents in the
United States (U.S.) [21]. It may impact educational performance because it makes
people have disruptive behaviors, such as difficulty remaining seated and organizing
tasks, playing noisily, and sustaining attention during schoolwork or play activities.
Guevara et al. [5] addressed the cost-effectiveness ofADHD in theU.S. by comparing
children with and without ADHD [5]. They found that additional cost for health care
is needed for children with ADHD due to the chance of the coexisting mental health
disorders. Early diagnosis of neurodevelopmental disorders is crucial for planning
appropriate early intervention and providing caregivers with accurate information.
It would reduce the high financial costs associated with patients themselves or their
caregivers [4]. Electroencephalography (EEG) is a widely used technique for cap-
turing brain activity and identifying brain disorders because it provides low-cost,
non-invasive, and portable capability [7]. Therefore, EEG analysis is used in predict-
ing neurodevelopmental disorders [20]. There are well-known brain waves classified
into five frequency band components associated with each type of brain wave, called
delta (δ : 0.5−4Hz ), theta (θ : 4−8Hz), alpha (α : 8−13Hz), beta (β : 13−30Hz),
and gamma (γ : 30−45Hz) [18]. Although neurological or psychiatric dysfunction
is one of the public health concerns, limited EEG analyses associated with brain dis-
orders have been performed. Loh et al. [9] conducted an in-depth literature review
on ADHD detection using either machine learning (ML) or deep learning (DL)
approaches utilizingMagnetic Resonance Imaging (MRI) and physiological signals.
They identified 69 studies using ML and 23 studies utilizing DL techniques. Among
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various ML studies, support vector machine (SVM) was determined as the most
commonly used ML technique, and the convolutional neural network (CNN) was
the most broadly used model in DL for ADHD research. MRI and EEG signals are
the most widely used data in ML- or DL-based ADHD research. They also identified
that EEG is the most prevalent data used in ADHD research. Although the average
accuracy reported by numerous ML and DL studies was high (80% ∼ 90% since
2013), they emphasized that much improvement should be performed prior to being
used in clinical use for ADHD diagnosis.

In this study, we aim to explore the feasibility of wavelet feature-based machine
learning to predict neurodevelopmental conditions. We propose an integration of
wavelet transform and visual analysis to identify the similarities and differences
associated with neurodevelopmental and neurological disorders. In detail, extract-
ing essential features representing the characteristics of the disorders is performed.
A performance evaluation with ML classification algorithms is conducted to vali-
date the effectiveness of the features. Since data often consists of imbalanced cases,
classification performance may not be a perfect solution for finding their distinctive
patterns. Thus, we utilized visualization techniques to represent all data instances
and support a visual analysis to identify trends and patterns of the diseases compared
to healthy subjects.

2 Previous Work

Researchers have performed various studies to understand neurodevelopmental dis-
orders, specifically ADHD. Musser and Nigg [13] performed a study to identify the
coherence of facial and autonomic behaviors of emotion reactivity and regulation
in children with ADHD. They performed an experiment with 100 children aged 7–
11 years old, where 50 of them had ADHD (62% male, 78% white) to understand
emotion induction and suppression for negative and positive emotion-provoking task
conditions by collecting electrocardiogram and impedance cardiography data. They
found similar behavior for facial affect between children with and without ADHD.
The children with ADHD exhibited reduced coherence between facial affect behav-
ior and an index of parasympathetic functioning. They also found that children with
ADHD may receive conflicting emotional signals compared to children without
ADHD. Mohamed et al. [11] proposed an approach to detect two different cog-
nitive skills, focused attention and working memory, to understand the effect of the
outcomes of subjects’ learning processes using EEG signals. They performed an
assessment test to measure the complete cognitive profile of the subjects. By analyz-
ing theEEGsignals, a total of 280domain features associatedwith time and frequency
were extracted and used to predict three levels (i.e., low, average, and high) of the
cognitive skills of learners. With the approach, they identified classification accura-
cies for the skills as 84% and 81%, respectively. Singh et al. [17] conducted a review
on the diagnosis of ADHD in both children and adults. Specifically, they focused
on understanding the process of how it develops, what associated problems might
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be, and how many other children and adults might be affected. They defined that
ADHD diagnosis might rely on a combination of neuropsychological tests, teacher
rating scales, direct observations of behavior, examinations of genetic factors, and
evaluations of the impact of treatment trials and more. Although researchers have
agreed upon a strong contribution to the occurrence ofADHDby genetic factors, they
emphasized that numerous studies should be performed to understand symptoms and
proper medical treatments clearly.

Koh et al. [8] developed a software tool to categorize ADHD or conduct disorder
(CD) automatically by analyzing ECG signals. After transforming ECG signal data
with empirical wavelet transform (EWT), entropy features were used. Then, analysis
of variance (ANOVA) was applied to determine the variability and highly signifi-
cant features. With three classification ML algorithms: SVM, decision tree (DT),
and k-nearest neighbor (KNN), they showed the capability of diagnosing behav-
ioral disorders by utilizing ECG-based models. Yasin et al. [22] reviewed previous
works published from 2015 to 2020 focusing on analyzing mental disorders, Major
Depressive Disorder (MDD) and Bipolar Disorder (BD) using EEG and artificial
neural networks. They found various limitations in consideration of data availability,
advancement of signal filtering techniques to process EEG data to remove noises
compared to using notch and band-pass filtering, feature extraction capability com-
pared to conventional machine learning algorithms, and utilization of DL. Although
there were high demands using DL techniques, they emphasized the weakness of
interpreting DL results precisely. Mulaffer et al. [12] studied sleep disorders by ana-
lyzing EEG utilizing ML and SVM. C3 and C4 EEG channels were used to detect
insomnia. They compared EEG-based features and hypnogram-based features with
SVM and found that EEG-based features showed a better performance in detecting
insomnia. SVM has been emphasized as an important technique for analyzing EEG
signals to detect dyslexia using EEG [14, 15]. Although numerous studies have been
performed in identifying neurodevelopmental disorders, including ADHD,MDD, or
BD, extracting important features to find the patterns of the disorders, performing
either machine learning or deep learning approach, and interpreting the extracted
features associated with the disorders are still needed for further studies. Therefore,
this study focuses on finding important features utilizing wavelet transform utiliz-
ing neurophysiology EEG database [18], classifying the neurological disorders from
normal subjects, and enhancing the understanding of the differences and similarities
of the features utilizing visual analysis.

3 Methods

3.1 Data Description

In this study, we used TDBRAIN dataset (https://brainclinics.com/resources/) [18].
It contains a total of 1274EEGdata (with a sampling frequency of 500Hz) for psychi-

https://brainclinics.com/resources/
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atric patients (the ages of 5-89 years old) collected from 2001 to 2021. In this study,
we analyzed 24 channels (C3, C4, CP3, CP4, CPz, F3, F4, F7, Cz, F8, P3, P4, FC3,
FC4, FCz, Fp2, Fz, O1, O2, Oz, P8, T7, Mass, and T8). The dataset was collected
based on two tasks - Eyes Open (EO) and Eyes Closed (EC). The dataset includes an
attribute ‘indication’ to represent an unofficial diagnosis for EEG assessments by a
general practitioner or psychologist/psychiatrist and a formal diagnosis. Many of the
subjects were identified as ‘Unknown’ for their formal diagnosis. Thus, in this study,
we only focused on the subjects that have matched information between indication
(unofficial diagnosis as a referral-indication) and formal diagnosis (confirmed diag-
nosis by a licensed clinician) (N = 305) containing ‘Burnout’, ‘Dyslexia’, ‘Chronic
pain’, ‘MDD’, ‘OCD’, ‘ADHD’, ‘Parkinson’, ‘Insomnia’, and ‘Healthy.’ Due to the
high disorder types in the dataset, we analyzed all subjects’ data classified into two
groups ‘Normal (i.e., Healthy)’ and ‘Abnormal’ (i.e., Unhealthy).’

3.2 Proposed Approach

Our proposed approach is designed to have four steps: pre-processing, feature extrac-
tion and selection, channel-based predictive model generation, and visual analysis.
Our primary consideration for proposing this new approach is to support finding
important features presenting the characteristics of neurological and/or neurodevel-
opmental disorders, classifying them to differentiate the groups (Normal and Abnor-
mal), and understanding distinctive patterns through visual analysis.

3.2.1 Pre-processing

As pre-processing steps, filtering and normalization are applied. First, a sliding mov-
ing average window was used to smooth EEG data. It is a commonly used technique
that smooths data to capture trends from the data. Second, 50 Hz frequency was
removed with a notch filter, and the band-pass filter between 0.5 ∼ 100 Hz frequen-
cies was applied. Last, data normalization is applied.

3.2.2 Feature Extraction and Selection

Feature extraction is an essential step that influences the overall classification per-
formance because it enhances the capability of understanding data associated with
neurological developmental disorders. Fourier transform is a good analysis approach
because it determines frequency information. Although it helps find frequency infor-
mation from data, any local behaviors may not be detected. Thus, it is suitable for
analyzing stationary data. Alternatively, wavelet transform is suitable for analyzing
non-stationary data due to its ability to extract both frequency (scales) and time infor-
mation. We used wavelet transform (WT) to examine the capability of identifying
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the disorders. Wavelets represent small waves that have limited duration, and zero
average values [3]. WT is a suitable technique for analyzing data at a specific time
and frequency or finding information with different scales [16]. It helps present local
information with different frequencies to show trends, discontinuities, and repeated
patterns underlying data.

In our study, discrete wavelet transform (DWT) is used to extract features and
examine their capability in presenting the disorder conditions. It decomposes data
until a pre-defined level. The input data are split each level into two sub-bands contain-
ing different frequency ranges (i.e., low and high frequencies). The high frequency
represents detail coefficients, and the low frequency indicates approximate coeffi-
cients. Since the detail coefficients can detect rapid changes, they are broadly used to
identify discontinuities or sudden changes. A non-overlapping sliding window was
used to extract features. The sliding window size was defined as the sampling rate
(i.e., 500) to extract the following wavelet features.

ω
j
1 =

n∑

1

di, j
n

, ω
j
2 =

√∑n
i=1(di, j − di, j )2

n
, ω

j
3 = μdi,3

μa
,

ω
j
4 =

∑n
1 |δi, j |
n

, ω5 =
n∑

1

(|di, j | − di, j )

mδi, j
, ω6 = μdi,4

μa

where di, j = {d1, j , d2, j , . . . , di, j } represent wavelet coefficients at the j th level,
where j = 1, 2, . . . , l, and l is a pre-defined decomposition level, and i = 1, 2, . . . , n
is the number of elements of coefficients. di, j represents mean of di, j , δi, j denotes
the sequences of elements that are greater than di, j , especially when di, j is sorted
in descending order, mδi, j indicates the number of elements for δi, j , μa is average
approximation coefficients, and n indicates the length of coefficients.

To select the significant features fromwavelet features, twodifferent approaches–a
statistical approach (analysis of variance (ANOVA)) and principal component anal-
ysis (PCA) [10]–are used. With the statistical approach, statistically significant fea-
tures are determined. With PCA, principal components are identified. These feature
selection approaches are named, in short, DWT-ANOVA and DWT-PCA, respec-
tively.

3.3 Channel-Based Predictive Model Generation

An extensive classification study is performed to investigate the effectiveness of
the selected features in identifying abnormal conditions (i.e., Unhealthy) from each
channel. With the validated wavelet features (DWT-ANOVA and DWT-PCA), three
ML classification algorithms, SVM, KNN, and Naive Bayes, are applied to to gen-
erate predictive learning models and compare their performances. For evaluating
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their classification performances, multiple metrics, including precision, recall, F1
score, and the area of the receiver operating characteristic (AUC), are calculated
with five-fold cross-validation (5CV).

3.4 Visual Analysis

Measuring classification performances with various metrics would benefit in deter-
mining the effectiveness of differentiating the groups (Normal and Abnormal). How-
ever, it has a limitation in showing the underlying patterns of the features. Thus,
visualization is considered to represent the selected features by mapping them into
visual glyphs. In EEG data analysis associated with neurodevelopmental disorder
studies, visual representations can help understand the patterns and structures of the
data. Since the data consist of numerous variables, dimension reduction is applied
to show the data in a lower dimensional space (i.e., 2D space). Various dimension
reduction techniques are broadlyusedwhen representinghigh-dimensional data, such
as PCA, LDA (Linear Discriminant Analysis), MDS (Multi-dimensional scaling),
t-SNE (t-distributed stochastic neighbor embedding), UMAP (Uniform Manifold
Approximation and Projection), and more. Among them, t-SNE and UMAP have
been broadly used recently in representing data because they showed a better sep-
aration of the classes than others. However, since they use approximation methods,
they require more computation time. Thus, PCA is used in our study to represent
the data. The first and second principal components are used to create a scatterplot
representing all instances.

4 Results

Figure1 presents average EEGband frequencies (α, β, γ, δ, θ ) between the two tasks
(EO and EC). The EEG band frequencies for the subjects’ data with ADHD showed
similar patterns in the tasks. But, the other subjects’ EEG band frequencies showed
slightly different patterns. For instance, healthy subjects’ data presented high δ and
θ values in the EO and EC tasks, respectively. We also found a similar result when
analyzing the data with Burnout and MDD having higher α values in the EC task
than the EO task. The Dyslexia subjects’ data indicated the highest δ value among all
other frequencies (see Fig. 1f).When comparing the δ value for the Dyslexia between
the EO and EC tasks, it showed a high δ value in the EC task. This was an opposite
pattern compared to δ in healthy subjects’ data because the δ value was high in the
EO task in the healthy subjects’ data (see Fig. 1a). Interestingly, three waves (α, δ,
and θ ) showed similar high amplitude for the Parkinson subjects. When comparing
Dyslexia, ADHD, and MDD, we found indistinguishable patterns showing similar
amplitudes in the EO task. But, their amplitudes were different in the EC task.
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Fig. 1 The presentation of average EEG wave bands (α, β, γ, δ, θ) of the EEG channel (C4)
between eyes open (EO) and eyes close (EC). The x-axis shows the EEG band frequencies and the
y-axis represents the average of mean amplitude

By using level six decomposition with db4 wavelet, forty-two features were
extracted. Asmentioned above, we employedANOVA and PCA to determine signifi-
cant features from the wavelet-based features. Since each channel may have different
variation distributions, threshold (T ) is used to select PCA components instead of
fixing the number of components. We defined T = 0.95 for principal components
selection in this study. With the statistical test (i.e., ANOVA), only statistically sig-
nificant features (p < 0.05) were determined. Different numbers of features were
selected in each channel. About 17 ∼ 35 features were selected with ANOVA and
15 ∼ 16 for PCA with the EC task. For the EO task, 17 ∼ 40 features were deter-
mined with ANOVA. The same number of PCA features (i.e., principal components)
were selected for the EC and EO tasks. To compare the features across all channels,
we identified common features that appeared in all channels. There were nine com-
mon features for the EC task and six features for the EO task. The common features
were the decomposition levels (4,5,6 and approximate coefficients).

Figure 2 shows a comparison of the common features with ANOVA for the chan-
nels (‘C4’ and ‘Fp2’). It represents comparisons of the features by gender (male
and female) and group (Normal and Abnormal). We found that the wavelet features
could distinguish the difference between male and female subjects in either group.
The feature (‘w9’ in the EC task) was not visible due to its small value. Interest-
ingly, the Abnormal group showed similar feature values, while there were some
differences for the Normal group. In particular, the Normal group between male and
female subjects showed a minor distinction between the features.

Table 1 shows a comparison of performance results by applying different classi-
fication ML algorithms to all wavelet-based features and the selected features with
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Fig. 2 The comparisons of the common features with ANOVA for the channels (C4 and Fp2) based
on gender and class (i.e., Normal and Abnormal) for the EC task (a and b) and the EO task (c and
d). Abnormal_M and Abnormal_F indicate male and female subjects with disorder conditions. The
x-axis indicates the significant common features, and the y-axis represents the average value of the
features. Each bar graph presents average ± SEM (standard error mean)

PCA and ANOVA. We found that KNN performed better than Naive Bayes for
all channels except the AUC values. Improved classification performances were
observed when using feature selection techniques. More specifically, the integration
of using both wavelet features and PCA showed an improved performance result
compared to using the features with ANOVA. We also found that Naive Bayes pro-
vided a better AUC performance except for the features with PCA. It is important
to note that we excluded SVM classification performance from the table because it
showed almost the same performance results (producing all 99%) for all channels.

Extensive visual analysis has been performed to evaluate all features for different
channels to understand the patterns of all features. Figure3 shows example visual-
izations of two channels (C4 and Fp2) with significant features. For other channels,
we found similar results. Figure3a and c represent the features collected when par-
ticipants closed their eyes. Figure3b and d show the representation of the features
indicating the participants with eyes open. Different color attributes are used to indi-
cate normal (blue) and abnormal (red) subjects. Although normal subjects appeared
in a small region of the PCA space, there was no distinctive separation between them.
However, numerous outlierswere determined by showingwhiskers and outliers using
Tukey box-and-whisker plot (see Fig. 3c).

5 Conclusions and Future Works

In this paper, we introduced the integration of wavelet transform and visual anal-
ysis to analyze EEG to distinguish abnormal neurologically based disorders from
normal neurological functioning. . We used wavelet transform to extract features by
employing mathematical and statistical concepts to capture any changes in data. In
addition, we compared two feature selection techniques, ANOVA and PCA, on the
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(a) EC - C4 (b) EO - C4 (c) EC - Fp2 (d) EO - Fp2

Fig. 3 Visualizations of the selected significant features in a PCA space. The x-axis indicates the
1st principal component and the y-axis denotes the 2nd principal component.

wavelet-based features. We found that DWT-PCA performed better in identifying
abnormal conditions.

We performed two evaluations to assess the capability of the wavelet features.
First, classification evaluation was performed with twomachine learning techniques.
KNN performed better than Naive Bays. However, Naive Bays with ANOVA pro-
vided better AUC than KNN. Since it is essential to examine the wavelet-based
visually, considering the relationship with the class (i.e., normal and abnormal),
visual analysis was also performed to enhance the understanding of the features.

For future works, we will utilize deep learning techniques to differentiate abnor-
mal conditions by integrating all the channels within the dataset. Since appropriate
wavelet selection is crucial in analyzing data through wavelet transform, different
wavelet families will be tested to determine the best possible wavelet family to
improve the overall ability to analyze EEG data. Our study has a limitation in finding
dominant channel(s) associated with different neurological developmental disorders.
Thus, an extensive analysis will be performed to determine an optimal approach for
ADHD analysis. Also, we plan to investigate new features integrating different EEG
band frequencies, the complexity of EEG, and power spectral density that can present
different conditions of data. Lastly, we extend our study to test the proposed approach
in different datasets.
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dation under Grant No. (2219634).

References

1. A.Abramovitch, B.McCormack, D. Brunner,M. Johnson, N.Wofford, The impact of symptom
severity on cognitive function in obsessive-compulsive disorder: ameta-analysis. Clin. Psychol.
Rev. 67, 36–44 (2019)

2. A. Baddeley, Working memory. Science 255(5044), 556–559 (1992)
3. I. Daubechies. Ten Lectures on Wavelets (SIAM, 1992)
4. H.C. Glass, Y. Li, M. Gardner, A.J. Barkovich, I. Novak, C.E. McCulloch, E.E. Rogers. Early

identification of cerebral palsy using neonatal mri and general movements assessment in a
cohort of high-risk term neonates. Pediatr. Neurol. 118, 20–25 (2021)



EEG Analysis of Neurodevelopmental Disorders … 121

5. J. Guevara, P. Lozano, T. Wickizer, L. Mell, H. Gephart, Utilization and cost of health care
services for children with attention-deficit/hyperactivity disorder. Pediatrics 108(1), 71–78
(2001)

6. A. Habib, L. Harris, F. Pollick, C. Melville, A meta-analysis of working memory in individuals
with autism spectrum disorders. PLoS ONE 14(4), e0216198 (2019)

7. S.K. Khare, V. Bajaj, U. Rajendra Acharya, Pdcnnet: an automatic framework for the detection
of Parkinson’s disease using eeg signals. IEEE Sens. J. 21(15), 17017–17024 (2021)

8. J.E.W. Koh, C.P. Ooi, N.S.J. Lim-Ashworth, J. Vicnesh, H.T. Tor, O.S. Lih, R.-S. Tan, U Rajen-
dra Acharya, D.S.S. Fung, Automated classification of attention deficit hyperactivity disorder
and conduct disorder using entropy features with ecg signals. Comput. Biol. Med. 140, 105120
(2022)

9. H.W. Loh, C.P. Ooi, P.D. Barua, E.E. Palmer, F. Molinari, U. Rajendra Acharya, Automated
detection of adhd: current trends and future perspective. Comput. Biol. Med. 105525 (2022)
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Auditing Algorithmic Fairness
in Machine Learning for Health
with Severity-Based LOGAN

Anaelia Ovalle, Sunipa Dev, Jieyu Zhao, Majid Sarrafzadeh,
and Kai-Wei Chang

Abstract Auditing machine learning-based healthcare (ML4H) tools for bias is
critical to preventing patient harm, especially in communities disproportionately
facing health inequities. General frameworks are becoming increasingly available
to measure ML fairness gaps between groups. However, ML4H auditing principles
call for contextual, patient-centered approaches to model assessment. Therefore, ML
auditing tools must be (1) better aligned with ML4H auditing principles and (2) able
to illuminate and characterize communities vulnerable to the most harm. To address
this gap, we propose supplementing ML4H auditing frameworks with SLOGAN
(patient Severity-basedLOcalGroup biAs detectioN), an automatic tool for capturing
local biases in clinical prediction tasks. SLOGAN adapts an existing tool, LOGAN
(LOcal Group biAs detectioN), by contextualizing group bias detection in patient
illness severity and past medical history. We investigate and compare SLOGAN’s
bias detection capabilities to LOGAN and other clustering techniques across patient
subgroups in the MIMIC-III dataset. On average, SLOGAN identifies larger fairness
disparities in over 75% of patient groups than LOGAN while maintaining clustering
quality. Furthermore, in a diabetes case study, health disparity literature corroborates
characterizations of the most biased clusters identified by SLOGAN. Our results
contribute to the broader discussion of how machine learning biases may perpetuate
existing healthcare disparities.
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1 Introduction

Fairness auditing frameworks are necessary for operationalizing machine learning
algorithms in healthcare (ML4H). In particular, they must identify and characterize
biases [1–3]. Ongoing directives to promote health equity must also translate to these
spaces, with care placed on those historically vulnerable to the most harm, such as
communities with chronic illnesses and racial and ethnic minorities [4, 5]. To do
this, they must be prioritized when evaluating for fairness in ML4H [1–3, 6, 7].

Commercialized auditing tools are being increasingly leveraged for bias assess-
ment in ML4H algorithms [4, 8]. However, we argue that applying out-of-the-box
auditing tools without a clear patient-centric design is not enough. Existing auditing
toolsmust alignwith health ethics principles that guide a framework’s operationaliza-
tion. In guiding ML4H auditing literature, this means the tool must be able to detect
locally biased patient subgroups when monitoring the fairness of ML4H throughout
its lifecycle [9]. To monitor disparities with health equity in mind, researchers must
also engage critically with the broader sociotechnical context surrounding the use of
ML auditing tools in healthcare [10].

This work addresses the gap by devising a patient-centric ML auditing tool called
SLOGAN. SLOGAN adapts LOGAN [11], an unsupervised algorithm that uses
contextual word embeddings [12] to cluster local groups of bias indicated by model
performance differences. To better align auditing with measures of effective care
planning and therapeutic intervention [13], SLOGAN identifies local group biases
in clinical prediction tasks by leveraging patient risk stratification. Previous medical
history is also commonly used for understanding health inequities through social,
cultural, and structural barriers the patient experiences [14]. Therefore, SLOGAN
characterizes these local biases using patients’ electronic healthcare records (EHR)
histories.

Experiments on in-hospital mortality prediction demonstrate how SLOGAN
effectively identifies local group biases. We audit the model across 12 MIMIC-III
patient subgroups. We then provide a case study to further examine fairness differ-
ences in patients with chronic illnesses such as Diabetes Mellitus. Results indicate
that (1) SLOGAN, on average, captures more considerable biases than LOGAN, and
(2) such identified biases align with existing health disparity literature.

2 Background and Related Work

2.1 Algorithmic Auditing in ML for Healthcare

[15] audit a commercialized ML4H algorithm by dissecting observed disparities
betweenpatient risk andoverall health cost. The authors call for the continuedprobing
of health inequity in these clinical systems. Likewise, [9, 10, 16, 17] create guidelines
for operationalizing transparent assessments ofML4Hmodels. Auditing frameworks
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such as Aequitas1 and AIFairness3602 are operationalized for this purpose [4]. The
tools provide reports relevant to protected groups and fairness metrics, indicating
unfairness through preset disparity ranges.

2.2 Measuring Health Equity Barriers

Intersectional social identities are related to a patient’s health outcomes [18, 19].
Therefore, measuring health equity in ML requires understanding a patient beyond
their illness. In practice, this can include focusing on populations with histories of
a significant illness burden or examining bias from the lens of social determinants
of health (SDOH). Fairness literature has also dictated a need to measure biases
frommultidimensional perspectives [20]. Capturing social context beyond protected
attributes is helpful for this cause. SDOH, such as unequal access to healthcare,
language, stigma, racism, and social community, are underlying contributing factors
to health inequities [14, 21, 22].

2.3 Fairness and Local Bias Detection

LOGAN [11], amethod to detect local bias, adapts K-Means to cluster BERT embed-
dings while maximizing a bias metric within each cluster. LOGAN consists of a
2-part objective: a K-Means clustering objective (Lc) and an objective to maximize a
bias metric (Lb, e.g. the performance gap between 2 groups) within each respective
cluster.

min
C

Lc + λLb (1)

where λ ≤ 0 is a tunable hyperparameter to control the tradeoff between the two
objectives and indicates how strongly to cluster with respect to group performance
differences. We define our bias metric as the model performance disparity between
2 groups, measured by accuracy. However, detecting biases by identifying similar
contextual representations is not enough. The task must be adapted to the clinical
domain to audit with health equity in mind. One way to do this is by incorporating
domain-specific information. For example, severity scores stratify patients based on
their immediate needs and help clinicians decide how to allocate resources effectively
[23]. Therefore,we build off of LOGANand create a tool that translates to themedical
setting by mindfully using this information.

1 http://aequitas.dssg.io/.
2 https://aif360.mybluemix.net/.

http://aequitas.dssg.io/
https://aif360.mybluemix.net/
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3 Methodology

3.1 Clinical NLP Pretrained Embeddings

Several BERT models are publicly available for use in the clinical setting. These
include various implementations of ClinicalBERT [24, 25]. We proceed with lever-
aging a variant of ClinicalBERT from [26] as this is an extension of ClinicalBERT
with improvements such as whole-word masking.

3.2 Automatic Bias Detection

To create a patient-centric bias detection tool, we encourage SLOGAN to identify
large bias gapswhile accounting for similarity in patient severity. SLOGANmeasures
local biases in a model using patient-specific features and contextual embeddings of
patient history for in-hospital mortality prediction. We do this via a patient similarity
constraint. A variety of patient severity scores such as OASIS, SAPS II, and SOFA
are available for use [27–29]. Following health literature and clinician advice, we
select the SOFA acuity score. However, depending on clinician needs, a different
constraint may be used (e.g., ICD-9 codes). Extending Eq. (1), this results in the
following optimization problem:

min
C

Lc + λLb + γ Ls (2)

where Ls is added to encourage the model to group patients with similar acute
severity. λ ≤ 0 and γ ≥ 0 are hyperparameters that control the tradeoff between the
objectives of grouping patient similarity and clustering by local bias.

Ls =
k∑

j=1

∣∣∣∣
∑

xi∈A

SOFAi j −
∑

xi∈B
SOFAi j

∣∣∣∣
2

(3)

λ and γ are tuned via a grid search and we choose the combination that identifies
the largest local group biases (Appendix Table 6).

We define the bias score as having at least a 10% difference in accuracy and at
most a SOFA score difference of 0.8.3 We compare SLOGAN to LOGAN and K-
Means across three metrics. To measure the utility of the clusters found, we examine
the ratio of biased clusters found (SCR) and the number of instances in those clusters
(SIR). We use inertia to measure clustering quality, as it reflects how well the data
clustered across respective centroids. Finally, we compare each algorithm’s inertia
to a baseline K-Means model normalized to 1.0.

3 We choose the thresholds by splitting the data and creating bootstrap estimates 1000 times, then
add three standard deviations.
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4 Data and Setup

In order to maximize reproducibility, we perform experiments with the same patient
cohorts defined in the benchmark dataset from the MIMIC-III clinical database [30,
31]. Following [32], to understand how BERT represents social determinants of
health and captures possible stigmatizing language in the data, we extracted the
history of present illness, past medical history, social history, and family history
across physicians, nursing, and discharge summaries [33]. We employed MedSpacy
[34] to extract any information related to a patient’s social determinants of health.
After preprocessing, this translated into a 70% train, 15% validation, and 15% test
split of 1581, 393, and 309 patients, respectively. No patient appeared across the
splits. Analyses were conducted across self-identified ethnicity, sex, insurance type,
English speaking, presence of chronic illness, presence of diabetes (type I and II),
social determinants of health, and negative patient descriptors to measure stigma.
We also explored creating cross-sectional groups (Appendix Table 5).

We used SLOGAN to audit a fully connected neural network from [26] used to
predict in-hospital mortality, a common MIMIC-3 benchmarking task [31].4 Each
patient note in the test set was encoded and concatenated with gender, OASIS, SAPS
II, SOFA scores, and age. To provide a rich contextual representation of patient notes
to SLOGAN, encodings consisted of the concatenated last four layers of Clinical-
BERT [12]. The embeddings encoded 512 tokens, themaximumnumber of tokens for
BERT. We followed the best hyperparameters of the model and chose the threshold
that provides at least 80% accuracy on the validation set.

5 Results

5.1 Aggregate Analysis

Weassessed SLOGAN’s local bias clustering abilities and quality across 12 attributes
in MIMIC-III, including demographic variables such as ethnicity and gender. The
model was compared to K-Means and LOGAN using the SCR, SIR, |Bias|, and
Inertia measurements defined in Sect. 3.2. We report these results in Table 1. In
most attributes, SLOGAN was the best at identifying groups with fairness gaps.
Identified groups contained more instances and larger biases, while maintaining
clustering quality. In particular, SLOGAN identified the most and largest local group
biases in at least 9/12 (75%) attributes, measured by SCR and |Bias|, respectively.
When comparing LOGAN andK-Means, SLOGAN found the highest ratio of biased
instances within biased clusters (SIR) in 7/12 (58%) MIMIC-3 attributes. We report
audits across all attributes in Appendix Table 7.

4 A patient who has passed within 48 hours of their ICU stay is assigned the label of 1, otherwise
they are assigned the label 0.
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Table 1 Average values for 12 MIMIC-III attributes across models and evaluation metrics. SCR,
SIR, and |Bias| in %. |Bias| is the average absolute model performance difference in biased clusters.
Bold is the best performance per row. Right-most column is number of MIMIC-III attributes where
SLOGAN performs best. Arrows indicate desired direction of a number

K-Means LOGAN SLOGAN # of MIMIC-III
attributes

Inertia (↓) 1.0 0.991 0.981 7/12 (58%)

SCR (↑) 15.3 22.9 30.1 12/12 (100%)

SIR (↑) 15.3 18.4 23.4 7/12 (58%)

|Bias| (↑) 12.5 21.5 34.2 9/12 (75%)

5.2 Case Study: Diabetes Mellitus

5.2.1 Cluster Analysis

Diabetes is oneof themost commonand costly chronic conditionsworldwide, accom-
panied by serious comorbidities [35]. To further study this, we used SLOGAN to
assess the local group biases on theHASDIABETES attribute and identified fairness
gaps in agreement with health literature (Fig. 1).

We report the accuracy and maximum absolute performance differences across
identified biased clusters by K-Means, LOGAN, and SLOGAN in Table 2. The
performance difference overall between patients that do and do not have diabetes
was 9.1%. K-Means and LOGAN identified local groups with larger performance
discrepancies (20% and 28.1%, respectively). Notably, SLOGAN performed the
best at identifying a local region with the largest performance gap (37.1%). We also
report the SCR, SIR, |Bias|, and Inertia in Table 3. Results indicate that SLOGAN
found groups with a larger average bias magnitude than K-Means and LOGAN.
While LOGAN and SLOGAN identified the same ratio of biased clusters (25.0%),
SLOGAN identified the largest local bias region (28.6%) with a small tradeoff in
inertia (Appendix Fig. 2).

Fig. 1 Performance
differences for HAS
DIABETES attribute.
Furthest right red box shows
global bias, while SLOGAN
finds a local area of much
higher bias at cluster 4
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Table 2 Bias detection (%) for in-hospital mortality task. Global indicates global bias. “Yes”
indicates patient with diabetes. |Bias| is the max absolute model performance difference in biased
clusters. SLOGAN identifies local biases greater than global bias observed in the data (bold)

Method Acc-Yes Acc-No |Bias|

Has diabetes Global 75.0 84.1 9.1

K-Means 55.0 75.0 20.0

LOGAN 60.0 88.0 28.0

SLOGAN 54.5 91.7 37.1

Table 3 Comparison under diabetes attribute. SCR and SIR are respectively the % of biased
clusters and % of biased instances. |Bias|(%) is the average absolute bias score for the biased
clusters. SLOGAN finds the largest bias (bold)

Method Inertia SCR SIR |Bias|

Has diabetes K-Means 1.00 33.3 27.1 14.2

LOGAN 1.003 25.0 16.9 25.0

SLOGAN 1.12 25.0 15.4 28.6

Fig. 2 t-SNE results with
circled most biased cluster
for HAS DIABETES
attribute

To more carefully examine clusters formed by SLOGAN, we show respective
performance deviations in Fig. 1. We found that SLOGAN identified fairness gaps
documented in health literature. Two clusters exhibited a large local bias towards
patients without diabetes, clusters 1 and 4. We analyzed differences in cluster char-
acteristics between the most and least biased cluster. The most biased cluster, cluster
4, contained 38% more patients with chronic illnesses besides diabetes, with 33.3%
suffering from chronic illnesses besides diabetes or hypertension. We then com-
pared cluster 4 to all other clusters. Again, we found that it contained the largest
percentage of (1) patients (62.5%) with chronic illnesses besides diabetes and (2)
patients with chronic illnesses besides diabetes and hypertension (25%). Cluster 4
also had fewer patientswith private insurance than the least biased cluster and the low-
est percentage of English-speaking patients (4.6%) in the entire dataset (Appendix
Table 8). Notably, these differences in disease burden, insurance, and language align
with existing research indicating how populations with the largest health disparities
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Table 4 Top 20 topic words in the most and least biased clusters using SLOGAN for
HAS DIABETES attribute. Number is the bias score (%) of that cluster

Most biased (40.0) Parent, given, recent, vanco, treat, fever, acinetobacter, ecg, negative,
incubated, disorder, bottles, clozaril, complete, sputum, past, started, ed,
found, admitted

Least biased (0.2) Noted, past, recent, home, given, due, pain, two, offspring, mild, chest,
initially, without, blood, vancomycin, children, shortness_breath, sibling,
admitted, started

often suffer from a larger burden of disease and may experience significant structural
language barriers [22, 36].

5.2.2 Bias Interpretation with Topic Modeling

Severe diabetes complications may result in various forms of deadly infections and
respiratory issues [37–39]. Provided the in-mortality task, we asked if indications
of severe diabetes complications were present when using SLOGAN. To do this,
we ran Latent Dirichlet Allocation topic modeling [40] within identified SLOGAN
clusters. We detail the preprocessing steps in the appendix. Table 4 lists the top 20
topic words for the most and least biased clusters. SLOGAN grouped patients with
histories indicating deadly infections and respiratory issues in themost biased cluster.
Terms included “sputum” (thick respiratory secretion), “Acinobacter” (bacteria that
can live in respiratory secretions), and “Vanco” (used to treat infections).

Social determinants of health also correlate to effective self-management of dia-
betes [41, 42]. Therefore we also examined differences in social determinants of
health between the least and most biased clusters. While LDA cannot determine the
directionality of SDOH impact, the top 20 terms are among the most important when
forming the cluster’s topic distribution. In the least biased cluster, top words included
terms around the community such as ‘home’, ‘offspring’, ‘children’, and ‘sibling’.
However, in themost biased cluster, just 1 of the 20 terms, ‘parent’, reflected possible
existing social support.

6 Discussion

We developed SLOGAN as a framework to audit an ML4H task by identifying
areas of patient severity-aware local biases. Results indicated that SLOGAN captures
more and higher quality clusters across several subgroups than the baseline models,
K-Means and LOGAN. To illustrate how to use SLOGAN in a clinical context,
we conducted a case study that used SLOGAN to identify clusters of local bias
in diabetic patients. We found that the biases observed aligned with existing health
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literature. In particular, the cluster with the largest local biaswas also the cluster with
the largest disease burden. This result demonstrates a need to further examine and
repeat these experiments across patient cohorts and performance metrics. Interesting
futureworksmay include asking howmodels encode vulnerable communities in their
representations and if health disparities consistently propagate into model biases.

In practice, SLOGAN can be used to determine biased clusters for review before
model deployment in a healthcare setting. The toolmay also track howbiases shift due
to changes in the data or across operationalization in different hospital networks. Fur-
thermore, patient-centric local bias detection can supplementML4Hmodel auditing.
With this information, ML researchers and clinicians can use auditing report cards
to decide on the next steps for inclusive model development.

6.1 Ethical Statement and Limitations

Our analysis used MIMIC-III data, an open deidentified clinical dataset. Only cre-
dentialed researchers who fulfilled all training requirements and abided by the data
use agreement accessed the data.5 We review the data and clinical notes a second
time to confirm the removal of any patient-related information, including location,
age, name, date, or hospital.

In practice, further interdisciplinary discussion on how SLOGAN can best be
integrated into the ML4H auditing pipeline is welcomed. While we do not analyze
the factors influencing model fairness, we encourage this future work. Furthermore,
it is important to note that the absence of flagged bias clusters is not an indicator of
a total absence of risk for downstream unfair outcomes.

Appendix

LDA

LDA is run using theNLTKand gensimpackages [43, 44]. Unigrams and bigrams are
generated using gensim.phrases with min count=3 and threshold=5. The LDA is run
on gensim with random state=100, updateevery=1, chunksize=100, and passes=100.
To get achieve better topic modeling, words like child, son, daughter are tokenized as
‘offspring’. Words pertaining to father or mother are replaced with ‘parent’. Words
such as hypertension and hypertensive are replaced with ‘hypert’. Similarly, words
such as hypotension and hypotensive are replaced with ‘hypot’ (Table 10).
Negative Patient Descriptors

5 https://physionet.org/content/mimiciii/1.4/#files.

https://physionet.org/content/mimiciii/1.4/#files
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Table 5 Percent of attribute in the MIMIC-3 data

Group λ γ

Has diabetes –30 50

Has negative descriptor –20 0

Has chronic illness –30 50

Medicaid insurance –70 30

Medicare insurance –50 0

Private insurance –70 40

Speaks English –30 0

Assigned male at birth (AMAB) –10 60

Assigned female at birth (AFAB) 0 70

Self-identifies white –30 20

Self-identifies black –20 60

AFAB + self-identifies black –10 60

Table 6 Hyper parameter search forλ and γ after searching between combinations between –100–0
and 0–100, respectively

Group Percent (%)

Has negative descriptor 8.86

Has diabetes 35.43

Has chronic illness 88.0

Medicaid insurance 7.71

Medicare insurance 60.86

Private insurance 28.0

Speaks English 86.57

Assigned male at birth (AMAB) 56.29

Assigned female at birth (AFAB) 43.71

Self-identifies white 75.14

Self-identifies black 13.43

AFAB + self-identifies black 8.86

We explored the SDOH dimension of stigma in clinical notes through the extrac-
tion of negative patient descriptors found in [32] and outline the results in the
Appendix Table 9. However, further preprocessing beyond the usage of regexes
is needed to reduce false positive rates.

Code

Please feel free to reach out to the authors for access to the code repository.
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Table 7 Comparison between K-Means, LOGAN, and SLOGAN under each attribute type. SCR
and SIR are respectively the ratio of biased clusters and ratio of biased instances. |Bias| is the
averaged absolute bias score for these biased clusters. Results not shown in %

Method Inertia SCR SIR |Bias|

Has diabetes K-Means 1.00 0.33 0.27 0.14

LOGAN 1.00 0.25 0.17 0.25

SLOGAN 1.12 0.25 0.15 0.29

Has negative Method Inertia SCR SIR |Bias|

K-Means 1.00 0.00 0.00 0.00

LOGAN 0.88 0.20 0.19 0.20

SLOGAN 0.85 0.20 0.19 0.37

Has chronic illness Method Inertia SCR SIR |Bias|

K-Means 1.00 0.17 0.25 0.17

LOGAN 1.15 0.40 0.32 0.40

SLOGAN 0.89 0.50 0.47 0.23

Is medicaid insurance Method Inertia SCR SIR |Bias|

K-Means 1.00 0.40 0.46 0.23

LOGAN 0.99 0.20 0.25 0.20

SLOGAN 0.94 0.20 0.11 0.76

Is medicare insurance Method Inertia SCR SIR |Bias|

K-Means 1.00 0.13 0.13 0.21

LOGAN 0.91 0.22 0.22 0.22

SLOGAN 0.87 0.22 0.16 0.21

Is private insurance Method Inertia SCR SIR |Bias|

K-Means 1.00 0.22 0.20 0.12

LOGAN 1.18 0.14 0.12 0.14

SLOGAN 1.12 0.14 0.10 0.26

Is English speaker Method Inertia SCR SIR |Bias|

K-Means 1.00 0.00 0.00 0.00

LOGAN 1.02 0.17 0.17 0.17

SLOGAN 0.91 0.43 0.44 0.31

Assigned male at birth (AMAB) Method Inertia SCR SIR |Bias|

K-Means 1.00 0.00 0.00 0.00

LOGAN 1.00 0.11 0.09 0.11

SLOGAN 1.03 0.25 0.13 0.41

Assigned female at birth (AFAB) Method Inertia SCR SIR |Bias|

K-Means 1.00 0.00 0.00 0.00

LOGAN 1.00 0.11 0.09 0.11

SLOGAN 1.05 0.13 0.04 0.39

Self-identifies white Method Inertia SCR SIR |Bias|

K-Means 1.00 0.14 0.13 0.14

LOGAN 0.86 0.38 0.37 0.38

SLOGAN 0.98 0.40 0.41 0.26

Self-identifies black Method Inertia SCR SIR |Bias|

K-Means 1.00 0.40 0.28 0.20

LOGAN 0.91 0.20 0.10 0.20

SLOGAN 1.02 0.20 0.10 0.27

Self-identifies black + AFAB Method Inertia SCR SIR |Bias|

K-Means 1.00 0.20 0.13 0.28

LOGAN 1.00 0.20 0.13 0.20

SLOGAN 0.99 0.60 0.49 0.35
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Table 8 Percentage differences (�, in %) in characteristics between most and least biased cluster
forHASDIABETES attribute. A positive numbermeans themost biased cluster hasmore instances
of this attribute versus the least biased cluster. N/A indicates division by zero

Group � (%)

Private insurance –100.0

Medicaid insurance 11.1

Medicaid insurance 51.5

Self-identifies white 36.5

Self-identifies black N/A

Self-identifies hispanic N/A

Self-identifies Asian N/A

Self-identifies other 11.1

English speaker –1.6

Assigned male at birth (AMAB) –38.3

Has chronic illness, not diabetes 37.8

Has chronic illness, not diabetes or
hypertension

33.3

Hypertensive 11.1

Has acute illness 27.8

Table 9 Most and Least Biased LDA top 20 words for HAS NEGATIVE DESCRIPTOR patient
descriptor. Number in parentheses is the bias score (%) of that cluster

Most biased (38.7) Denies, rehab, treat, pain, well, sputum, transferred, hx, valve, sent,
course, cxr, chest pain, one, episodes, mild, cough, floor, worsening,
disease, tobacco

Least biased (0.67) Pain, given, denies, admit, home, time, last, well, hip, past, started,
disease, found, noted, transferred, liver, developed, treat, symptoms,
nausea, blood

Table 10 Top 20 topic words in the most and least biased cluster using SLOGAN under IS
ENGLISH SPEAKER. Number in parentheses is the bias score (%) of that cluster

Most biased (32.7) Disease, cardiac, lives, received, given, admit, denies, parent, family,
cath, symptoms, cancer, positive, diabetes mellitus, type, past, time,
alcohol, cad, recently, ct

Least biased (3.4) Abdominal pain, denies, pain, started, chest pain, chronic, cough,
disease, transferred, past, hyperlipidemia, patient, time, given, hypert,
recent, cardiac, ros, shortness breath, complaints, found
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Abstract We present a pipeline in which unsupervisedmachine learning techniques
are used to automatically identify subtypes of hospital patients admitted between
2017 and 2021 in a large UK teaching hospital. With the use of state-of-the-art
explainability techniques, the identified subtypes are interpreted and assigned clini-
cal meaning. In parallel, clinicians assessed intra-cluster similarities and inter-cluster
differences of the identifiedpatient subtypeswithin the context of their clinical knowl-
edge. By confronting the outputs of both automatic and clinician-based explanations,
we aim to highlight the mutual benefit of combining machine learning techniques
with clinical expertise.
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1 Introduction

Patients admitted to hospital constitute a heterogeneous population with different
levels of illness severity, morbidities, response to treatments and outcomes [9].
Therefore, predicting the right treatment is challenging even when patients are ini-
tially diagnosed with the same conditions. For diagnosis and determining treatment
options, physicians rely on factors including the patient’s medical history [6], their
own clinical experience and their professional intuition [9].

Advances in computing technologies and the introduction of electrical health
records (EHR)mean thatmore information is available to physicians than ever before.
However, hospitals are still in the process of transitioning from paper records to EHR,
which leads to challenges when analyzing the data and inferring high-level informa-
tion [6]. As intensive care units (ICUs) are the most data-rich hospital department,
machine learning approaches have mostly focused on these environments [3, 9, 19,
27]. Recent progress has also been made for general wards [8, 10, 15, 21].

Outcome prediction and risk scoring are of high clinical importance. Several risk
scoringmethods havebeendeveloped anddeployed, e.g.Rothman index [23],MEWS
[26], APACHE IV [5], and SOFA [16]. The National EarlyWarning Score 2 (NEWS)
is increasingly used in UK hospitals [1] and has good predictive ability in patients
with infections and sepsis [2]. However, for respiratory diseases like COVID-19, the
results are conflicting [4, 8, 17]. This raises the question: are early warning scores
such as NEWS equally effective for all patient subtypes?

We argue that the predictive ability of scores could be further improved by incor-
porating insightful patient subtyping. Historically, patients were grouped based on
their level of sickness, i.e., the creation of ICUs. The reorganization presented an
innovation, as expertise in caring for the critically ill could be focused on a single
location [11]. Patient subtyping could be the next innovative step, namely, instead of
focusing solely on the severity of their sickness, patients could be further grouped
based on their clinical needs [27]. In a pilot study, non-ICU patients were physically
grouped in based on similar patient characteristics rather than diagnoses, leading to
a reduced admittance of low-risk patients to ICU from 42% to 22%. Additionally,
the average ICU length of stay was reduced from 4.6 to 4.1 days [13].

Automatic patient subtyping aims to assign patients to clinically meaningful
groups using factors such as their disease progression,medical history, EHR, and ulti-
mately paves the path to precision or personalised medicine by tailoring diagnostic
and therapeutic strategies to the patient’s needs [6, 20]. Subtyping can be framed as
an unsupervised machine learning task, using clustering methods to identify distinct
high-density regions separated by sparse regions within a dataset [12]. These clusters
represent patients that are in some sense similar according to the data. Clustering
algorithms such as k-means and hierarchical clustering have recently been applied to
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identify clusters in a general ICU population [27], cardiovascular clusters in sepsis
patients [14], and corticosteroid response in patients with severe asthma [28].

However, clustering alone is insufficient to provide practical support to determine
treatment options. The resulting clusters also must be interpreted such that clinicians
can validate and learn from cluster assignments. While previous studies manually
assigned clinical meaning to the clusters after their creation, before these models can
be widely deployed in hospitals, the final users must ‘trust’ the models. This requires
an in-depth understanding of the models’ behaviour and confidence in individual
predictions [22]. Model-agnostic explainability approaches such as LIME and vari-
ants [22, 24] can be used for explaining the predictions of clustered data [29]. This
paper presents a pipeline in which we:

• Propose the use of unsupervised machine learning techniques to identify patient
subtypes on admission for a new dataset of hospital patients from a large UK
teaching hospital.

• Implement a combination of explainability techniques and statistical properties of
the clusters to evaluate and assign clinical meaning to the identified subtypes.

• In parallel and independently, hospital clinicians derive themain clinical properties
of the identified subtypes using additional records, a key and necessary step in
developing human-in-the-loop machine learning systems in medical settings.

2 Method

2.1 Data Source and Conditions

Subjects are patients admitted to the Bristol Royal Infirmary, a large teaching hospital
covering most medical and surgical specialties. The clinical characteristics of this
historical data source is summarised in Table 1. Only patients were considered for
which theNEWSand all corresponding vitalswere available i.e. temperature, systolic
blood pressure, heart rate, hemoglobin saturation with oxygen (SATS), respiratory
rate, and level of consciousness. Only vitals taken within the first 24 h after hospital
admission were considered. Patient visits lasting less than 2 h were considered as
routine appointments and omitted. Some patients were admitted several times and
each admission was considered as an independent event. Patients with restricted or
limited level of consciousness are described as ‘unconscious’.

2.2 Dimensionality Reduction and Clustering

To improve interpretability, dimensionality reduction was performed using Uniform
Manifold Approximation and Projection (UMAP) [18] based on the six vitals: tem-
perature, systolic blood pressure, heart rate, SATS, respiratory rate and level of
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Table 1 Clinical characterization of the full dataset. NEWS = National early warning score, SATS
= Hemoglobin saturation with oxygen. Value format is mean (standard deviation)

Number of patients 60,731

Number of admissions 95,825

Gender (% female) 51.1

Age (years) 58.96 (±21.13)

Length of stay (hours) 47.84 (± 107.26)

Mortality (%) 2.84

NEWS 1.53 (±1.79)

Temperature (◦C) 36.81 (±0.54)

Systolic blood pressure (mmHg) 123.97 (±21.16)

Heart rate (bpm) 79.51 (±15.96)

SATS (%) 96.03 (±2.62)

Respiratory rate (bpm) 17.43 (±2.77)

Limited level of consciousness (%) 0.84

consciousness. The first three vitals were scaled, the latter three transformed with
the logit function. After dimensionality reduction, HDBScan [7] was applied to the
embedding to identify clusters subsequently used for clinical validation.

2.3 Clustering Explanations

Understanding how and why patients were clustered was a fundamental requirement
to establish clinical trust and ultimately reduce the risk of unintended harm. Each
vital sign’s contribution for the assignment of patients into each cluster was deter-
mined by generating and mutating 25,000 surrogate samples per cluster using the
TabularBlimeyTree decision tree explainer [24] within FAT Forensics (v0.1.1):
an open source toolbox [25].1 in order to identify decision boundaries and determine
each vital’s contribution. Input features were the scaled vital signs. The probabilistic
argument was set to False. Default arguments and settings were otherwise used. All
generated samples were visualised in the embedding space to ensure reasonableness.

2.4 Clinical Evaluation

Clinical validation was conducted, independently of the previously described anal-
ysis, by providing two clinicians with ten sample patients for each cluster. These

1 https://github.com/fat-forensics/fat-forensics.

https://github.com/fat-forensics/fat-forensics
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Fig. 1 Pipeline overview, from dataset import to output of explainable clusters

patients were selected uniformly at random and visually checked to ensure consis-
tency with the underlying representation for each cluster. The clinicians then pulled
additional information of these patients from the hospital databases and analysed
their clinical records to assess and evaluate intra-cluster similarities and inter-cluster
differences according to both the data and their clinical knowledge (Fig. 1).

3 Results

3.1 Cluster Characterization

The data extracted between Nov 2017 to March 2021 comprised 116,004 cases
(70,452 patients). Of these, 95,825 cases (60,731 patients) had all vitals taken within
the first 24 h of their ≥2 h hospital stay and were included in the study.

Dimensionality reduction and clustering revealed five clusters (Fig. 2A, sum-
marised in Table 2). Most vitals plus gender and age reveal a gradient in values
across or within clusters. Globally, the NEWS (Fig. 2D) is highest for cluster 0 but
also shows high values in some areas in cluster 2. Temperature (Fig. 2E) reveals a
gradient for all clusters, most noticeable in cluster 2. Systolic blood pressure (BP,
Fig. 2F) behaves similarly. However, the increase in BP seems to be directed towards
the unoccupied region between cluster 2, 3, and 4. Heart rate (Fig. 2G) reveals a
gradient within all clusters. In contrast, SATS (Fig. 2H) has a more global gradient
with values increasing from cluster 2 to cluster 4 to cluster 3 and 1. The intra-cluster
SATS values are homogeneous within clusters 1, 3, and 4. Cluster 2 has a moderate
gradient, and cluster 0 has a strong gradient.

Respiratory rate (Fig. 2I) is almost homogeneous with only moderate variations
within all clusters. The level of consciousness is an exception (Fig. 2J). Cluster 0, the
smallest cluster, contains almost all patients with limited level of consciousness and
no fully “conscious” patients (Table 2). Only a small number of patients limited level
of consciousness can be found distributed in the other clusters. Gender (Fig. 2B) and
age (Fig. 2C) appear to show similarly distributed gradients, with female patients
tending to be admitted at a lower age.
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Fig. 2 Parametersmappedonto the embedding space after dimensionality reduction.Cluster assign-
ment (A), gender (B)whereN.K. = not known,N.S. = not specified, age (C), NEWS (D), temperature
(E), systolic blood pressure (F), heart rate (G), hemoglobin saturation with oxygen (H), respiratory
rate (I), level of consciousness where high = limited level of consciousness (J)
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Table 2 Clinical characterization of all individual clusters. SATS = Hemoglobin saturation with
oxygen. Value format is mean (standard deviation). ICD10 (10th revision of International Classi-
fication of Diseases) specifies codes for diseases and diagnoses, where for each cluster the most
frequent code corresponds to the following; Cluster 0 sepsis, Cluster 1 abdominal and pelvic pain,
Cluster 2, 3 & 4 chronic ischemic heart disease

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of
patients

434 7583 41641 9050 13752

Number of
admissions

453 8713 61022 10080 15557

Gender
(% female)

47.7 63.6 48.3 57.3 51.1

Age (years) 69.9 (± 18.0) 49.6 (± 21.6) 64.1 (± 18.9) 52.3 (± 21.6) 56.2 (± 21.0)

Length of stay
(hours)

74.5 (± 162.8) 40.5 (± 102.5) 52.2 (± 112.6) 38.1 (± 90.6) 40.2 (± 94.6)

Mortality (%) 21 2 4 1 1

ICD10 code
(most frequent)

A41.9 R10.3 I251 I251 I251

NEWS 5.78 (± 2.78) 0.99 (±1.31) 1.65 (±1.88) 0.78 (±1.12) 0.69 (±1.03)

Temperature (◦C) 36.68 (±0.68) 36.79 (±0.56) 36.85 (±0.62) 36.75 (±0.46) 36.73 (±0.44)

Systolic blood
pressure (mmHg)

121 (±26.33) 126 (±21.09) 130 (±23.13) 128 (±21.19) 129 (±20.54)

Heart rate (bpm) 79.18
(±15.86)

78.10
(±16.23)

81.62
(±17.53)

77.04
(±14.91)

76.54
(±13.82)

SATS (%) 95.72 (±3.13) 100.00
(±0.02)

95.53 (±2.02) 99.00 (0) 98.00 (0.09)

Respiratory rate
(bpm)

18.14 (±4.60) 16.72 (±2.47) 17.53 (±2.95) 16.63 (±2.11) 16.63 (±2.06)

Limited level of
consciousness (%)

100 0.18 0.12 0.06 0.03

3.2 Cluster Visualisation and Vitals

A goal of analysing the individual clusters is to identify their unique characteristics
relative to each other and the overall population. Figure 3 shows the percentage
difference in measurements for each cluster relative to the overall population.

Cluster 0 shows the clearest difference compared to all other clusters with higher
than average NEWS, respiratory rate, consciousness, and longest hospital stay, and
a decreased temperature and systolic blood pressure. The high consciousness score
indicates that cluster 0 contains almost all patients with limited level of conscious-
ness. Additionally, cluster 0’s confidence interval covers the largest range, indicating
higher variability. For clusters 1–4, the confidence intervals all have similar mag-
nitudes. Features of cluster 2 appear distinct as they are directionally opposite to
clusters 1, 3, and 4.
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Fig. 3 Vitals, NEWS and length of stay for individual clusters. The mean value of each cluster
is compared to the mean value (black line) of the whole population. Error bars represent 95%
confidence intervals

3.3 ICD10 Codes

Figure 4 shows the frequency of identified primary 10th revision of International
Classification of Diseases (ICD10) code groupings per cluster. The highest incidence
ICD10 code group is ‘Circulatory system (I00-I99)’with 20.9%and21.0% in clusters
2 and 4, respectively. Diseases of circulatory system are overall the most prevalent
group. Diseases of the respiratory system are common in cluster 0 (14.8%) and 2
(14.2%), with approximately three times higher occurrence than in the other clusters.
‘Infectious/parasitic diseases (A00-B99)’, ‘Neuropsychiatric disease (F01-F99)’ and
‘Nervous system (G00-G99)’ appear predominantly in cluster 0, whereas cases of
‘Neoplasms (C00-D49)’ and ‘Digestive system (K00-K95)’ are more common in the
other clusters, ranging from 9.1% to 12.8%of all cases. Pregnancy-related incidences
are most common in cluster 1 with 11.4%.

3.4 Surrogate Explanations

Surrogate explanations suggest that themost important feature in determining cluster
0 assignment is consciousness (0.63 feature importance), followed by SATS (Fig. 5).
For all other clusters, SATS is the most dominant factor, with a feature importance
factor approaching 1.0. Temperature had a marginal influence for Clusters 0 and 2.
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Fig. 4 Heatmap of primary ICD10 codes as recorded by clinicians at the time of patient admission
and collated by top-level grouping. For display purposes only ICD10 codes with ≥2% incidence
for at least one cluster are displayed. Since only a subset of ICD10 codes are visualised, each row
does not add up to 100. MSK = Musculoskeletal

Fig. 5 Surrogate explanations for the contribution of each vital in determining the assignment of
patients into each cluster. SATS = Hemoglobin saturation with oxygen

3.5 Clinical Interpretation of Clusters

The clinicians were able to detect inter-cluster differences and intra-cluster similar-
ities. The limited level of consciousness and high NEWS in cluster 0, and different
SATS levels for clusters 1, 2, 3, and 4 were identified as the main features. This
mirrors findings of the vitals importance gained from the surrogate explanations.

Cluster 0 was found to have the highest NEWS. Yet, only one patient in the
sampling group died. Cluster 1 was identified as a heterogeneous group with SATS
of 100%and a low respiratory rate.Unsurprisingly, none of the analysed patientswere
admitted due to respiratory disease. That is in contrast to cluster 2 which showed high
level of infection and/or respiratory disease. Based on the provided sample patients,
this cluster appeared to have the highest mortality rate. SATS of 99% and a low
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heart rate was the most characteristic feature of cluster 3. And patients in cluster 4
tended to have minimal background with medical conditions, low respiratory rate,
low NEWS and SATS of 98%. Apart from cluster 1, all clusters appeared to contain
patients that did not match the cluster tendency.

4 Discussion and Conclusion

This study presents a pipeline to identify, explain and evaluate clusters of patient
subtypes. Patient subtyping by way of clustering could be the first step towards a
personalised scoring system, improving the predictive success of currently deployed
risk scoring metrics [1, 5, 16, 23, 26].

The clusters identified in this study were based on just six vitals from the first
set of readings taken during a hospital stay. Using only six vitals and including
hospital departments beyond the ICU are in contrast to previous studies. Forte et al.
[9] and Vranas et al. [27] included 76 and 23 clinical features, respectively, resulting
in the identification of six subtypes of ICU patients. Here, cluster 0 appeared to
predominantly include high-risk patients with a high NEWS and high level of limited
consciousness, which was reflected in their elevated length of stay. The inter-cluster
differences of the other clusters are harder to identify. Cluster 2 is the largest cluster
with the second oldest population. Yet, the most frequent ICD10 code is equal in
cluster 0 and 4. This indicates that patients admittedwith the same conditionmayhave
different needs [27]. The clear, unique characteristics of cluster 0 and the stronger
similarities of the other clusters are also reflected in the clinicians’ feedback. They
were able to identify SATS and level of consciousness as the key features of inter-
cluster differences and successfully linked the cluster characteristics to the prevalent
ICD10 codes. However, they also pointed out patients that did not match the cluster
tendencies. This could be the result of the small sample size relative to the cluster
size, distorting the clinicians’ perception of the cluster characteristics. Additionally,
after reading the first draft, the clinicians pointed out that the selected sample patients
had a significant impact on which elements they considered as cluster characteristics.

For further insights, the identified clusterswere characterised and analysed regard-
ing the occurrence of themost frequent ICD10 codes.Vranas et al. [27] found ‘Sepsis’
as the most common diagnosis in ICU patients in five out of six clusters, whereas
Castela Forte et al. [9] determined a different leading cause for each cluster. Here,
circulatory diseases have the highest impact on hospital admissions, followed by ‘Not
elsewhere classified’ cases. Diseases of the Respiratory system appear to distinguish
clusters 0 and 2 from the other clusters. Castela Forte et al. [9] also identified two
clusters with high prevalence of respiratory failure.

Surrogate explainers were generated to improve cluster explainability.While con-
sciousness is a key criterion for separating cluster 0 from the other clusters, SATS
is the most dominant factor for distinguishing clusters 1–4. The level of conscious-
ness has previously been identified as the key feature in predicting discharge from
ICU [19]. The integration of surrogate explainers and clinicians helped validate and
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verify the presented results. Future studies and the deployment in hospital settings
should consider this approach to increase fairness, accountability, and transparency.
This also aids in building trust between the clinicians and machine learning systems.
However, the identified patient subtypes should be treated with care as the whole
analysis is based on a dataset from one hospital. Adding data from other hospitals
as well as adding other features may reveal other or alter the identified patient sub-
types. Furthermore, two clinicians were part of the team in order to co-design the
process. Future studies will increase the number of clinicians for additional feedback,
increasing the acceptance of and trust in the identified patient subtypes.

Acknowledgements This work was funded by Health Data Research UK via the Better Care
Partnership Southwest (HDR CF0129). JC, AH and RSR are funded by the UKRI Turing AI
Fellowship EP/V024817/1.

References

1. T.E. Abbott, N. Cron, N. Vaid, D. Ip, H.D. Torrance, J. Emmanuel, Pre-hospital National Early
WarningScore (NEWS) is associatedwith in-hospitalmortality and critical care unit admission:
a cohort study. Ann. Med. Surg. 27, 17–21 (2018)

2. N. Alam, I. Vegting, E. Houben, B. van Berkel, L. Vaughan, M. Kramer, P. Nanayakkara,
Exploring the performance of the National Early Warning Score (NEWS) in a European emer-
gency department. Resuscitation 90, 111–115 (2015)

3. R.S. Anand, P. Stey, S. Jain, D.R. Biron, H. Bhatt, K. Monteiro, E. Feller, M.L. Ranney,
I.N. Sarkar, E.S. Chen, Predicting mortality in diabetic ICU patients using machine learning
and severity indices. AMIA joint summits on translational science proceedings. AMIA Joint
Summits Transl. Sci. 2017, 310–319 (2018)

4. K.F. Baker, A.T. Hanrath, I. Schim van der Loeff, L.J. Kay, J. Back, C.J. Duncan, National
EarlyWarning Score 2 (NEWS2) to identify inpatient COVID-19 deterioration: a retrospective
analysis. Clin. Med. 21(2), 84–89 (2021)

5. B. Balkan, P. Essay, V. Subbian, Evaluating ICU clinical severity scoring systems and machine
learning applications: APACHE IV/IVa case study. In: Annual International Conference IEEE
Engineering Medical Biological Society, pp. 4073–4076. IEEE, Honolulu (2018)

6. I.M. Baytas, C. Xiao, X. Zhang, F. Wang, A.K. Jain, J. Zhou, Patient subtyping via time-aware
LSTM networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pp. 65–74. ACM, Halifax (2017)

7. R.J.G.B. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical
density estimates. In: Advances in Knowledge Discovery and Data Mining, vol. 7819, pp.
160–172. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-37456-2_14

8. E. Carr, R. Bendayan, D. Bean, M. Stammers, W. Wang, H. Zhang, T. Searle, Z. Kraljevic,
A. Shek, H.T.T. Phan, W. Muruet, R.K. Gupta, A.J. Shinton, M. Wyatt, T. Shi, X. Zhang,
A. Pickles, D. Stahl, R. Zakeri, M. Noursadeghi, K. O’Gallagher, M. Rogers, A. Folarin,
A. Karwath, K.E. Wickstrøm, A. Köhn-Luque, L. Slater, V.R. Cardoso, C. Bourdeaux, A.R.
Holten, S. Ball, C. McWilliams, L. Roguski, F. Borca, J. Batchelor, E.K. Amundsen, X. Wu,
G.V. Gkoutos, J. Sun, A. Pinto, B. Guthrie, C. Breen, A. Douiri, H. Wu, V. Curcin, J.T. Teo,
A.M. Shah, R.J.B. Dobson, Evaluation and improvement of the National Early Warning Score
(NEWS2) for COVID-19: a multi-hospital study. BMC Med. 19(1), 23 (2021)

9. J. Castela Forte, G. Yeshmagambetova, M.L. van der Grinten, B. Hiemstra, T. Kaufmann, R.J.
Eck, F. Keus, A.H. Epema, M.A. Wiering, I.C.C. van der Horst, Identifying and characterizing

https://doi.org/10.1007/978-3-642-37456-2_14


148 E. Werner et al.

high-risk clusters in a heterogeneous ICU population with deep embedded clustering. Sci. Rep.
11(1), 12109 (2021)

10. F.Y. Cheng, H. Joshi, P. Tandon, R. Freeman, D.L. Reich, M. Mazumdar, R. Kohli-Seth, M.A.
Levin, P. Timsina, A. Kia, Using machine learning to predict ICU transfer in hospitalized
COVID-19 patients. JCM 9(6), 1668 (2020)

11. D.K. Costa, J.M. Kahn, Organizing critical care for the 21st century. JAMA 315(8), 751 (2016)
12. D.L. Davies, D.W. Bouldin, A cluster separation measure. IEEE Trans. Pattern Anal. Mach.

Intell. PAMI-1(2), 224–227 (1979)
13. Y.D. Dlugacz, L. Stier, D. Lustbader, M.C. Jacobs, E. Hussain, A. Greenwood, Expanding a

performance improvement initiative in critical care from hospital to system. Jt. Comm. J. Qual.
Patient Saf. 28(8), 419–434 (2002)

14. G. Geri, P. Vignon, A. Aubry, A.L. Fedou, C. Charron, S. Silva, X. Repessé, A. Vieillard-Baron,
Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters:
a post hoc analysis. Intensive Care Med. 45(5), 657–667 (2019)

15. H.M. Giannini, J.C. Ginestra, C. Chivers, M. Draugelis, A. Hanish, W.D. Schweickert, B.D.
Fuchs, L. Meadows, M. Lynch, P.J. Donnelly, K. Pavan, N.O. Fishman, C.W. Hanson, C.A.
Umscheid, A machine learning algorithm to predict severe sepsis and septic shock: develop-
ment, implementation, and impact on clinical practice*. Crit. Care Med. 47(11), 1485–1492
(2019)

16. B. Khwannimit, A comparison of three organ dysfunction scores: MODS, SOFA and LOD
for predicting ICU mortality in critically ill patients. J. Med. Assoc. Thai. 90(6), 1074–1081
(2007)

17. I. Kostakis, G.B. Smith, D. Prytherch, P. Meredith, C. Price, A. Chauhan, A. Chauhan, P.
Meredith, A. Mortlock, P. Schmidt, C. Spice, L. Fox, D. Fleming, L. Pilbeam, M. Rowley, H.
Poole, J. Briggs, D. Prytherch, I. Kostakis, C. Price, P. Scott, G.B. Smith, The performance of
the National Early Warning Score and National Early Warning Score 2 in hospitalised patients
infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Resuscitation
159, 150–157 (2021)

18. L. McInnes, J. Healy, N. Saul, L. Großberger, UMAP: uniform manifold approximation and
projection. JOSS 3(29), 861 (2018)

19. C.J. McWilliams, D.J. Lawson, R. Santos-Rodriguez, I.D. Gilchrist, A. Champneys, T.H.
Gould, M.J. Thomas, C.P. Bourdeaux, Towards a decision support tool for intensive care
discharge: machine learning algorithm development using electronic healthcare data from
MIMIC-III and Bristol. UK. BMJ Open 9(3), e025925 (2019)

20. R. Mirnezami, J. Nicholson, A. Darzi, Preparing for precision medicine. N. Engl. J. Med.
366(6), 489–491 (2012)

21. S.P. Oei, R.J. van Sloun, M. van der Ven, H.H. Korsten, M. Mischi, Towards early sepsis
detection from measurements at the general ward through deep learning. Intell.-Based Med. 5,
100042 (2021)

22. M.T. Ribeiro, S. Singh, C. Guestrin, “Why Should I Trust You?”: explaining the predictions of
any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (ACM, San Francisco, 2016), pp. 1135–1144

23. M.J. Rothman, S.I. Rothman, J. Beals, Development and validation of a continuous measure
of patient condition using the Electron. Med. Record. JBI 46(5), 837–848 (2013)

24. K. Sokol, A. Hepburn, R. Santos-Rodriguez, P. Flach, bLIMEy: surrogate prediction explana-
tions beyond LIME, in 2019Workshop on Human-Centric Machine Learning (HCML 2019) at
the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (Vancouver,
Canada, 2019), https://arxiv.org/abs/1910.13016. ArXiv preprint arXiv:1910.13016

25. K. Sokol, R. Santos-Rodriguez, P. Flach, FAT forensics: a python toolbox for algorithmic
fairness, accountability and transparency. Softw. Impacts 14, 100406 (2022)

26. C. Subbe, Validation of a modified Early Warning Score in medical admissions. QJM 94(10),
521–526 (2001)

27. K.C. Vranas, J.K. Jopling, T.E. Sweeney, M.C. Ramsey, A.S. Milstein, C.G. Slatore, G.J.
Escobar, V.X. Liu, Identifying distinct subgroups of intensive care unit patients: a machine
learning approach. Crit. Care Med. 45(10), 1607–1615 (2017)

https://arxiv.org/abs/1910.13016
http://arxiv.org/abs/1910.13016


Identification, Explanation and Clinical Evaluation of Hospital Patient Subtypes 149

28. W. Wu, S. Bang, E.R. Bleecker, M. Castro, L. Denlinger, S.C. Erzurum, J.V. Fahy, A.M.
Fitzpatrick, B.M. Gaston, A.T. Hastie, E. Israel, N.N. Jarjour, B.D. Levy, D.T. Mauger, D.A.
Meyers, W.C. Moore, M. Peters, B.R. Phillips, W. Phipatanakul, R.L. Sorkness, S.E. Wenzel,
Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe
asthma. Am. J. Respir. Crit. Care Med. 199(11), 1358–1367 (2019)

29. Z. Zhou, M. Sun, J. Chen, A model-agnostic approach for explaining the predictions on clus-
tered data, in ICDM (Beijing, IEEE, 2019), pp.1528–1533



Automatically Extracting Information
in Medical Dialogue: Expert System
and Attention for Labelling

Xinshi Wang and Xunzhu Tang

Abstract Medical dialogue information extraction is becoming an increasingly sig-
nificant problem in modern medical care. It is difficult to extract key information
from electronic medical records (EMRs) due to their large numbers. Previously,
researchers proposed attention-based models for retrieving features from EMRs, but
their limitations were reflected in their inability to recognize different categories
in medical dialogues. In this paper, we propose a novel model, Expert System and
Attention for Labelling (ESAL). We use mixture of experts and pre-trained BERT to
retrieve the semantics of different categories, enabling the model to fuse the differ-
ences between them. In our experiment, ESAL was applied to a public dataset and
the experimental results indicated that ESAL significantly improved the performance
of Medical Information Classification.

Keywords Natural language processing ·Medical information extraction ·
Mixture of experts

1 Introduction

Increasingly, hospitals are prioritizing Medical Dialogue Information Extraction
(MDIE) due to the adoption of Electronic Health Records (EHR). Using MDIE,
detailed medical information can be extracted from doctor-patient conversations.
MDIE can be viewed as a multi-label classification problem made up of different
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classes and their status labels. Specifically, the dataset we used in this paper includes
symptoms, surgeries, tests, and other information.

Medical dialogue information extraction has received an increasing amount of
attention from scholars, and various approaches have been developed. Doctor-patient
dialogues were firstly converted to electronic medical records and the medical dia-
logue information extraction task was introduced, but no specific model to solve the
task was proposed [11]. As a result, 186 symptom codes and their corresponding
statuses were defined in a new dataset and proposed as a new task. By proposing two
novel models, this problem was solved [4]. The first model was a span-attribute tag-
ging model, and the second was a sequence-to-sequence model. Even though a wide
range of symptoms was covered in the dataset, other critical medical information
wasn’t considered. To incorporate more medical information, a novel dataset that
includes four main categories, namely symptoms, surgeries, tests, and other infor-
mation, was introduced [3]. Furthermore, several specific items with corresponding
statuses were predefined. In addition, a novel method of annotation was proposed,
the sliding window technique, so that the dialogues included within the document
could contain the proper amount of information. Meanwhile, a Medical Information
Extractor (MIE) for multi-turn dialogues was developed [3]. A matching mecha-
nism was used to match dialogues between predefined category-item representations
and status representations. The utterance’s category-item information was exploited
to match its most suitable status in a window to aggregate its category-item and
corresponding status information.

With the help of mixture of experts [7–9], we propose a model called Expert
System and Attention for Labeling (ESAL) that extracts various representations of
dialogue to address the different categories within the dialogue. To get category-
specific representations, we first use BERT [2] to extract contextual representations
of the dialogue and feed them to the category-specific BiLSTM [10] expert. After
that, we calculate the attention value between the encoded candidate representation
and the encoded dialogue representation in order to obtain the candidates. In a similar
manner, we calculate the status using the same attention mechanism.

To summarize, this paper makes the following contributions:

• This paper proposes an expert system attention for labelling model for extracting
medical dialogue information. Each specified category can be captured in terms
of the utterance representation.

• In this study, we introduce an expert system that effectively strengthens the under-
standing of doctor-patient dialogue. To facilitate understanding, we also introduce
a learnable embedding layer.

• On a widely used medical dialogue dataset, we perform extensive experiments.
On window-level evaluation, our model achieves an F1 score of 70.00, while on
dialogue-level evaluation, it scores 72.17. On the benchmark dataset, it outper-
forms the state-of-the-art approaches by a significant difference, demonstrating its
effectiveness.



Automatically Extracting Information in Medical Dialogue … 153

2 Related Work

2.1 Medical Dialogue Information Extraction

Medical Dialogue Information Extraction has attracted increasing scholar attention
due to the growing priority of building Electronic Health Records in hospitals [19,
20]. To address this problem, a dataset with 4 predefined categories: i.e, symptom,
test, surgeries, and other information, as well as their corresponding status was pro-
posed [3]. The dataset can be viewed as a multi-label classification problem: there
is a multi-label binary representation of the predefined category with its correspond-
ing status for each doctor-patient dialogue window. The task takes a doctor-patient
dialogue window as input and expects a multi-label binary representation of the cate-
gory status pair as output. Each multi-label binary representation should have length
equal to 355 as it is the number of elements in the Cartesian product of the items
in the 4 categories with their corresponding status. To perform classification on the
entire dialogue, results from each window will be merged to form a new set.

2.2 Mixture of Experts

Mixture of Experts is composed of many separate networks, each of which learns to
handle a subset of the complete set of training cases [7]. The ensemble of individual
experts has proven to be able to improve performance [14, 15]. Then, mixtures
of experts system were converted into a basic building block [16, 17]. Mixture of
Experts has been applied to various fields, such as multi-domain fake news detection
[1] and recommendation systems [8].

3 Approach

In this section, we will elaborate the architecture of ESAL. The architecture is shown
in Fig. 1. ESAL is composed of 4 different stages: (1). Embedding layer (2). Expert
information extraction Layer (3). Self-Attention labelling Layer (4). Output Layer.

3.1 Embedding layer

For each doctor-patient dialogue, we first tokenize its content with Bert Tokenizer
[2]. We then add special tokens for classification (i.e,[cls]) as well as separation
(i.e,[sep]) to obtain a list of tokens X = [[cls], token1, token2, ..., tokenn, [sep]].
We then feed the list of tokens intoBERT to obtainword embeddingV = BERT (X).
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Fig. 1 Model architecture

Similarly, we perform the same operation on the candidates for matching to obtain
the embedding U = BERT (Q) for query Q.

3.2 Expert information extraction layer

With the advantage ofMixture-of-Experts,we employmultiple experts (i.e., network)
to extract category-specific and status-specific representations of the utterance. We
select the bidirectional long short-term memory network (BiLSTM) [10] with atten-
tion mechanism [13] as our individual network. BiLSTM has been widely used to
extract contextual text features.

The equation below denotes the process for encoding each dialogue, where HC [i]
consists of the contextual representation of embedding V specific to category i and
HS consists the status representation of embedding V .

HC [i], HS = Bi LST M(V ), Bi LST M(U ) (1)

For candidates in the form of {Category : I tem − Status}, we denote the Carte-
sian product between item and status given the category as QC . We then feed QC to
the corresponding category expert to obtain the embedding and apply self-attention
to the embedding to obtain a single vector CC that compresses the information of the
entire sequence in a weighted way. The procedures above can be described with the
following equation, where σ = exp(i)∑n

i=1 exp(i)
denotes the softmax operation.
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UC [i],US = Bi LST M(QC), Bi LST M(QS)

AC [i], AS = WUC [i] + b,WUS + b

PC [i], PS = σ(AC [i]), σ (AS)

CC ,CS =
n∑

i

(PC [i]UC [i]),
n∑

i

(PSUS)

(2)

3.2.1 Domain Gate

To incorporate information fromall domains,wepropose a domain gatewith category
representations from all domains as input. The output of the domain gate is the vector
HC indicating the weight ratio of each expert. Let Gate(·) denote the gate operation,
we can describe the domain gate as the following equation:

HC = Gate(
4∑

i=1

HC [i]) (3)

where the Gate(·) operation is a feed-forward network.

3.3 Self-Attention Labeling Layer

We employ self-attention to capture the most relevant candidate features from the
utterance representation, where the candidate representation is treated as a query to
calculate the attention value QC towards the category-specific utterance represen-
tation. Similarly, the candidate status representation is treated as another query to
calculate the attention value toward the original utterances to obtain the most rele-
vant status features from utterance representation. The process can be described with
following equation:

PC [i], PS[i] = σ(CC [i]HC), σ (CS[i]HS)

QC [i], QS[i] =
n∑

j

(PC [i, j]HC [ j]),
n∑

j

(PS[i, j]HS[ j]) (4)

To assign the correct candidates to each dialogue window, we need to match
every QC [i] with the corresponding QS[i]. The category-item pair information and
the status information does not necessarily appear in the same dialogue window,
so we need to take the interactions between utterances among multiple dialogue
windows into consideration. The process can be described with following equation,
where concat denotes the concatenate operation:
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C[i] = σ(QC [i]WQS[i])

Q̂S[i] =
n∑

j=1

(C[i, j]QS[i])

F[i] = concat (C[i], Q̂S[i])

(5)

The output of the equation above gives the candidate information assigned to the
doctor patient dialogue U .

3.4 Output Layer

We use the output from the Self-Attention Labeling Layer, (i.eF[i]) to generate the
output for our model. Using a feedforward network, we can project the utterance’s
representation F[i] onto the 355 corresponding candidate positions, and then apply
a softmax function to select the final prediction label. The process can be described
with the following equations, where f denotes the feedforward network and hθ (x) =

1
1+e−θT x denotes the sigmoid function:

s[i] = f (F[i])
y = hθ (max(s[i])) (6)

3.5 Loss Function

We adopt the cross entropy loss as our loss function. The function is defined as the
following equation:

L = 1

I × J

∑

i

∑

j

−yij ln (ŷij ) + (1− yij ) ln (1− ŷij ) (7)

The yij is a binary encoding that denotes label of j th candidate from the i th label.I

denotes the number of samples and J denotes the number of candidates. ŷij denotes
the ground truth value of label yij .
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4 Experiments

In this section, we will conduct experiments on the MIE dataset [3]. We will firstly
describe the dataset and evaluation metrics. Then we will present results with a case
study of the experiment.

4.1 Dataset Description

Weevaluate ourmodel on a public datasetMIE [3]. An example of a dialoguewindow
is illustrated in Table 1.

The annotation of the slidingwindow dialogue is composed of several labels in the
form of {Category : I tem − Status}. An example of the annotated label is given
in Table 2.

Category contains four main categories (Symptom, Surgery, Test, and Other
Info). I tem stands for the frequent items with respect to each category. There are
45, 4, 16, and 6 items, respectively. The status is defined as doctor-pos, doctor-neg,
patient-pos, patient-neg, or unknown. There are in total 1,120 dialogues, resulting in
18,212 windows. The data is divided into train/develop/test sets of size 800/160/160
for dialogues and 12,931/2,587/2,694 for windows respectively. In total, there are
46,151 annotated labels, averaging 2.53 labels in each window, 41.21 labels in each
dialogue.

Table 1 Dialogue window

Role Dialogue

Patient Doctor, is it premature beat?

Doctor Yes, Do you feel short breath?

Patient No. Should I do radio frequency ablation?

Doctor You should. Any discomfort in chest?

Patient I always have bouts of pain

Table 2 Dialogue annotation

Category Item (status)

Symptom Premature beat (doctor-pos)

Test Electrocardiogram (patient-pos)

Symptom Cardiopalmus (patient-neg)

Symptom Dyspnea (patient-neg)

Surgery Radiofrequency ablation (doctor-pos)

Symptom Chest pain (patient-pos)
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4.2 Evaluation Metrics

We use the precision, recall, and F1 score to evaluate our results. We also follow the
evaluation metrics MIE [3] employed to further analyze the model behavior from
easy to hard. Category performance considers the correctness of the category. Item
performance considers the correctness of the category and the item. Finally, the Full
category takes the category, item, and the status into consideration, meaning all of
them have to be completely correct. We will report the results in both the window-
level and the dialogue level to further examine our results (Fig. 2).

Window-level: The results of each segmented window are evaluated and reported
by the micro-average of all windows in the test set. Category evaluation means a
prediction is assumed correct if the category matches the ground truth value. Item
means a prediction is assume correct if both the category and the item match the
ground truth value. Full evaluation is assumed correct if the category, item, and
status match the ground truth value at the same time.

Dialogue-level: We merge the results with the same category and item of all the
windows in the same dialogue. For category-item pair with multiple status assigned,
we replace the unknown statuswith any other status occurred and replace the negative
status with positive status if occurred (Fig. 3).

Fig. 2 Symptom expert
attention heat map

Fig. 3 Test expert attention
heat map



Automatically Extracting Information in Medical Dialogue … 159

Table 3 Window-level evaluation result, the results for MIE models are adopted from [3]

Models/levels Window-level

Model Category Item Full

P R F1 P R F1 P R F1

Plain-classifier 67.21 63.78 64.92 60.89 49.20 53.81 53.13 49.46 50.69

MIE-classifier-single 80.51 76.39 77.53 76.58 64.63 68.30 68.20 61.60 62.87

MIE-classifier-multi 80.72 77.76 78.33 76.84 68.07 70.35 67.87 64.71 64.57

MIE-single 78.62 73.55 74.92 76.67 65.51 68.88 69.40 64.47 65.18

MIE-multi 80.42 76.23 77.77 77.21 66.04 69.75 70.24 64.96 66.40

ESAL 92.42 89.66 90.26 89.46 83.38 84.85 72.08 70.93 70.00

Table 4 Dialogue-level evaluation result, the results for MIE models are adopted from [3]

Models/levels Dialogue-level

Model Category Item Full

P R F1 P R F1 P R F1

Plain-classifier 93.57 89.49 90.96 83.42 73.76 77.29 61.34 52.65 56.08

MIE-classifier-single 97.14 91.82 93.23 91.77 75.36 80.96 71.86 56.67 61.78

MIE-classifier-multi 96.61 92.86 93.45 90.68 82.41 84.65 68.86 62.50 63.99

MIE-single 96.93 90.16 92.01 94.27 79.81 84.72 75.37 63.17 67.27

MIE-multi 98.86 91.52 92.69 95.31 82.53 86.83 76.83 64.07 69.28

ESAL 96.51 95.05 94.74 92.52 90.88 90.50 73.68 73.10 72.17

4.3 Main Results

The experimental results are show in Table 1. From the table, we can make the
following observations (Tables 3 and 4).

On both the window-level and dialogue level evaluation, Our model outperforms
other models in most metrics. On window-level Full evaluation, our method has
the performance improved by 5.4% compared to the MIE-multi in F1 score. On
dialogue-level full evaluation, our method achieves an improvement of 4.17% in F1
score. These results demonstrate that the ESAL is performing better compared to the
previous state-of-the-art model.

On Window-level evaluation, our model outperforms other models significantly
in Category and Item evaluation. For Category evaluation, Our model has a per-
formance improvement of 16.90% in F1 score. For Item evaluation, our model has
a improvement of 21.65% in F1 score. Also, the improvement on Precision and
Recall are significant. These results demonstrate that ESAL is able to extract a better
domain-specific representation of the utterance.
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4.4 Case Analysis

In this section, we perform an analysis on a specific case to verify the effectiveness of
the mixture of experts. We did a data visualization on the attention value from Symp-
tom expert and Test expert on the same utterance in graphs 2 and 3. Brighter Color
suggests a higher attention value. The label for the utterance is {Symptom: high blood
pressure- doctor-pos, Symptom: heart disease-unknown, Test: electrocardiogram-
pos}. As we can see from graph 2, the highest attention value comes from “Yes”,
which suggests that our Symptom Expert captures the status information correctly.
It also captures the status information for heart disease. Similarly, the test expert
has captured the item and status. These two outputs gave category specific attention
value on different items, thus proved the effectiveness of our model in capturing
category-specific representations.

4.5 Conclusion

In this paper,weproposes an expert systemattention for labellingmodel for extracting
medical dialogue information, which utilizes two techniques: mixture of experts and
an embedding layer. Experimental results on a public available dataset have shown
that ESAL has the ability to capture category specific utterance representations and
has better understanding of doctor-patient dialogue compared to previous models.
For future work, We plan to investigate the interaction between doctor and patient to
handle the pronoun ambiguity.
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Abstract Early diagnosis of Alzheimer’s disease (AD) is essential in preventing
the disease’s progression. Therefore, detecting AD from neuroimaging data such as
structural magnetic resonance imaging (sMRI) has been a topic of intense investiga-
tion in recent years. Deep learning has gained considerable attention in Alzheimer’s
detection. However, training a convolutional neural network from scratch is chal-
lenging since it demands more computational time and a significant amount of
annotated data. By transferring knowledge learned from other image recognition
tasks to medical image classification, transfer learning can provide a promising and
effective solution. Irregularities in the dataset distribution present another difficulty.
Class decomposition can tackle this issue by simplifying learning a dataset’s class
boundaries. Motivated by these approaches, this paper proposes a transfer learning
method using class decomposition to detect Alzheimer’s disease from sMRI images.
We use two ImageNet-trained architectures: VGG19 and ResNet50, and an entropy-
based technique to determine the most informative images. The proposed model
achieved state-of-the-art performance in the Alzheimer’s disease (AD) vs mild cog-
nitive impairment (MCI) vs cognitively normal (CN) classification task with a 3%
increase in accuracy from what is reported in the literature.
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1 Introduction

Dementia is a broad term for various mental pathologies that can cause memory
troubles and brain changes. Alzheimer’s disease (AD) is the cause of approximately
60–80% of dementia cases. People with Alzheimer’s experience many symptoms
that change over the years, reflecting the degree of damage to neurons in different
parts of the brain. This disease starts years before its symptoms are present, and the
speed with which symptoms progress from mild to moderate to severe varies from
one individual to another [4].

The use of neuroimaging modalities has been demonstrated to significantly aid in
the diagnosis of Alzheimer’s disease. Structural magnetic resonance imaging (sMRI)
is the most widely used neuroimaging modality for AD detection and has shown
increased performance in the literature. Moreover, sMRI is capable of capturing grey
matter atrophy related to the loss of neurons and synapses in AD as well as white
matter atrophy linked to the loss of integrity of the white matter tract. Therefore,
atrophy measured by sMRI is considered a robust AD biomarker [6].

According to [16], machine-learning approaches are valuable for diagnosing
Alzheimer’s. In addition, the use of deep learning models has become widespread
for dealing with medical images. Deep learning has gained considerable interest in
Alzheimer’s detection research since 2013, and the number of publications on this
topic has risen drastically since 2017 [6]. However, there are some limitations when
training the model from scratch. The main limitation is that training models demand
a significant amount of labelled data. Another limitation of using deep learning on
sMRI data is that model training requires a large number of computational resources.
It is also challenging to deal with irregularities in the dataset distribution.

Transfer learning is an alternative for training themodel from scratch [3]. Transfer
learning is an important mechanism in machine learning for addressing the issue of
insufficient training data. It attempts to transfer knowledge from the source domain
to the target domain [15].

Class decomposition assists with the issue of irregularities in the dataset distri-
bution by making learning the class boundaries of a dataset more uncomplicated.
The class decomposition aims to divide each class in the image dataset into sub-
classes, with each subclass being treated independently, simplifying the dataset’s
local structure to deal with any irregularities in the data distribution [18].

In this paper, we examine how transfer learning and class decompaction can be
applied for enhanced diagnosis of AD. The essential motivation behind utilising
transfer learning is tackling the challenges of the lack of availability of a large anno-
tated training set. The contributions of our method can be summarised as follows:

• We proposed an efficient transfer learning-based approach for diagnosing
Alzheimer’s from sMRI scans.

• Investigated the influence of transfer learning across two different domains Ima-
geNet data and sMRI images.
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• Weemployed the image entropy strategy to select themost informative information
for training the model when even using a small training dataset to achieve better
performance

• We utilised class decompaction to uncover the hidden patterns within Alzheimer’s
images by dividing classes into sub-clusters and to overcome irregularities in
distribution.

The rest of this paper is organised as follows: Sect. 2 describes the related work, the
methodology is introduced in Sects. 3, and 4 presents our experiments and findings.
Finally, Sect. 5 concludes the work.

2 Related Works

In this section, we aim to present state-of-the-art on how neuroimaging is utilised
to diagnose and monitor Alzheimer’s progression using voxel-based and slice-based
methods, provide an overview of transfer learning approach and its application in the
detection of Alzheimer’s disease and explore how the class decomposition method
can be used to assist in enhancing models performance.

Many studies documented in the literature have assessed structural brain variances
to highlight the atrophy of AD and prodromal AD spatially distributed over many
brain regions. In the following sections, we explore how neuroimaging is utilised to
diagnose and monitor AD progression using voxel-based and slice-based diagnostic
techniques.

Various studies have proposed models that rely on the voxel-based method. These
involve voxel-wise analyses of local brain tissue to determine the pathological modi-
fications in discriminative regions for ADdiagnosis. The voxel-basedmethod utilises
voxel intensity values from whole neuroimaging modalities or tissue components.
Each image demand is standardised to a 3D space [6]. The authors of [6] stated
that approximately 70% of investigations utilising this approach involve a full-brain
analysis. The advantage of a full brain analysis is that the spatial data are com-
pletely integrated, which allows for obtaining 3D data from neuroimaging scans.
The disadvantage is that it causes increasing amounts of data dimensionality and
computational load [2]. Many studies have employed distinct strategies using the
voxel-based approach [17, 19].

The slice-based approach is employed to extract two-dimensional (2D) slices from
3D brain scans. As actual brain tissue is represented in a 3D format (3D brain scans),
utilising a slice-based approach might result in data loss because it reduces volumet-
ric data to 2D representations [2, 6]. Many investigations have utilised distinctive
approaches to extract 2D image slices from 3D brain scans, whereas others have
employed standard projections of the axial, sagittal, and coronal planes. However,
none of these studies achieved a full-brain analysis because the 3D brain scans could
not be converted into 2D slices. Therefore, a whole-brain analysis is not achievable
using the slice-based approach [6]. In [2], the authors stated that using a 2D slice strat-
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egy decreases network complexity and the parameters required to train the model.
At the same time, it has the drawback of spatial dependency loss between nearby
slices. Many studies have employed distinct strategies to extract two-dimensional
slices from 3D brain scans [8–10, 12, 14].

Transfer learning is a key mechanism in machine learning for dealing with the
issue of insufficient training data [15]. It effectively extends knowledge previously
learned in one task to a new task [13]. Another issue that can be addressed using
transfer learning is that many machine learning approaches perform sufficiently only
under a standard assumption: the training and testing dataset have the same feature
space and distribution. Thus, most statistical models need to be rebuilt from scratch
when the distribution changes using newly collected training data which in some
cases could be an expensive re-collect the required training data and reconstruct the
models. Transfer learning between task domains would be desirable to address these
issues and reduce the need and effort to re-collect the training data [13]. According to
[3], transfer learning approaches have shown robust performance because it transfers
knowledge across domains. Moreover, many research used two transfer learning
techniques: (1) employing a pre-trained network as a feature extractor, which is not
demanding to train the network at all and (2) fine-tuning a pre-trained network on
the data under study [11].

Many studies utilised pre-trained networks on the ImageNet dataset as feature
extractors of medical images to overcome the lack of large-scale annotated data
[3]. In [12], the authors proposed a transfer-based learning network that predicts
Alzheimer’s disease using sMRI scans. Authors of [10] suggested a layer-wise trans-
fer learning-based model investigating the relationship between training size and
classification accuracy in the context of transfer learning with intelligent data selec-
tion. The authors determined the most useful two-dimensional slices taken from
three-dimensional sMRI images using an entropy-based method based on calculat-
ing the image entropy using a histogram. The model is very similar to the VGG-19
design. The fully connected layers were adjusted in all four configurations to test the
model. Each configuration involved periodically freezing some blocks and altering
the amount of the training dataset.

The class decomposition method was proposed in 2003 by [18], which is based on
using clustering for pre-processing images. It enables the reduction of the impact of
noisy data, finds hidden patterns within each class, and improves classification accu-
racy. The clustering-based class decomposition approach works by applying cluster-
ing to samples in a class to split it into sub-classes and then re-labelling each cluster’s
instanceswith a new class label [18].Many studies have utilised class decomposition.
Authors of [1] suggested CNN architecture called DeTraC, (Decompose, Transfer,
and Compose) for adapting the class decomposition to medical image classifica-
tion tasks. The suggested model was validated using three distinct datasets: chest
X-rays, digital mammograms, and histological sections of human colorectal can-
cer. To increase the number of samples, data augmentation techniques like flipping,
translation (translating, scaling, and rotation at various angles), colour processing,
and minor random noise perturbation were used. The authors used the three primary
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scenarios of shallow-tuning, fine-tuning, and deep-tuning to evaluate DeTraC with
five different pre-trained CNN networks (AlexNet, VGG16, VGG19, GoogleNet,
and ResNet).

3 Methodology

The architecture of the proposed model is inspired by the [1] work. Our proposed
approach uses sMRI scans from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. Figure 1 illustrates the proposed network using sMRI.

Images for all subjects go through three phases: feature extraction, class decom-
position, and classification. In the class decomposition stage, the data samples of
each class are divided into clusters (sub-classes) to feed into the classification phase.
All sub-classes classified as AD1, AD2, MCI 1, MCI 2, CN 1 and CN 2 are then
assembled back to construct the actual classes (AD, MCI , andCN ) before the class
decomposition process to produce the prediction.

3.1 Selection of the Most Informative Training Dataset

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database provided the struc-
tural magnetic resonance imaging (sMRI) data used in this investigation. Three-
dimensional (3D) Neuroimaging Informatics Technology Initiative (NIFTI) format-
ted sMRI data were used for this study. However, handling 3D images necessitates
powerful computing capabilities and a big memory space. Consequently, employ-
ing two-dimensional sMRI slices as an alternative to three-dimensional images is
one option to lessen processing. Creating 2D slices from 3D sMRI scans produces
a vast number of images, some of which contain noisy data while others are rich
in information. Selecting the most relevant data is essential to the method’s suc-
cess. Therefore, we employed the image entropy method to select the most infor-
mative 2D slices, as opposed to most current techniques, which randomly select
the two-dimensional images for training and testing the model. After extracting all
two-dimensional slices for each subject, we calculate each slice’s image entropy
using the grey-level cooccurrence matrix (GLCM) [7]. It is a statistical technique for

Fig. 1 The architecture of the proposed model consists of AlexNet for feature extraction, class
decomposition for splitting classes into sub-classes, and VGG19 network for classification
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analysing texture, investigates the spatial relationship between pixels and determines
how frequently a combination of pixels appears in an image in a given direction and
distance [5]. The two-dimensional images then sort in descending order based on
the entropy of the images, and images with the greatest entropy values are the most
informative. We pick only twenty slices with the highest entropy from each subject
for training and testing the model. The following formula is applied for calculating
the image entropy of a set of M symbols with probabilities p1,p2,...,pM :

H = −
M∑

i=1

pi log pi . (1)

3.2 Feature Extraction

For feature extraction, we use transfer learning that uses a pre-trained model on
ImageNet to capture the general features from images by freezing some layers of
the pre-trained network and adapting the top layer to be used for AD data. AlexNet
network is used to extract features from two-dimensional images. The top layer of
the pre-trained network is adopted for the three classes AD, MCI and CN. After
extracting the features, we used principal component analysis (PCA) to reduce the
dimensionality of the feature space, which assists in reducing memory requirements
and enhancing the framework’s efficiency. Then, the extracted features were passed
to the cluster to perform the class decomposition.

3.3 Class Decomposition

Applying clustering as a pre-processing phase for each class is known as class decom-
position. This approach was proposed by [18]. The idea of the clustering-based class
decomposition approach is that clustering is applied to all data samples of each class
to divide the class into clusters (sub-classes) and to re-label each cluster’s instances
with a new class label. This technique assists in decreasing the impact of noisy
data, discovering the hidden patterns within each class and enhancing classification
accuracy [18].

Suppose the feature space is illustrated by a two-dimensional matrix (A), where
A is the image dataset, L is a set of class labels, and n, m, and k are the number of
images, features and classes, respectively. A and L can be written as in (2).

A =

⎡

⎢⎢⎣

a11 a12 ..... a1m
a21 a22 ..... a2m
. . . .

an1 an2 ..... anm

⎤

⎥⎥⎦ , L = {l1, 12, ...., lk} (2)
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Class decomposition is applied to partition each class in a dataset (A) into k sub-
classes, where each subclass is treated independently. The new class label will be
a pair (c, k ′), where c denotes the actual (class label) from label space Y , and k ′
represents the (cluster label) to which the sample belongs from the new cluster label
spaceY ′. The class decomposition resulted in a newdataset (B) with new sub-classes.
A and B datasets can be written as in (3).

A =
⎡

⎢⎣
a11 a12 ... a1m l1
a21 a22 ... a2m l1
. . . . .

an1 an2 ... anm l2

⎤

⎥⎦ , B =
⎡

⎢⎣
b11 b12 ... b1m l11
b21 b22 ... b2m l1k
. . . . .

bn1 bn2 ... bnm l2k

⎤

⎥⎦ (3)

3.4 Classification and Class Composition

In the classification phase, VGG19 was employed for the classification task after
the class decomposition, as shown in Fig. 1. We have also experimented with other
pre-trained models to emphasise the effectiveness and robustness of our proposed
method. The top layer of the VGG19 network is adopted for in Y ′. The classifier
was trained on the new dataset (B), which was produced after decomposing the
classes. The classifier constructs a hypothesis h′ and maps samples from class label
space Y to the cluster label space Y ′. The hypothesis h′(x) = (a, b) produces a
prediction consisting of a pair, a class label and a cluster label. The cluster label will
be removed in the composition phase to obtain the actual prediction in the class label
space Y . Then, the sub-classes will be reassembled to construct the predicted classes,
depending on the dataset before decomposition.

4 Results and Discussion

This section provides the experimental results for the model. We executed our deep-
learning approach using Keras with a TensorFlow backend. Our target is to differen-
tiate AD subjects from MCI and CN subjects by analysing sMRI scans.

4.1 Expierments Setup

sMRI scans used in this study are from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (available at http://adni.loni.usc.edu). The dataset used in
the experiments contains 134 three-dimensional T1-weighted magnetic resonance
images, registered to MNI 152 template standard space. Table 1 shows the demo-
graphic characteristics of the subjects.

http://adni.loni.usc.edu
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Table 1 Demographic characteristics of subjects for the ADNI sample

Characteristic CN MCI AD

Subjects 44 45 45

Age range 61.1–89.7 60.4–87.4 62.7–89.7

Gender (M/F) 22/22 26/19 21/24

MMSE range 27–30 19–30 10–28

Fig. 2 Two-dimensional
sMRI slices of Alzheimer’s
disease (AD), mild cognitive
impairment (MCI), and
cognitively normal (CN)
subjects

We utiliseNiBabel andOpenCV-Python libraries to processNIFTI files and obtain
the 2D brain axial plane slices for training and testing the model. In addition, after
extracting all two-dimensional slices, we used the scikit-image library tomeasure the
entropy of the images and then picked only twenty slices with the highest entropy
from each subject. The dataset is divided as follows: 80% of the subjects were
randomly selected for training and validating the model, while the remaining 20% of
the subjects were reserved for classifier testing. Figure 2 shows sample slices from
the ADNI Dataset across the three classes.

We experimented with AlexNet to extract the features from 2D images. First,
the top layers of the AlexNet network are adopted for the three classes. Then, the
network is fine-tuned to extract the features. The selected features are scaled using
a standard scaler and passed to the principal component analysis (PCA) for dimen-
sionality reduction. The extracted features are finally passed to the next step for class
decomposition.

For class decomposition, We use the elbow method to decide the optimal number
of clusters for k-means clustering. After K-means was conducted with k = 2, the
three class labels CN, MCI and AD are divided into six sub-classes. Table 2 shows
the classes’ distributions before and after class decomposition.

4.2 Classification and Class Composition

We aimed first to explore hyper-parameters for the model’s training and determine
which layers we should fine-tune. The performance of the ResNet50 and VGG19
networks was tested using theAdam algorithm to find the optimal number of learning
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Table 2 Classes distribution before and after class decomposition

Class Instances Class Instances

CN 704 CN1 10

CN2 694

MCI 720 MCI1 99

MCI2 621

AD 720 AD1 26

AD2 694

Table 3 Hyper-parameters selection for classification phase

Network Learning
rate

Fine-tuned layers Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

VGG19 0.01 block5 _conv4 92 95 91

Dense 96 97 95

0.001 Block5_conv1 94 96 93

Block5_conv4 96 98 96

Dense 98 99 98

ResNet50 0.01 conv5_block3_1_conv 86 93 86

0.001 conv5_block3_1_conv 97 98 96

dense 94 96 94

rates within (0.01 and 0.001) over 200 epochs and batch sizes of 64. As shown in
Table 3,whenfine-tuning the top two layers, theVGG19network achieved the highest
performance with an accuracy of 98% while ResNet50 achieved 94%. However, the
ResNet50 performs well when fine-tuning the top thirteen layers with an accuracy
of 97%, while the VGG19 network showed a drop in performance when fine-tuning
more layers. As shown in Table 3, theVGG19model achieved the highest accuracy of
98%when training the two top layers onADNI data, whilemodel accuracy decreased
to 94 and 96% as more layers were trained. We notice that transferring knowledge
from some layers outperforms strict training on the target task. For instance, when
fine-tuning the top two layers, the VGG19 performance improved and achieved the
most outstanding outcomes. With Resnet50, on the other hand, we had to fine-tune
more layers in order to get the best results, which demonstrates that knowledge
transferability varies between networks and even between layers. Figure 3 illustrates
the learning curve accuracy and loss for model training and testing obtained using
VGG19.
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Fig. 3 The learning curve accuracy and loss error obtained by VGG19 pre-trained network

Table 4 Comparison of classification performance with state-of-art studies

No. Training size AD versus CN
(%)

AD versus
MCI (%)

MCI versus
CN (%)

AD versus
MCI versus
CN (%)

[10] 2,560 99.4 99.2 99.0 95.2

[14] 1,731 95.4 82.2 90.1 85.5

[9] – 90.4 77.2 72.4

[12] 37,590 95.9 99.3 96.8

98.9 99.1 97.1

Proposed
model

1,715 99.0 99.0 98.0 98.0

4.3 Comparison with Existing Methods

Comparison with previous research findings has been challenging because studies
differ in datasets, data preparation strategies and dimensional reduction methods and
measurements. This section discusses the results in relation to other recent methods
in terms of training size and accuracy. It is noteworthy that the methods’ results are
comparable, even though the studies may employ different experimental setups.

The training size was calculated for all the reported methods based on the sample
used in training these models. For example, our work used 2,680 images, which
were divided into 80% for training and validation and 20% for classifier testing,
resulting in a training size of 1,715. Table 4 reports the results of the binary and
ternary classifiers of the model. To further validate our proposed architecture, we
adapted the same architecture for a three-way binary classification by changing the
final classification layer.

We compared our model with four other state-of-the-art models; the results for
these models are what is reported in their papers. The results in Table 4 shows that
our model ternary classification outperforms the other approaches with an accuracy
of 98%, a 3% improvement over the state-of-the-art performance, which archived
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95.19, and 85.53. Furthermore, except for [10], our model’s binary classification
results outperformed the other approaches. Compared to this study, our model used
a smaller training size (1,715 images) extracted from fewer subjects.

Our proposed model utilises transfer learning and class decomposition. Transfer
learning deals with the challenge of the limited availability of annotated data while
using class decomposition enhances model performance because it makes learning
the class boundaries of a dataset uncomplicated and, as a result, can deal with any
irregularities in data distribution. Using transfer learning with class decomposition
leads to better accuracy than other state-of-the-art methods. Class decomposition
makes learning the class boundaries of a dataset uncomplicated and deals with any
irregularities in data distribution. It divided the Alzheimer’s classes into six new
subclasses, and this assisted in revealing the hidden patterns in each class and made
more accurate predictions.

5 Conclusion

In this paper, we propose amodel that integrates transfer learningwith a class decom-
position approach for diagnosing Alzheimer’s from structural sMRI images. In addi-
tion, we use the entropy-based approach to select the training dataset that contains
the most informative data. We use the VGG19 ImageNet-trained weights network
to obtain highly accurate results. We compared our findings to those of four other
cutting-edge procedures using the ADNI dataset. With an accuracy of 98.3%, our
model ternary classification outperforms the other approaches, representing a 3%
improvement over the state-of-the-art performance. In addition, except for [10], our
model outperformed the others in the binary classification task.

For future work, we will conduct more analysis to investigate the impact of
each component of our method (namely, class decomposition and the extracted fea-
tures). Also, the two-dimensional slices have limitations in covering all of the brain’s
regions, therefore causing information loss. Other approaches for image segmenta-
tion can be considered in future work. Additionally, we aim to combine the model
with other data modalities for the diagnosis of Alzheimer’s disease, such as genomic
data and Electronic Health Records. We seek to use the model to discover the hidden
patterns in the mild cognitive impairment (MCI) category to reveal the conversion of
mild cognitive impairment (MCI) patients to Alzheimer’s disease by discriminating
MCI levels based on cognitive decline. We also aim to extend the model architecture
to be more scalable and also to include other factors that can assist in diagnosing
Alzheimer’s disease, such as the Mini-Mental State Examination (MMSE) score and
age, which could increase model performance.
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Knowledge Augmentation for Early
Depression Detection
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Abstract Individuals continue to share theirmental health concerns on socialmedia,
providing an avenue to rapidly detect those potentially in need of assistance. While
users of immediate need can be recognized with relative ease, early-stage disorder
users in the boundary region pose a greater challenge to detect. The minimal posting
histories of such users further complicate proceedings. However, these same bound-
ary region users would benefit greatly from timely treatment; hence, detecting their
mental health status is of utmost need. Additionally, pointers to identify the type of
depression could be of great help. Augmenting knowledge for low posting users can
help to solve this problem. We propose an NLP based method ‘STBound’ that intel-
ligently determines the optimal region for knowledge augmentation. It answers three
crucial questions: when?, for whom? and how much? to augment—to resolve this
imbroglio. Our proposed selective knowledge augmentation method contributes to
early depression detection performance improvement by an average of 11.9% in F1
score. Further, this approach shows promising performance enhancement of 12.1%
in F1 score for the critical task of separating these boundary region users with bipolar
depression. STBound identifies those depressed users in the boundary region who
would otherwise go unidentified.
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1 Introduction

Depression, amental state resulting in lackof hope anddejection alongwith persistent
sadness [1], is a global health concern. Severe depression may result in self-harm,
including suicide, and is also a major cause of disability worldwide. Around 5%
[1] of the world population is estimated to be suffering from depression with 80%
of those afflicted between 16 and 65years of age, namely the working population.
Thus, in addition to a social health issue, depression directly impacts the overall
economy [2]. For at least the aforementioned reasons, early depression detection
is of utmost importance. Unfortunately, the criticality to address depression only
further increased recently due to reduced social interactions and lifestyle changes
caused by the COVID-19 pandemic [3] resulting in a 25% increase in anxiety and
depression [4].

A significant percentage i.e., around 16–20% of total depressed individuals
qualify for bipolar disorder, and the median age of onset for bipolar disorder is
25years [5]. Considering the high risk of unresolved morbidity associated with
bipolar disorders, there is a pressing need to separate bipolar disorders in early
stages.

Social media provides users venues to express their thoughts and feelings in
the form of written posts. As mental health is a key factor leading to changes in
textual patterns and articulations [6], noting these changes can contribute to identi-
fying potential depression [7]. Unfortunately, existing depression detection systems
generally require a substantial volume of data to predict [7, 8], resulting in depres-
sion being detected only at a later stage, potentially increasing disease severity.
Complicating detection, many users have low posting activity, either due to their
low posting frequency or simply being new to a platform. We refer to these users
as low-resource users and focus our attention towards them, believing that early
detection, irrespective of the number of posts, can help a larger population seg-
ment. We further empirically and mathematically define low-resource users with
extensive analysis on Reddit Self-reported Depression Diagnosis (RSDD) dataset
[8]. Usually, bipolar depression in case of low-resource users cannot be differen-
tiated from major depression [9]. This results in sub-optimal treatment and poor
outcome in this case [10]. The treatment for bipolar depression is significantly dif-
ferent. Hence, separating it at an early stage in such low-resource users could prove
to be crucial.

Broadly speaking, our focus is on identifying low-resource users on the brink,
namely those users in the boundary region of depression with a low posting fre-
quency. We propose an NLP based method to intelligently identify low-resource
social media users, potentially suffering from depression. The proposed method
focuses on early depression detection and provides pointers to separate users with
bipolar disorder. Depression detection is based on textual social media posts. These
linguistic expressions by users are used to detect their mental state. Although, as
described later, others have focused on similar detection, our primary attention is on
those hard-to-detect users with low number of postings.
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Our contributions are as follows:

• We identify low-resource users in need of help with detailed empirical and math-
ematical analysis and establish a lower bound on the δ parameter for correct re-
evaluation of depressed users in the boundary region.

• We develop an approach to identify low-resource, at-risk, boundary users on the
brink of depression.

• We demonstrate that our proposed intelligent and selective knowledge augmenta-
tion. significantly increases early depression detection accuracy.

2 Related Work

Increasing social media use has created additional venues for continuous mental
health monitoring [8, 11–15]. A number of forums exit that help users with mental
health problems via counselling by moderators. Identifying users with such imme-
diate need is crucial in this process. Thus, triaging with high accuracy is necessary
for prioritizing users to seek timely help [16–18]. Social media posts provide timely
linguistic cues for mental health monitoring [6]. Researchers also worked on identifi-
cation of linguistic cues for depression detection based on lexicons [19]. Depression
is evident from social media behavior which comprises of use of language over
time and sequence of posts [20]. Interestingly, language use itself is a prominent
indicator of depression [21]. Typically, neural network based methods deliver better
performance in identifying depressed users based on language usage [8].

RSDD dataset is an extensive self-reported depression diagnosis dataset con-
structed from Reddit [8]. Considering the relevance of timestamps of postings and
resulting dynamic behavior, temporal cues were identified on the RSDD dataset [13].
While the RSDD dataset contains depression labels, Self-Reported Mental Health
Diagnoses (SMHD) is a comprehensive dataset which provides self-reported diag-
nosis for bipolar and major depression along with other mental health conditions
[15]. It contains Reddit posts of large set of control users, and a few thousand bipo-
lar and depressed users. Dataset with diverse-mental health conditions can provide
understanding into mental health related language which can be further leveraged to
obtain crucial insights intomental health conditions [15]. Researchers alsoworked on
extraction of medical concepts from large-scale datasets [22]. Datasets with mental
health posts and corresponding human-written summaries have been constructed to
facilitate mental health research [23]. RSDD and SMHD datasets have been widely
used for performance evaluation of different methods.

Bipolar Disorder (BD) is the 10th most common cause of frailty in young pop-
ulation [24] and has triggered serious consequences. It affects life expectancy by
9–17years [24]. It is a mental disorder with high prevalence, but can be misdiag-
nosed as a major depressive disorder [25]. 40% of patients with bipolar disorder are
firstmisdiagnosed asmajor depressive disorder [24] and 17%of patients diagnosed as
major depressive disorderwere found to have undiagnosed bipolar disorder [26]. This
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makes it exceedingly important to separate users with bipolar disorder. Researchers
worked on detecting bipolar disorders using neural network and radial basis function
[27]. Different Machine Learning techniques like Decision Trees, Random Forest,
SVM, Naïve Bayes, Logistic Regression and KNN were tried out to separate users
with bipolar disorder [28].

On the other hand, it is also important to detect depression early to provide timely
help before situation slips out of control. Apart from a major focus on a large num-
ber of posts, few researchers worked on early depression detection [17, 29, 30].
Researchers also proposed neural models to simplify medical text for consumption
of general users using medical social media text [31]. Transformer based techniques
were explored for applications in various fields like mental health [32]. Effectively
adjusting sensitivity of classifiers can contribute to significant performance leap irre-
spective of classification methods [33].

Attempts thus far use large volumes of data. Limited exploration has been carried
out on detection of depression aswell as bipolar disorder in low-resource users clearly
underlining the research gap.

3 Research Questions

Identifying users in the boundary region remains a challenge particularly with early
depression detection in low-resource users. Prior attempts assumed a vast number
of individual posts, failed to focus on detecting boundary region users, and seldom
capitalized on disorder specifics, e.g., bipolar disorder. Specifically, we address the
following research questions:

RQ 1:Which users can be termed as low-resource users?
RQ 2: Is it possible to leverage knowledge augmentation to improve early depres-
sion detection in case of these low-resource users?
RQ 3: Can boundary region re-evaluation help in deciding type of depression?

4 Method: Soft Thresholding for Boundary Region Users
(STBound)

At-risk, boundary-region users are currently not classified as depressed and in need
of immediate attention, but rather, are kept under watch. Their immediate ongoing
actions are potentially indicative of their inclinations on the depression spectrum.
Considering limited future activity of these users can help determine their mental
health status.

We propose an intelligent, selective and timely augmentation for the boundary
region users. This approach uses the Soft Thresholding based Boundary detection
method (STBound) to identify low-resource users on the brink of depression. We
clearly define low-resource users by conducting through empirical study and math-
ematical modelling on RSDD dataset as depicted in Fig. 1.
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Fig. 1 Defining low-resource users

Figure1a shows F1 score and (b) shows gain in F1 score per unit additional post
for CNN. The red colored box in Fig. 1b is the low-resource user zone marked from
number of postswhere rate of change in gain in F1 is highest to number of postswhere
rate of change in gain in F1 is lowest addressing RQ 1. From this behavior depicted
in Fig. 1 which is common across all machine learning methods on RSDD dataset we
infer the following. Users with 50–200 posts can be termed as ‘low-resource users’
where intelligent use of information yields better results.

The above inference is for RSDD dataset and bounds might vary with a different
dataset. To simulate low-resource users with variable number of posts we create a
distribution identical to the original data distribution but bounded in established low
resource user bounds. These bounds are defined considering the region of high gain
per unit additional posts as per Fig. 1. For RSDD dataset we scale it by considering
20% of posts of each user and low-resource user bounds of 50 and 200. We decide
the scaling percentage to be 20% as 20% of median number of posts lies perfectly
between 50 and 200. As a result, we have successfully simulated a dynamic scenario
of low-resource users with each user having number of posts between 50 and 200.

4.1 Hard Threshold Line

A hard threshold line is an empirically generated dynamic threshold separating users
into depressed and not depressed categories. It is obtained by fitting linear regression
to empirically determined threshold values on first 100, 200, 300 and 400 posts.
The threshold values are obtained from validation set as per Eq. (1) where F1[i] is
the corresponding F1 score for threshold th[i]. Figure2 depicts the distribution of
users around respective hard threshold lines for methods SVM, LR, CNN and BERT,
providing insights regarding users in the boundary region.

thideal = th[argmax
i

(F1[i])] (1)
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Fig. 2 Distribution of users on 20% data with respect to the established threshold line for respective
methods

4.2 Soft Threshold Line

A soft threshold line, however is a variable line that determines the optimal region
encompassing boundary users. It is obtained by subtractingβ from the respective hard
thresholds. Hard and soft threshold lines are specific to method under consideration.
Hard threshold line helps us to get the threshold value dynamically—solely as a
function of the number of posts a user has. All the users with score greater than their
respective dynamic thresholds are classified as depressed users. In this case, the focus
is on identifying the region where users are probably at risk but are not identified
due to information inadequacy. Here soft threshold line plays the deciding role.

4.3 Boundary Region

Boundary region is defined as the region between hard and soft threshold lines. Users
with scores lying in this boundary region are ‘at-risk boundary region users’. These
users are re-evaluated with intelligent knowledge augmentation. Algorithm 1 gives
the method for classifying a user based on selective re-evaluation and controlled
increase in user’s posting data. It is carried out by increasing δ value step-wise until
a termination criteria, i.e., δ_depth_count , is reached.

4.4 System Architecture

Figure3 depicts an overview of the system architecture where user layer provides
input to low resource user selection layer. The knowledge augmentation layer aug-
ments the input from previous layers and provide it to intelligent processing and
learning layer. The output and decision layer performs early depression detection for
boundary region users.We evaluated STBoundwith all fourmethods under consider-
ation. STBound identifies low-resource users on the brink of depression successfully.
Further, it improves early depression detection accuracy significantly with δ% con-
trolled increase in user posts.
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Fig. 3 System architecture

Algorithm 1 STBound algorithm
function evaluate(user , δ, β, i)

i ← i + 1
if i == δ_depth_count then

return(0)
� User is not depressed

else
posts ← sim_low_res(user , δ)
l ← len(posts)
hard_thr ← get_thr(method, l)
so f t_thr ← hard_thr − β

score ← method(posts)
if score > hard_thr then

return(1)
� User is depressed

else if score > so f t_thr then
eval(user , δ + inc, β, i)

� Boundary user
else

return(0)
� User is not depressed

end if
end if

end function

5 Analysis of Proposed Model

Let the initial number of posts of a low-resource user be p. We are adding δ% extra
posts for re-evaluation. Define:

γ = 1 + δ (2)
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Hence, the total number of posts for re-evaluation are:

p + pδ = pγ (3)

We model the score of the ML method as a function of number of posts of the
low-resource user by:

y = 1 − 1

e
x
a

(4)

where a is the depressed user behavior parameter. Here, the output score of themodel
is zero when the number of posts is zero and y→ 1 as the number of posts→ ∞. This
curve is the most suited model for score as per empirical data. Intuitively, previously
depicted sigmoid modeling for F1 score (Fig. 1a) also makes sense as even though
the score increases with increase in posts for every user, its reflection in F1 score
will occur late, i.e., after significant data are obtained.

Define the hard threshold line by:

y = t ‘x + k (5)

Proposition 1 For a low-resource user who is depressed but is currently in the
boundary region, lower bound on γ for extra posts needed for correct re-evaluation
can be stated as:

γ >
1 − k

t ‘ p
+

W−1

(
−e− (1−k)

at‘

at ‘

)
p
a

(6)

where W−1 is the lower branch of Lambert function and p is the number of posts of
the low-resource user.

Proof For the low-resource user to be classified as depressed after δ% increase in
posts, score by the model for p(1 + δ) = pγ posts should be greater than corre-
sponding threshold. Hence:

1 − 1

e
pγ
a

> t ‘ pγ + k (7)

Therefore, (
e

−p
a

)γ + (t ‘ p)γ + (k − 1) < 0 (8)

Equation ax + bx + c = 0 can be expressed as:

ln(a)
(
−x − c

b

)
e
ln(a)

(
−x−

c

b

)
= ln(a)

a
−c
b

b
(9)
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This is of form zez = k and can be solved using Lambert’s W function: z = W (k).
Hence we have,

ln(a)
(
−x − c

b

)
= W

(
ln(a)

a
−c
b

b

)
(10)

Hence,

x = −c

b
−

W

(
ln(a)

a
−c
b

b

)

ln(a)
(11)

The roots of the equation on the left in (8) can be found by substituting a = e
−p
a ,

b = t ‘ p and c = k − 1 in (11):

root = 1 − k

t ‘ p
+

W

(
−e− (1−k)

at‘

at ‘

)
p
a

(12)

Lower bound solution can be expressed using lower branch of Lambert’s W function
W−1 as:

γ >
1 − k

t ‘ p
+

W−1

(
−e− (1−k)

at‘

at ‘

)
p
a

(13)

W−1(.) can be evaluated using the Newton’s method:

w j+1 = w j − w j ew j − z

ew j + w j ew j
(14)

where w0 for the lower branch can determined using Lajos Lóczi’s formulation [34].

6 Experimentation

6.1 Datasets

TheRSDDdataset [8] is a comprehensive dataset suitable for experimentation related
to depression. It was created by annotating users from Reddit dataset1 which is
available publicly. RSDD is an extensive dataset spanning from Jan 2006 toOct 2016.
Using RSDD, we simulated low-resource platform users to facilitate experiments

1 https://files.pushshift.io/reddit/.

https://files.pushshift.io/reddit/
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related to early depression detection. RSDD has 107,274 control and 9210 diagnosed
users. Each user has 969 posts on an average with a mean length of 148 tokens. The
dataset has three components: training, validation and testing. The SMHD dataset
consists of Reddit posts of users who have claimed to have been diagnosed with one
or several of nine mental health conditions (‘diagnosed users’), and matched control
users. It is a large dataset that covers diverse mental health conditions. It has a total
number of 385,476 users consisting of 6434 bipolar, 14,139 depressed and 335,952
control users. On an average, control users have 310 posts, depressed users have 162
posts and bipolar users have 158 posts. We used this dataset to evaluate STBound
performance to separate bipolar disorder by selecting depressed and bipolar users.

6.2 Ethics and Privacy

Personalized healthcare data are sensitive. The data used are anonymized and due
care is taken to minimize the risk while conducting experiments. The RSDD dataset
contains the posts those are publicly available for academic use. All necessary care
with reference to ethics and privacy was taken [8]. In this context, data were stored
on secure servers, and no attempts were made to map, associate or re-identify users.
Similar care was taken in the case of SMHD dataset also [15]. We refrain from
making any details of these data publicly available. No attempt what so ever to link
users to social media accounts was made.

6.3 Experimental Setup

Weevaluate STBound on simulated low-resource users fromRSDDdataset in combi-
nation with both traditional and connectionist machine learningmethods.We consid-
ered lexical bag-of-words models Logistic Regression (LR) and SVM, conventional
CNN and transformer based Bidirectional Encoder Representations fromTransform-
ers (BERT).

To assess the performance improvement of neural network based models over
traditional machine learning models, we first evaluate the performance of STBound
for LR and SVM. For these models, lexical bag-of-words (BoW) features were
used as input. To minimize noise, we empirically determined a minimum document
frequency of 12 for words to be considered. We fit the BoW tokenizer on the training
set. For the CNNmodel, we had an embedding size of 50 per token. Additionally, the
model had two Convolution1D layers with 25 filters, filter length of 3 and Rectified
Linear Unit (ReLU) activation function. The model then had a 50 neuron dense layer
and an output layer with Softmax activation function. A learning rate of 0.001 and 5
epochs led to the best results on the validation set.

RSDD has 969 posts per user on an average which results in memory con-
straints while running BERT. Considering these limitations, we considered 310x128
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tokens per user and experimented with the following BERT [35] models: ‘small
bert/bert_en_uncased_L-4_H-512_A-8’ and ‘small_bert/bert_en_uncased_L-2_H-
128_A-2’. The first model is more intricate and hence we could accommodate only
175x128 tokens. Acknowledging this trade-off, we infer that the latter gives best
results. Note that here L denotes the number of layers, i.e., transformer blocks. Also
note that H denotes the hidden size while A denotes the number of self-attention
heads. A learning rate of 2e − 5 and 3 epochs led to the best results on the valida-
tion set.

6.4 Language Study

We conducted detailed language analysis to identify specific language characteristics
whichdistinguish low-resource users fromothers.Weobserve that low-resource users
have significantly higher usageof self-referencingphrases [36], i.e., 13%higherwhen
calculated per unit sentence than others. Additionally we also notice significantly
(i.e., 5%) lower occurrence of depression indicative phrases in low-resource users
when compared with other users. Here we calculated depression indicative phrases
[37] per unit sentence. Lower occurrence of depression indicative phrases in low-
resource users justifies the need for thresholding and augmentation.

7 Results and Analysis

We have evaluated STBound on simulated low-resource users from RSDD dataset in
combination with lexical bag-of-words, conventional CNN-based and transformer
based ML methods. For comparison as a baseline, we obtain results on simulated
low-resource users using dynamic thresholding. Here, users are clearly classified
into depressed or not depressed using the obtained hard threshold. We use F1 score,
Precision and Recall for comparing performance across different methods. We have
focused on F1 score as Precision and Recall are equally important for depression
detection. Table1 shows the results of STBound with SVM, LR, CNN and BERT
for different combinations of δ and β values. It adds δ% data to simulated low-
resource users which satisfy the definition of boundary users. The boundary in this
case is defined using the value of β. The variation in β values across models can be
attributed to the differences in training algorithms and their respective parameters.
Hence, optimal boundary region is determined separately for each method.

The highest F1 values are represented in bold in Table1. We note that in Table1,
the first row with δ and β value equal to zero is our baseline and all performance
improvements are represented with respect to it. We obtain an F1 of 0.359 for SVM
for a δ value of 0.4 and β value of 0.002. Similarly we obtain an F1 of 0.421 for LR
for δ value of 0.4 and β value of 0.3. In case of CNN, δ value of 0.4 and β value
of 0.01 give the best F1 of 0.509. Further, in case of BERT, δ value of 0.4 and β
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Table 2 Efficacy

δ SVM LR CNN BERT

0.1 0.467 0.284 0.448 0.379

0.2 0.389 0.258 0.404 0.356

0.3 0.343 0.232 0.374 0.356

0.4 0.296 0.213 0.353 0.338

value of 0.15 give the best F1 of 0.479. Here an important point to note is that BERT
model was trained on limited data of each user due to memory constraints.

To compare CNN and BERT, we ran experiments in identical setups. Here, we
consider 310x128 tokens per user for training and testing both models. From this we
infer that BERTmodel outperforms CNNmodel in the identical setup. Experimental
findings and analysis illustrate significant improvement in the F1 values with selec-
tive incorporation of boundary region re-evaluation with knowledge augmentation
addressing RQ 2. An increase in δ value leads to an increase in F1. Similar trends are
observed with an increase in β values, until a saturation level is reached. For exam-
ple, for CNN, as β approaches 0.020, the results start saturating. Similar trends were
observed across all themethods for the 18β values evaluated. This indicates a relative
separation between ‘at-risk boundary’ users and users who are not depressed. Addi-
tionally, for higher δ values, an increase in β value leads to greater improvements.
With an optimal selection of δ and β values, we can get up to 8.51% improvement
for SVM, up to 11.84% improvement for LR, up to 14.13% improvement for CNN
and up to 13.51% improvement for BERT.

E f f icacy = F1(βsaturation) − F1(β0)

δ ∗ F1(β0)
(15)

The lower δ and β values with higher performance gain can help to identify the
optimal boundary condition. We define efficacy as percentage improvement per unit
δ. The obtained efficacy values can be found in Table 2. For SVM and LR the highest
efficacy values are 0.467 and 0.284 respectively. These values are observed at δ

value 0.1. In case of CNN and BERT the highest efficacy values are 0.448 and 0.379
respectively and are also observed at δ value 0.1. In a real life setting, if we encounter
boundary users with slow posting rate then optimal δ values can be determined using
an efficacy index based on the urgency.Highest efficacy points can help us to fine-tune
boundary region parameters.

8 Bipolar Verses Depressed

We extended STBound to identify unipolar and bipolar depression. Misdiagnosis
of bipolar depression is common. It is misdiagnosed as major depressive disorder
(unipolar depression).Unipolar depression is treated by antidepressantswhile bipolar
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Fig. 4 STBound for separating Bipolar from Depressed users

Table 3 STBound on separating Bipolar from Depressed. † Hard threshold, ‡ STBound, on low-
resource users
Method F1 Precision Recall Method F1 Precsion Recall Method F1 Precsion Recall

LR 0.316 0.353 0.286 CNN 0.049 0.518 0.026 BERT 0.321 0.394 0.270

LR† 0.349 0.349 0.349 CNN† 0.482 0.480 0.485 BERT† 0.495 0.389 0.680

LR‡ 0.414 0.333 0.547 CNN‡ 0.524 0.378 0.854 BERT‡ 0.539 0.381 0.921

depression requires mood stabilizers [38]. It is important to identify bipolar depres-
sion because if missed, it will be treated like unipolar (with antidepressants) leading
to increase inmaniac episodes in patients—aggravating risks of self-harm and suicide
multi-fold [39].

In early detection scenarios we have very limited data to detect bipolar depression.
Higher percentage of bipolar cases lie in the boundary region defined by STBound.
Re-evaluation of these users can help us to improve the classification of users in low-
resource scenarios. Figure4 depicts the distribution of users and use of STBound for
separating bipolar and depressed users. Table3 gives the performance of LR, CNN
and BERT in separating bipolar disorder using hard threshold and using STBound.
It is observed that performance of CNN gets a sharp leap using hard threshold. The
performance further improves by 8.7%by use of STBound. In case of LR, after initial
improvement obtained using hard threshold, STBound provides additional improve-
ment of 18.6%. Similar trends are observed in case of BERT where after initial F1
score improvement, STBound provides 8.9% additional improvement. These results
are indicative of possible use of STBound or it’s enhancement to separate users with
bipolar disorder addressing RQ 3. Though the improvements are realized at the cost
of precision, the significant leap is definitely conclusive and promising for complex
problem of separating users with bipolar depression.

9 Conclusion

We addressed RQ1 by defining low resource users empirically and mathematically.
Depression detection for boundary region low-resource users is always an important
and challenging task. The delay in depression detection for such users may result in
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delay in treatment and severe after effects. To address this issue, STBound performs
selective intelligent knowledge augmentation and identifies boundary regions with
higher precision. It further improves the accuracy of depression detection for the
users in the boundary region by effective increase in δ value. The proposed method
of selective and intelligent knowledge augmentation fetches improvement in overall
F1 score on an average by 11.9% across all methods addressing RQ2. This substan-
tial improvement helps in identifying the depressed boundary users on the brink of
depression those otherwise would have gone unidentified. Early depression detection
becomes even more crucial when it comes to separating bipolar disorder. Failure to
separate bipolar disorder may result in delay in providing right treatment and further
worsening the user’s condition. STBound also improves the F1 score of separation
of bipolar users by 12.1% addressing RQ3.

As a future work, other re-evaluation techniques can be combined with STBound.
Fitting a curve with variable β values can optimally encompass the boundary region
for further improvements. STBound with some contextual inputs can lead to promis-
ing techniques to separate bipolar disorder. Additionally, distribution of expressions
over the time period can be used along with STBound to detect bipolar disorder in
case of comorbidity.
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Deep Annotation of Therapeutic
Working Alliance in Psychotherapy

Baihan Lin, Guillermo Cecchi, and Djallel Bouneffouf

Abstract The therapeutic working alliance is an important predictor of the outcome
of psychotherapy treatments. In practice, the working alliance is estimated from a
set of scoring questionnaires in an inventory that both the patient and the therapist
fill out. In this work, we propose an analytical framework of directly inferring the
therapeutic working alliance from the natural language within the psychotherapy
sessions in a turn-level resolution with deep embeddings such as the Doc2Vec and
SentenceBERT models. The transcript of each psychotherapy session can be tran-
scribed and generated in real-time from the session speech recordings, and these
embedded dialogues are compared with the distributed representations of the state-
ments in the working alliance inventory.We demonstrate, in a real-world dataset with
over 950 sessions of psychotherapy treatments in anxiety, depression, schizophrenia
and suicidal patients, the effectiveness of this method in mapping out trajectories of
patient-therapist alignment and the interpretability that can offer insights in clini-
cal psychiatry. We believe such a framework can be provide timely feedback to the
therapist regarding the quality of the conversation in interview sessions.

1 Introduction

A fundamental concept in psychotherapy is the working alliance between the ther-
apist and the patient or, more generally, the client seeking help [1]. The alliance
involves several cognitive and emotional components of the relationship between
these two agents, including the agreement on the goals to be achieved and the tasks
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to be carried out, and the bond, trust and respect to be established over the course of
the therapy. Qualitative methods to quantify therapy outcomes led to the conclusion
that the strength of the alliance is one of the main factors that predict success [26].
Operational methods to quantify the alliance rely of evaluative reports by patients
and therapists of whole sessions, typically limited to point-scales valuation [6]. This
approach does not make use of the nuances afforded by natural language, is time-
consuming and difficult to follow through systematically outside of research studies;
even more so is the evaluation of individual dialogue turns over the course of each
session.

Here we present an approach to quantify the degree of patient-therapist alliance
by projecting each turn in a therapeutic session onto the representation of clinically
established working alliance inventories, using language modeling to encode both
turns and inventories. This allows us not only to quantify the overall degree of alliance
but also to identify granular patterns its dynamics over shorter and longer time scales.
We evaluate both qualitatively and quantitatively the effectiveness of this inference
method in providing clinical insights for psychotherapy strategies in this work and
improving the classification or diagnosis capability of deep learningmodels to predict
psychiatric conditions from therapy transcripts in a laterwork [17]. Lastly, we discuss
how our approach may be used as a companion tool to provide feedback to the
therapist and to augment learning opportunities for training therapists (Fig. 1).

2 Problem Setting

2.1 Working Alliance Analysis

Algorithm 1Working Alliance Analysis (WAA)
1: for i = 1,2,· · · , T do
2: Automatically transcribe dialogue turn pairs (Sp

i , S
t
i )

3: for (I pj , I
t
j ) ∈ inventories (I p, I t ) do

4: Score W pi
j = similarity(Emb(I pj ), Emb(Sp

i ))

5: Score Wti
j = similarity(Emb(I tj ), Emb(Sti ))

6: end for
7: end for

Thefigure above is an outline of the analytic framework.We take the full records of
a patient, or a cohort of patients belonging to the same condition.We either use it as is
before the feature extraction, or we truncate them into segments based on timestamps
or topic turns. As you can see, the original format is in pairs of dialogues. We can
extract the features in three ways: first, we can use the full pairs of dialogues; second,
we can only extract what the patient says; or the third option, we only extract what
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Fig. 1 Analytical pipeline of working alliance analysis

the doctor says. The three feature formats all have their pros and cons. The dialogue
format contains all information, but the intents within the sentences come from two
individuals, so they might mix together. The patient format contains the full narrative
of the patients, which is usually more coherent, but it’s only part of the story. The
therapist format, which people in computational psychiatry also believes to be some
kind of semantic labels of what the patient feels can be informative, but they can also
be sometimes too simplistic.

When we have the features, we compare the working alliance inventories with
the embeddings. Algorithm 1 outlines the process. During the session, the dialogue
between the patient and therapist are transcribed into pairs of turns (such as the
example in Fig. 2).We denote each patient response turn as Sp

i followed by a therapist
response turn Sti . They are treated as a dialogue pair. The inventories of working
alliance questionnaires also come in pairs: I p for the patient (or client), and I t

for the therapist. They each consist of 36 statements. We embed both the dialogue
turns and the inventories with deep sentence or paragraph embeddings, and then
compute the cosine similarity between the embedding vectors of the turn and its
corresponding inventory vectors. With that, for each turn (either by patient or by
therapist), we obtain a 36-dimension working alliance score. We will describe in
Sect. 3.1 the specific scales of our inferred working alliance scores which introduces
interpretable information into our framework.

Here are a few downstream tasks and user scenarios that can plugged to our
analytical frameworks. We can either use these extracted weighted topics to inform
whether the therapy is going the right direction, whether the patient is going into
certain bad mental state, or whether the therapist should adjust his or her treatment
strategies. This can be built as an intelligent AI assistant to remind the therapist of
such things.
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Fig. 2 Example dialogue from psychotherapy transcripts

2.2 Psychotherapy Transcript Dataset

The Alex StreetCounseling and Psychotherapy Transcripts dataset1 consists of tran-
scribed recordings of over 950 therapy sessions between multiple anonymized ther-
apists and patients. This multi-part collection includes speech-translated transcripts
of the recordings from real therapy sessions, 40,000 pages of client narratives, and
25,000 pages of reference works. These sessions belong to four types of psychiatric
conditions: anxiety, depression, schizophrenia and suicidal. Each patient response
turn Sp

i followed by a therapist response turn Sti is treated as a dialogue pair. In
total, these materials include over 200,000 turns together for the patient and thera-
pist and provide access to the broadest range of clients for our linguistic analysis of
the therapeutic process of psychotherapy.

3 Methods

3.1 Working Alliance Inventories

TheWorking Alliance Inventory (WAI) is a set of self-report measurement question-
naire that quantifies the therapeutic bond, task agreement, and goal agreement [6, 21,
25]. Since the original 12-item version [25], the inventory has used parallel versions
for clients and therapist with good psychometric properties and helped establish the
importance of therapeutic alliance in predicting treatment outcomes. The modern
version of the inventory consists of 36 questions (Fig. 3), and the participant is asked
to rate each item on a 7-point scale (1 = never, 7 = always)[21]. The WAI aims
to (1) measure alliance factors across all types of therapy, (2) document the rela-
tionship between the alliance measure and the corresponding theoretical constructs
underlying the measure, and (3) related the alliance measure to a unified theory of
therapeutic change [7].

Operationally, the goal is to derive from these 36 items three alliance scales: the
task scale, the bond scale and the goal scale. They measures the three major themes
of psychotherapy outcomes: (1) the collaborative nature of the patient-therapist rela-

1 https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series.

https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series
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Fig. 3 Example statements in working alliance inventory

Fig. 4 Keys to the three scales of working alliance inventory

tionship; (2) the affective bond between therapist and patient, and (3) the therapist’s
and patient’s capabilities to agree on treatment-related short-term tasks and long-term
goals. The score corresponding to the three scales comes from a key table (Fig. 4)
which specifies the positivity or the sign weight to be applied on the questionnaire
answer when summing in the end. The full scale is simply the sum of the scores of the
three scales. The key table is like a weighting matrix that specifies the directionalities
of the scales (Fig. 7).

3.2 Sentence Embeddings

In principle, any sentence or paragraph embeddings can help us characterize the
dialogue turns and inventories. In this work, we used two deep embeddings. The
Doc2Vec embedding [9] is a popular unsupervised learning model that learns vector
representations of sentences and text documents. It improves upon the traditional
bag-of-words representation by utilizing a distributed memory that remembers what
is missing from the current context. The other embedding we evaluated is the Sen-
tenceBERT [24], which modifies a pretrained BERT network by using siamese and
triplet network structures to infer semantically meaningful sentence embeddings.
With these two deep embeddings, we embed the turn-level entries (either the dialogue
turn in the transcripts, or the statement item in the working alliance inventories) into
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vectors of 300 or 384 dimensions. And then compute the cosine similarity between
the vector at certain turn and an inventory entry. Given the space limit, the results
for the Doc2Vec are shown in the main text, while the SentenceBERT results can be
found in the supplementary materials.

4 Results

4.1 Insights from Analyzing Psychotherapy Transcripts

In this section, we present the findings of applying the working alliance analysis to
the psychotherapy dataset.

Figure5 is an example time series of an anxiety psychotherapy session. We see
that the alliance scores varies across the scales. If we investigate the relationship
among the scales, we observe that the task scale positively correlates with the bond
scale in both versions, while the goal scale slightly negatively correlates with the
task scale in the therapist version (Fig. 6).

Fig. 5 Example trajectory of the working alliance scores

Fig. 6 Relational plots of the working alliance score scales (left: patient version; right: therapist
version)
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Fig. 7 Box plots of the working alliance scores

4.1.1 Patient-Therapist Consistency of Working Alliance

We investigate the consistency of the alliance estimation by the patient verses the
therapist. Overall, comparing to the patient estimates, we observe that the therapist
tends to overestimate the working alliance. More specifically, the therapists overesti-
mates the task and bond scales, but underestimates the goal scale. These differences
are all statistically significant (p < 0.001).

Between the disorders, the alliance scores between anxiety and depression, and
between anxiety and schizophrenia, are all significantly different in both the therapist
and patient versions (p < 0.001). As in Fig. 8, the suicidality can be significantly
detected based on the working alliance scores of all four scales.
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Fig. 8 Alliance scores across disorders

4.1.2 Temporal Dynamics of Working Alliance

We also perform a four-way ANOVA upon the alliance scores as time-series
sequences. Figure9 demonstrates the difference of the dynamics of the therapeu-
tic alliance across the psychiatric conditions. We observe that they vary by both
the disorders and scales, and there appears to be certain trends along the temporal
dimension (x-axis in each subplot). This is further supported by the linear regres-
sion analysis (Fig. 10) that the patients with anxiety and depression have an upward
alliance rating while their therapists tend to believe otherwise, and the therapists of
the suicidal patients tend to have a higher alliance rating than their patients.

We can also map out their trajectories in the alliance space of the three major
scales (task, bond and goal). As in Fig. 11, we plot the average trajectories of different
psychiatric conditions and notice that the suicidal trajectories are much more spread
out in the bond and task scales (which aligns with the findings in the ANOVA plots).
Based on the directionality, the suicidality trace shows a significant divergence trend.
This is the first step of a potential turn-level resolution temporal analysis of the
working alliance. We can be generalize in a sense that with this approach one can go
over your sessions (as a therapist) and analyze the dynamics afterwards.

Given these time-series, we can visualize them with dimension reduction tech-
niques such as t-SNE. Because the psychotherapy sessions come in different lengths,
we compute the dynamic time wrapping distances between the session trajectories
of 36-dimension alliance scores, and then use this pairwise distance matrix to per-
form the t-SNE unsupervised learning. Figure12 presents the difference between the
manifolds of the therapist alliance trajectory space and the patient alliance space.
We notice that the patient trajectories have two major clusters of alliance, while the
therapist only has one. This is consistent withwhat we observed in the relational plots
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Fig. 9 Four-way ANOVA of the alliance dynamics

Fig. 10 Regression analysis of the temporal progression of the working alliance score

Fig. 6 that the patient alliance scores in the task and bond scales follow a bi-modal
distribution.
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Fig. 11 The average 3d trajectories of different classes of psychiatric conditions in the alliance
space (the dot meaning the end points of the trajectories)

Fig. 12 Dimension reduction of the alliance trajectories
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Fig. 13 Radar plots of the working alliance scores

4.1.3 Disorder-Specific Dialogue Prototypes of Working Alliance

We can further aggregate the alliance score by averaging all time points together all
into the four scales. To plot the scale with respect to one another in a single plot,
we normalize each scale to standard normal and present the radar plots of the scale-
wise features of the patient and the therapist (Fig. 13). We observe that the suicidal
patient are comparatively most imbalanced, large only in the goal scale and small in
all others. While, on the therapist version, it is the opposite, which aligns with the
observation made in the 3d trajectories.

5 Discussion

Our analytic approach reveals several insightful features of the therapeutic relation-
ship.We observe systematic differences in the mean inferred alliance scores between
patients and therapists, and also across disorders. However the in-session evolution
of the inferred scores provide a much more interesting perspective. In particular,
while all conditions show a systematic misalignment of scores between patients and
therapists, this is significantly starker for suicidality, something that can be observed
in themean as well as in the time trace for full and sub-scales. In contrast, anxiety and
depression display a clear trend for the full and the bond scales to converge as the ses-
sions progress, something not present in the task and goal scales, nor in schizophrenia
or suicidality. These features of the therapeutic dialogue can be mapped to what in
psychiatry is usually called alignment and plays an important symptomatic and diag-
nostic role in several neuropsychiatric conditions, e.g., in relation to the hypothesis
of Theory of Mind for schizophrenia [3]. By analyzing past sessions, and eventu-
ally sessions in real time, trained therapists may be able to identify key segments
of the therapy leading to breakthroughs, compounding their expertise with further
causal/predictive analytic modeling, while trainees may sharpen their intuition by
reading or watching annotated versions of sessions conducted by experts. Needless
to say, coupled with a generative language model and further statistical optimiza-
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tion, it may be possible to design limited chatbots to engage patients in triage and
emergency response [4].

While effective, there are limitations in inferring psychological states from text
data. In the session “Ethical Statements”, we will cover the ethical considerations of
this work. We will discuss other aspects here. One potential limitation of using the
semantic similarity between the inventory statement and the transcript data is that, it
measures how close the meaning or concept of a dialogue turn to the meaning or con-
cept of the inventory item. But it doesn’t necessarily fully capture the directionality
of such similarity. For instance, which score is higher, a statement that is irrelevant
to the inventory item, or a statement that is opposite to the inventory item. There are
clear solutions to this problem. One alternative to the prototypical approach we use,
is to use both an inventory item and its counter argument. For instance, if the inven-
tory item x is “We share a mutual understanding of the expectation of this therapy”,
its counter argument ¬x would be “We don’t share a mutual understanding of the
expectation of this therapy”. We can then compute two similarity numbers vx and
v¬x . The score of this inventory item would then be vx − v¬x . In practice, however,
we observe no clear difference between this approach and ours, which can be found
in the supplementary materials. This suggests that the sentence embedding we use
already capture the concept of negation.

Another innate challenge of our line of research is the scarcity of clinical vali-
dation in the field. Working alliance, since its introduction in [1], is a proxy for the
therapeutic alignment and outcome. As a result, existing behavioral and operational
methods are also approximations to this psychological properties and not golden
standards. We provide an alternative, but in much higher temporal resolution (turns
are the timestamps). As far as we are aware, there are not available datasets in the
field that have “ground truth” to validate in clinical setting. In future work, we aim
to conduct clinical studies to further validate our results in field and intervention
settings.

6 Ethical Statements

Till now, there are still a severe global shortage of workforce in mental health [23].
What we are proposing here, is not to replace existing work force of psychiatrists or
therapists, but to assist them. In education setting, having an interpretable model that
can inform the next-generation psychiatrists about the strategies adopted by expe-
rienced therapists. In this way, it can potentially alleviate this societal issue in both
assisting and educating junior psychiatrists. As more and more successful applica-
tions of AI are deployed in clinical domains, there are many ethical considerations
we practitioners of machine learning should be aware of and must take into consider-
ations, as thoroughly pointed out in this review [10]. When dealing with patient data,
the privacy and security is a top priority. Following the suggestion of best practices
from [22], all examples in this paper as well as the dataset we analyzed are properly
anonymized with pre- and post-processing techniques. In addition, the dataset itself
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was sourced with proper license from the Alexander Street platform. We remove all
personally identifiable information (meta data, user name, identifiers, doctors’ name)
from the data.

As the clinical domain of this work is mental health and psychological well-
being, there are additional ethical considerations. Emerging techniques in wearable
devices, digital health, brain imaging measurements, smartphone applications and
social media are gradually transforming the landscape of the monitoring and treat-
ment of mental health illness. However, most of these attempts are proof of concept
as identified by this review [5], and requires extensive caution to prevent from the
pitfall of over-interpreting preliminary results. The limitations of these prior studies,
including ours, reside in the difficulty of a systematic clinical validation and a uncer-
tain future expectation of the technological readiness for patient care and therapeutic
decision making approved by authorities. For instance, it was recently shown that
despite the high predictability of statistical learning-basedmethods in analyzing large
datasets in support of clinical decisions in psychiatry, existingmachine learning solu-
tions is highly susceptible to overfitting in realistic tasks which has usually a small
sample sizes in the data, missing data points for some subjects, and highly correlated
variables [8]. These properties in real-world applications limits the out-of-sample
generalizability of the results.

Another ethical boundary to maintain is to make sure that the AI systems we use
to diagnose, interpret and predict the mental health illness don’t lead to increased
risks to the patients. This requires both the practitioners and ML researchers to be
fully aware of potentially bias and ethical challenges, such as gender bias, language-
related ambiguity and ethnicity-related mental illness connections [2], in order to
deploy the AI system in a responsible and safe way. Here we analyze a dataset with
over 950 sessions of psychotherapy transcripts. Although it is the biggest dataset we
find in this research domain, due to the anonymous nature of the dataset and a lack
of details behind the collection process and demographics of the transcription, we
cannot guarantee that the generalizability and representativeness to all populations.
However, we believe that the insights we gain from these interpretable investigations
is unlikely to increase the unforeseeable risks of the patients involved and can be
potentially useful.

7 Conclusions

We have presented an approach that combines the state-of-the-art languagemodeling
with the knowledge and practical expertise in psychotherapy, as captured in therapy-
evaluation inventories, to provide a uniquely granular representation of the evolution
of the interaction of patients and therapists. It is both insightful for post-session
interpretations and useful for diagnosing the patients from linguistic features. While
here we focus specifically on the Working Alliance Inventory, our method is generic
and can be extended to the broader spectrum of assessment instruments. Finally, it
would be possible to refine and further validate the language-based estimation of
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working alliance by providing punctuated rater evaluations as inference anchors.
Next steps include predicting these inference anchors as states (like [13–15]) and
training chatbots or dialogue topic recommendation system [16] as reinforcement
learning agents given these states (like [12, 18–20]). Combining with other inference
modules,we can eventually createAI knowledgemanagement systemwith automatic
annotation powered by NLP techniques [11] for the field of mental health.

8 Reproducibility Statement

The codes to reproduce all analytical and empirical results can be accessed and
reproduced at the repository https://github.com/doerlbh/PsychiatryNLP.
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Neural Topic Modeling of Psychotherapy
Sessions

Baihan Lin, Djallel Bouneffouf, Guillermo Cecchi, and Ravi Tejwani

Abstract In this work, we compare different neural topic modeling methods in
learning the topical propensities of different psychiatric conditions from the psy-
chotherapy session transcripts parsed from speech recordings. We also incorporate
temporal modeling to put this additional interpretability to action by parsing out topic
similarities as a time series in a turn-level resolution. We believe this topic modeling
framework can offer interpretable insights for the therapist to optimally decide his
or her strategy and improve psychotherapy effectiveness.

1 Introduction

Mental illness remains an issue in all countries and cultures across the globe. Accord-
ing to the National Institute of Mental Health (NIMH), nearly one in five U.S. adults
live with a mental illness (52.9 million in 2020). One of the major causes of the
mental illness is depression [4], followed by suicide which is the second cause of
death among young people [22]. It is clear that there is a need for new innovative
solutions in this domain. Psychotherapy is a term given for treating mental health
problems by talking with a mental health provider such as a psychiatrist or psy-
chologist [1]. To reduce the workload on mental health provider, natural language
processing (NLP) is more and more adopted [26]. Noting that psychotherapy has
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been the first discipline using NLP. It started with a chat bot ELIZA [28] capable of
mimicking a psychotherapist. Another chatbot, Parry [30], was able of simulating
an individual with Schizophrenia. Natural language processing including topic mod-
eling has shown interesting results on mental illness detection. In [25] the authors
demonstrate that Latent Dirichlet Allocation (LDA) can uncover latent structure
within depression-related language collected from Twitter. Authors [31] shows the
add-value of using social media content to detect Post-Traumatic Stress Disorder.

Although previous works demonstrate the effectiveness of classical topic model-
ing, they are no longer the state-of-the-art. In recent years, deep learning progresses
the fields and the Neural Topic Modeling shows up as the consistent better solution
compared to the classical Topic modeling [19]. In this context, we propose in this
work to use Neural Topic Modeling to learn the topical propensities of different
psychiatric conditions from the psychotherapy session transcripts. We benchmark
our findings on the Alex Street Counseling and Psychotherapy Transcripts dataset,1

which consists of the transcribed recordings of over 950 therapy sessions between
multiple anonymized therapists and patients with anxiety, depression, schizophrenia
or suicidal intents. This multi-part collection includes speech-translated transcripts
of the recordings from real therapy sessions, 40,000 pages of client narratives, and
25,000 pages of reference works. In total, these materials include over 200,000 turns
together for the patient and therapist and provide access to the broadest range of
clients for our linguistic analysis of the therapeutic process of psychotherapy.

The goal here is to evaluate the existing techniques on neural topic modeling
and find the most adapted one to this domain. Second, we incorporate temporal
modeling to put additional interpretability, where the goal of this framework is to
offer interpretable insights for the therapist to optimally decide on psychotherapy
strategy.

2 Related Work on Topic Modeling

In natural language processing and machine learning, a topic model is a type of sta-
tistical graphical model that help uncover the abstract “topics” that appear in a collec-
tion of documents. The topic modeling technique is frequently used in text-mining
pipeline to unravel the hidden semantic structures of a text body. There are quite a few
neural topic models evaluated in this work. The Neural Variational Document Model
(NVDM) [19] is an unsupervised text modeling approach based on variational auto-
encoder. Reference [18] further shows that among NVDM variants, the Gaussian
softmax construction (GSM) achieves the lowest perplexity in most cases, and thus
recommended. We denote it as NVDM-GSM. Unlike traditional variational autoen-
coder based methods, Wasserstein-based Topic Model (WTM) uses the Wasserstein
autoencoders (WAE) to directly enforce Dirichlet prior on the latent document-topic
vectors [23]. Traditionally, it applies a suitable kernel in minimizing the Maximum

1 https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series.

https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series
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Mean Discrepancy (MMD) to perform distribution matching. We call this variant
WTM-MMD. Similarly, we can replace the MMD priors with a Gaussian Mixture
prior and apply Gaussian Softmax on top of it. We denote this method,WTM-GMM.
In order to tackle the issue with large and heavy-tailed vocabularies, the Embedded
TopicModel (ETM) [3]models eachwordwith amatched categorical probablity dis-
tribution given the inner product between a word embedding and a vector embedding
of its assigned topic. To avoid imposing improper priors, Bidirectional Adversarial
Training Model (BATM) applies the bidirectional adversarial training into neural
topic modeling by constructing a two-way projection between the document-word
distribution and the document-topic distribution [29].

3 Therapy Topic Modeling Framework

Figure1 is an outline of the analytic framework. During the session, the dialogue
between the patient and therapist are transcribed into pairs of turns. We take the full
records of a patient, or a cohort of patients belonging to the same condition. We
either use it as is before the feature extraction, or we truncate them into segments
based on timestamps or topic turns. When we have the features, we fit them into
the topic models. The end results of the topic modeling would be a list of weighted
topic words, that tells us what the text block is concerned with. These knowledges
are usually very informative and interpretable, thus important in psychotherapy.

Fig. 1 Psychotherapy topic modeling framework with real time turn level monitoring)
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Here are a few downstream tasks and user scenarios that can plugged to our
analytical frameworks. We can either use these extracted weighted topics to inform
whether the therapy is going the right direction, whether the patient is going into
certain bad mental state, or whether the therapist should adjust his or her treatment
strategies. This can be built as an intelligent AI assistant to remind the therapist
of such things. Some topics can also be off-limit taboos, such as those in suicidal
conversations, so if such terms arises from the topic modeling (say, a dynamic topic
modeling), it can be flagged for the doctor to notice.

Algorithm 1 Temporal Topic Modeling (TTM)
1: Learned topics T as references
2: for i = 1,2,· · · , N do
3: Automatically transcribe dialogue turn pairs (Sp

i , S
t
i )

4: for Tj ∈ topics T do
5: Topic score W pi

j = similarity(Emb(Tj ), Emb(Sp
i ))

6: Topic score Wti
j = similarity(Emb(Tj ), Emb(Sti ))

7: end for
8: end for

Given the learned topics, we can backtrack the transcript to get a turn-resolution
topic scores. Algorithm 1 outlines the pipeline of our temporal topic modeling anal-
ysis (TMM). Say, if we have learned 10 topics, the topic score will be a vector of
10 dimensions, with each dimension corresponding to some notion of likelihood of
this turn being in this topic. Because we want to characterize the directional property
of each turn with a certain topic, we compute the cosine similarity of the embedded
topic vector and the embedded turn vector, instead of directly inferring the proba-
bility as traditional topic assignment problem (which would be more suitable if we
merely want to find the assignment of the most likely topic). In the result section,
we will present the temporal modeling of the Embedded Topic Model (ETM), but
this analytic pipeline can in principle be applied to any learned topic models. This
Embedded Topic Model is special because, like our approach here, it also models
each word with a categorical distribution whose natural parameter is the inner prod-
uct between a word embedding and an embedding of its assigned topic. We use the
same word embedding here (Word2Vec [20]) to embed our topic and turns.

4 Results

In this section, we compare five state-of-the-art neural topic modeling approaches
introduced above, and analyze their learned topics. We separate transcript sessions
into three categories based on the psychiatric conditions of the patients (anxiety,
depression and schizophrenia), and train the topic models over each of them for over
100 epochs at a batch size of 16. As in the standard preprocessing of topic modeling
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training, we set the lower bound of count for words to keep in topic training to be 3,
and the ratio of upper bound of count for words to keep in topic training to be 0.3.
The evaluation procedure follows the same implementation for [29].2

4.1 Evaluation Metrics

Topic models are usually evaluated with the likelihood of held-out documents and
topic coherence. However, it was shown that a higher likelihood of held-out docu-
ments does not necessarily correlate to the human judgment of topic coherence [2].
Therefore, we adopt a series of more validated measurements of topic coherence and
diversity by following [27]. In the first evaluation, we compute four topic embedding
coherence metrics (cv , cw2v , cuci , cnpmi ) to evaluate the topics generated by various
models (as outlined in [27]). The higher these measurements, the better. In all exper-
iments, each topic is represented by the top 10 words according to the topic-word
probabilities, and the four metrics are calculated using Gensim library [24].3 Other
than these four topic embedding coherence evaluation provided by Gensim, we also
included two other useful metrics. [21] proposed a robust and automated coherence
evaluation metric for identifying such topics that does not rely on either additional
human annotations or reference collections outside the training set. This method
computes an asymmetrical confirmation measure between top word pairs (smoothed
conditional probability). In addition, we compute the topic diversity by taking the
ratio between the size of vocabulary in the topic words and the total number of words
in the topics. Similarly, the higher these twomeasures are, the better the topicmodels.

4.2 Quantitative Evaluations of the Topic Models

Tables1 and 2 summarize quantitative evaluations. We first observe that the different
measures of the coherence gives different rankings of the topic models, but there are
a few models that perform relatively well across the metrics. WTM and ETM both
yield relatively high topic coherence and diversity.

4.3 Temporal Dynamics of the Topic Models

To ensure that the topics can bemapped from one clinical condition to another condi-
tion, we compute a universal topic model on the text corpus of the entire Alex Street
psychotherapy database. And then, given the learned topics from this universal topic

2 https://github.com/zll17/Neural_Topic_Models.
3 https://github.com/RaRe-Technologies/gensim.

https://github.com/zll17/Neural_Topic_Models
https://github.com/RaRe-Technologies/gensim
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Table 2 Topic evaluations of the neural topic models (following [21])

Anxiety Depression Schizophrenia

Topic
coherence

Topic
diversity

Topic
coherence

Topic
diversity

Topic
coherence

Topic
diversity

NVDM-GSM 0.653 −380.933 0.487 −316.439 0.527 −431.393

WTM-MMD 0.927 −453.929 0.907 −359.964 0.447 −403.694

WTM-GMM 0.907 −425.515 0.340 −236.815 0.467 −204.930

ETM 0.893 −449.000 0.933 −367.069 0.973 −310.211

BATM 0.720 −441.049 0.773 −443.394 0.500 −337.825

Fig. 2 The average 3d trajectories and the patient-to-therapist projections of different classes of
psychiatric conditions in the principal topic space (dots are the trajectory end points).

models, we can compute a 10-dimensional topic score for each turn corresponding
to the 10 topics. The higher the score is, the more positively correlated this turn is
with this topic. Given this time-series matrix, we can potentially probe the dynamics
of the these dialogues within the topic space. We can also provide more distinctive
features for downstream tasks by performing a principal component analysis on the
topic space. Figure2 presents the average temporal trajectories of the patients and
therapists, as well as the patient-to-therapist projection (i.e. the vector difference in
the patient-therapist pair) in the principal topic spaces. We observe that the suicidal
sessions cover a wider variety of topics (by having more spread-out trajectories), and
have a more curved patient-therapist topic difference with multiple twists along the
full session, while the other three clinical conditions have more consistent directions
of such differences. This might suggest that a strategy by the therapist to divert from
the sensitive topics. In schizophrenia sessions, the therapist appears to cover a bigger
topical arc than the patient, suggesting a therapeutic strategy of visiting multiple top-
ics to distract the patient from sensitive ones. The topical trajectories of the anxiety
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and depression sessions, comparatively, are more converged. This is a first step of
identifying the prototypical therapeutic strategies in different psychiatric conditions
and a potential turn-level resolution temporal analysis of topic modeling. With this
approach one can go over the sessions (as a therapist) and analyze the dynamics
afterwards.

4.4 Interpretable Insights from the Learned Topics

To provide interpretable insights, it is important to parse out the concepts behind
these learned topics. To better understand what these topics are, we parse out the
highest scoring turns in the transcripts that correspond to each topics.

First, we dive into the individual topic models trained on text corpus of each
psychiatric condition separately. For instance, here are the interpretations from the
top scoring turns in the anxiety sessions: topic 0 is chit-chat and interjections; topic 1
is low-energy exercises; topic 2 is fear; topic 3 is medication planning; topic 4 is the
past, control and worry; topic 5 is other people and some objects; topic 6 is just well
being; topic 7 is music, headache and emotion; topic 8 is stress; and topic 9 is fear
and responsibilities. For depression, topic 0 is time; topic 1 is husband and anger;
topic 2 is time and distance; topic 3 is energy and stress levels; topic 4 is self-esteem;
topic 5 is money and time; topic 6 is age and time; topic 7 is mood and time; topic
8 is people and objects; topic 9 is holidays and chit-chats. For schizophrenia, topic
0 is family; topic 1 is extreme terms; topic 2 is energy level and positives; topic 3 is
people and family; topic 4 is operational stuffs; topic 5 is calm things; topic 6 and 9
are critical topics.

For the universal topic models, the results are much more coherent. For instance,
topic 0 is about figuring out, self-discovery and reminiscence. Topic 1 is about play.
Topic 2 is about anger, scare and sadness. Topic 3 is about counts. Topic 4 is about
tiredness and decision. Topic 5 is about sickness, self injuries and coping mecha-
nisms. Topic 6 is about explicit ways to deal with stress, such as keep busying and
reaching out for help. Topic 7 is about numbers. Topic 8 is about continuation and
keep doing. Topic 9 is mostly chit-chat, interjections and transcribed prosody.

We notice that among all the clinical conditions we compare, the learned topics
obtain a relatively poor mapping in the dialogue of suicidal cases. This might be
due to the small sample size available in suicidal sessions, or the frequent hand
annotations of behaviors (e.g. “patient crying for a few minutes” or “patient leaves
the room”) with time stamps, which doesn’t conform to the annotation style of other
sessions.
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Fig. 3 Topic distributions of turns with top working alliance.

4.5 Ranked Topics Informed by Working Alliance

Although our approach can annotate the topics in each dialogue turns of the psy-
chotherapy sessions, we don’t know how informative they might be from the thera-
peutic point of view. In [14], we propose a computational technique to directly infer
the therapeutic working alliance of a dialogue turn, which can be predictive of how
effective the current therapy treatment is to the given patient at the given state. Com-
bining this method with our topic modeling framework would enable us to highlight
disorder-specific topics and dialogue segments that are potentially indicative of the
therapeutic breakthroughs. For each disorder, we filter the turns to the top 100 work-
ing alliance scores, separately in three scales (task, bond and goal). Figure3 is the
heatmap of the averaged topic scores.We first observe no clear distinction among the
working alliance scales, but notice a relatively uniform coverage of the topics when
the patient and therapist are well aligned in the goal scale in all clinical conditions
except for suicidal cases. Inspecting the top 10 turns with the highest topic scores, we
notice that within the turns with high working alliance goal scale, suicidal patients
tend to discuss sensitive terms like “alive”, “stop” and “sexual”.

Throughout the analytics, we follow the ethical guidelines pointed out in [5].

5 Conclusions

In this work, our first goal is to compare different neural topic modeling methods in
learning the topical propensities of different psychiatric conditions. We first observe
that different measures of the coherence gives different rankings of the topic mod-
els, but there are a few topic models that perform relatively well across metrics.
For instance, Wasserstein Topic Models and Embedded Topic Models both yield
relatively high topic coherence and diversity. Our second goal is to parse topics in
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different segments of the session, which allows us to incorporate temporal modeling
and add additional interpretability. For instance, these allows us to notice that the
session trajectories of the patient and therapist are more separable from one another
in anxiety and depression sessions, but more entangled in the schizophrenia sessions.
This is the first step of a potential turn-level resolution temporal analysis of topic
modeling. We believe this topic modeling framework can offer interpretable insights
for the therapist to improve the psychotherapy effectiveness.

Next steps include predicting these topic scores as states (such as [10, 11]), train-
ing text or speech-based chatbots as reinforcement learning agents (as reviewed
in [8]) given these psychological or therapeutic states incorporating biological and
cognitive priors (as in [9, 15–17]) and studying its factorial relations with other
inference anchors (e.g. working alliance and personality [7, 13, 14]). The end goal
is to construct a complete AI knowledge management system [6] or dialogue topic
recommendation system [12] of mental health utilizing different NLP annotations in
real time.
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BAUFER: A Baseline-Enabled Facial
Expression Recognition Pipeline Trained
with Limited Annotations

Charlotte von Numers, Yinan Yu, Aleksandra Petkova, Emmette Hutchison,
and Jesper Havsol

Abstract Social science theories suggest that facial expressions serve as a valuable
indicator of one’s emotions, well-being, and overall functioning. Recent research
has found that the facial expressions of participants in clinical trials can be linked
to their self-reported quality of life. Since manual facial expression annotation and
interpretation is time and cost intensive, automated facial expression recognition
(FER) tools have the potential to make it quicker and more consistent to study an
individual’s emotional responses. This paper introduces BAUFER, Baseline-enabled
Action Unit identification for Facial Expression Recognition, with the following
features: (1) a personalized baseline component to calibrate for the neutral expression
of a participant; (2) predictions for anatomically-based facial muscle movement
labels (Action Units), which have been reliably linked to emotional experiences in
prior research, to enhance interpretability; and (3) a multi-stage training approach
with several types of annotations from different datasets to overcome the known
challenge of insufficient labeled data. While developed with non-clinical data, an
intended future application of BAUFER is in the clinical domain to enhance our
understanding of the patient experience.
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Keywords Facial Expression Recognition (FER) · Action Unit (AU) · Limited
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1 Introduction

Facial expressions are among the most powerful signals humans use to convey emo-
tions, stances and intentions [23]. Automated facial expression analysis and emotion
detection have gained increased scientific interest during the past few decades, with a
growing body of research suggesting a relationship between one’s emotions andwell-
being [12]. Understanding this relationship is especially relevant in a clinical setting
given that the ultimate goal of treatment is the improvement of health outcomes.

In recent years, the pharmaceutical and healthcare industries have increasingly
leveraged digital tools to better understand the patient experience. Many clinical tri-
als nowadays incorporate digital devices, custom apps, and wearable technology to
improve the experience, and thereby the retention, of participants [10]. This transfor-
mation gives rise to opportunities for measuring endpoints by less invasive methods
and at a higher frequency in the comfort of the participant’s own home. For example,
Facial Expression Recognition (FER) systems were used for monitoring of pain [9,
17] and detection of depression [3]. In addition, FER-based tools can potentially
be used with both self-recordings and in real-time (e.g. during virtual care) to gain
insight into the underlying emotions and cognitive states of individuals. Therefore,
FER tools also have the potential to be incorporated into clinical trial endpoint devel-
opment, targeting emotional quality and enhancing traditional questionnaire-based
reporting tools, such as the common quality of life measurement [25].

This paper describes the development of BAUFER, an automated FER pipeline,
designed to address three challenges: (1) baseline calibration of participant facial
expressions, (2) the demand for granular facial expression analysis and interpretabil-
ity, and (3) a lack of training data with fine-grained labels. In the future, this pipeline
is intended to be further adapted and validated with clinical data, potentially in novel
digital endpoint development or for use in applied clinical settings.

1.1 Baseline Calibration

The concept of a baseline is a key component in automating facial expression recog-
nition as it enables a calibration for each individual’s own facial expressions.Without
a baseline, i.e., without taking into account a participant’s own neutral facial expres-
sion, a machine learning model might be limited in its ability to accurately predict
change from baseline, which is what indicates the potential experience of emotions
of both positive and negative valence. Therefore, BAUFER incorporates a person-
alized baseline component into the pipeline to calibrate the system to the neutral
expressions of each individual.
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1.2 Action Units for Granular Analysis and Interpretability

Understanding human emotions through examining facial expressions requires a
framework that provides highly granular analytical tools. In the domains of clinical
psychology and computer vision alike, there has been a paradigm shift from the
analysis of categorical emotions labels, such as happiness, sadness, disgust, etc., to
the use of gold-standard Action Unit (AU) labels to examine anatomically-based
facial behavior that correlates with the experience of positive, negative, and mixed
emotions. AUs are a part of the Facial Action Coding System (FACS) and denote
anatomically-based facial muscle movements (those movements are, in turn, cor-
related with emotions). FACS itself is the most precise and rigorous system for
annotating and measuring noticeable facial movement [6, 7]. AUs are based on the
contraction of individual facial muscles that lead to visible changes in the appearance
of the face, thus producing rapid signs of emotion expression [2]. BAUFER focuses
on detecting individual AUs for enhanced interprerability and precision.

1.3 Scarcity of Training Data

Developing a deep learning model that is capable of performing automated facial
expression and emotion analysis requires vast amounts of data. Research and devel-
opment of these models requires access to datasets that are sufficiently labeled and
can be utilized to build a model that generalizes to a diverse set of participants.

However, FACS annotations require trained professionals to label AUs on a
second-by-second basis for video data or for each individual static imagewith image-
based data. This process takes a significant amount of time and resources, as a result
there are relatively few FACS-coded datasets and, among those with FACS labels,
the number of participants is typically low. In addition, not all these datasets are
widely available for further research.

In this paper, we mitigate this issue by leveraging the strengths of different types
of annotations from three different datasets: (1) identity labels for facial recognition,
(2) categorical labels for emotion recognition and (3) FACS-coded AU labels for
emotion recognition. These datasets are utilized at different stages in the training
process to best leverage their strength. For instance, the training stage has an impact
on the problem of identity bias, where a model fails to generalize the understanding
of facial expressions between different participants. Therefore, we restrict the facial
recognition dataset to the first training stage only in order to minimize this risk, while
achieving the goal of adapting the model to the domain of human faces.

To choose the most suitable components for the BAUFER pipeline, different
deep learning models and pretrained weights were compared. A series of pretraining
approaches that are fit-for purpose using FACS labels are proposed. The outcome of
this work, BAUFER, is a pipeline that comprises a face localization tool, as well as
a Convolutional Neural Network-based (CNN) multilabel AU classifier, developed
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based on an open-source CNN architecture. BAUFER aims to be simple and easy to
use for FER use cases and, in the future if validated with clinical data, is intended to
serve as a proof-of-concept tool for introducing FER tools in both clinical research
and applied settings.

2 Related Work

Deep learning techniques are commonly used in state-of-the-art FER pipelines for
feature extraction. We divide the relevant literature into two areas: facial data anno-
tation and deep learning models.

2.1 Facial Data Annotation

Supervised deep learning training requires annotated datasets. For a dataset contain-
ing human faces, there are mainly three types of annotations: facial recognition for
identification, categorical emotion annotation and anatomically-based facial muscle
movement annotations produced with FACS.

2.2 Facial Recognition for Identification

These annotations are used in building Facial Recognition (FR) models to recognize
an individual human subject in applications ranging from automatic identification in
video-surveillance systems to face tagging on social media platforms [19]. Unlike
FACS, the annotation process requires no professional training and can be easily
automated in many scenarios. However, in the context of FER, such datasets are
often considered irrelevant or even counterproductive since the annotations may
introduce identity bias as the network is originally trained to identify an individual
and not an expression that might have the same emotional sentiment across many
different individuals [15].

2.3 Categorical Emotion Annotation

This type of annotation reflects the categorical theory of emotion which proposes
six universal emotions. These are happiness, anger, sadness, surprise, disgust, and
fear [5]. Much like the FR labels, the annotation process does not necessarily require
professional training; however, reliability between human annotators should bemon-
itored.While the use of categorical labels have been favoured historically, more gran-
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ular representations of facial expressions (and, in turn, of emotions), such as FACS
AUs, are increasingly used in traditional computer vision [23]. However, datasets
with categorical emotion labels and a large number of participants are more com-
mon than FACS-coded datasets, potentially due to the low annotation cost compared
to FACS annotation.

2.4 Annotations Produced with FACS

Emotions are often communicated by subtle changes in one or a few discrete facial
features, which are not sufficiently represented in high-level categorical emotion
labels [23]. This motivates the use of granular FACS labels in studying the link
between facial expressions and emotions. FACS is anatomically-based and includes
annotations for nearly all possible facial movements [21]. It is a human-observer-
based system where trained annotators manually code facial appearance changes
referred to as AUs. There are a total of 44 AUs. Thirty of those AUs result from
contractions of specific facial muscles: 12 correspond to the upper part of the face
and 18 correspond to the lower part of the face [6]. A subset of frequently-occurring
AUs are displayed in Fig. 1.

While it is not uncommon for FER models to predict high-level categorical emo-
tions such as happy, sad and angry, this approach is possibly not the most relevant in
the clinical and social science domains as humans often display subtle and sometimes
mixed emotions through their facial expressions.Therefore,modern approaches favor
the FACS system due to the higher granularity and the emotion expressions are rarely
discrete (e.g. someone might smile while nervous/afraid).

In this paper, the objective is to combine different types of annotated datasets for
developing a deep learning model capable of classifying AUs in an efficient way.

2.5 Deep Learning Models

Modern FER models use deep learning architectures to extract relevant features
from facial images [15]. The domain is divided into static and dynamic approaches,
where the former deal with static images or videos where each frame is processed
independently, whereas the latter treat data as a time series [15]. This paper describes
an implementation of a static deep learning-based FER model.

Feature extractors often are complex and data hungrymodels and thus challenging
to trainwhen data is scarce. State-of-the-art pipelines thus often utilize pretrained fea-
ture extractors due to the low availability of FER datasets. Pretrained CNN architec-
tures are most commonly used. Vision Transformers (VT) have further been applied
with good results [13, 18] as they have the advantage of automatically learning key
facial areas such as the eyebrows or mouth. However, such models typically require
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Fig. 1 A subset of frequently occurring FACS Action Units (AUs)

more training data compared to CNNs due to the lack of inductive bias [4], which
makes them less relevant in the context of training with limited data.

Ensembles comprising different feature extractors are further commonly utilized
given that different FER backbones often have different weaknesses. Supervised
and self-supervised learning can be combined in this fashion, like in [8] where
a supervised CNN was successfully combined with a self-supervised Variational
Autoencoder (VAE). Other ensemble-approaches include the same CNNmodel with
changes made to the filter size, the number of neurons and layers as well as multiple
random seeds for network initialization [15].

Multi-stage pretraining approaches such as [11, 14] have been designed to deal
with the identity bias challenge which occurs when a FER model is overly attentive
to the identity of an individual. VGG Face is utilized as an initialisation in both
approaches and the convolutional layers are finetuned as a pre-step to the end-to-
end training with fully connected layers. Both approaches highlight the superior
performance ofVGGFace [1], which is an FRmodel, compared to ImageNetweights
when applied inmulti-stage transfer learning. However, neither [11] nor [14] perform
classification of AU labels, which is the gap that has motivated the cu0rrent work.
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3 Methodology

3.1 BAUFER Pipeline Overview

BAUFER takes images that contain a human face as input and outputs one multi-hot
encoded vector. More specifically, as a deep learning based FER pipeline, BAUFER
performs preprocessing, deep feature learning and classification. First, during pre-
processing, the impact of factors not related to the facial expression itself, such as
background, illumination or pose, is mitigated [15]. The target face is localized in
the input frame after which the background is removed by cropping. The input data
is assumed to only contain one face per frame. The cropped and altered face is then
passed to a deep CNN feature extractor followed by a set of dense layers. Multi-label
classification is carried out in the final dense layer. The layer shape corresponds to
the multi-hot encoded vector representing the prediction of presence or absence of
each AU. The full pipeline is displayed in Fig. 2.

3.2 AU Classification

The AU detection problem is posed as multi-label classification, where a multi-hot
vector is constructed as the output of the pipeline. For a given input image, the
multi-hot vector is then predicted to detect the presence of each AU.

3.3 Baseline Implementation

In BAUFER, a simple subtraction-based baselining approach is utilized. The idea is
to use themodel’s own predictions of neutral images of a participant to correct for any
false positives. The ideal outcome is for participants without any AUs present that
may appear to the model as e.g. sad or angry to be adjusted accordingly. Activation
for associated AUs would thus be decreased to ideally only be over a predefined
threshold if actually present.

The baseline is defined as the output layer activation vector averaged over a
number of neutral subject images. For the prediction of an input, the baseline of this
subject is then subtracted from the predicted activation.

3.4 Multi-stage Training

The scarcity of FACS-coded datasets calls for creative use of other label types to
achieve identity invariant FER models that are capable of AU classification. In



228 C. von Numers et al.

Fig. 2 The full BAUFER pipeline architecture

BAUFER, bootstrapping of features is done by combining Facial Recognition (FR)
data and categorically labeled FER data. FR data has the advantage of compris-
ing many different expressions for the same subject with the disadvantage of being
focused on the identity while ignoring expressions. On the other hand, despite being
more challenging to annotate compared to FR data, categorical FER data has the
advantage of representing subject expressions even if the labelling is crude. By lever-
aging FR features relevant to the human face and continue training the network to pay
attention to the expression rather than the identity, one achieves a robust model that
is unlikely to collapse into identity bias. Without this intermediate training stage,
identity bias is inevitable if the model is only finetuned on a small FACS-coded
dataset. In this work, we propose a multi-stage training strategy that combines Facial
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Table 1 Multi-stage training and data utilization

Stage Purpose Dataset Annotation # of subjects # of images

Stage 1:
backbone
pretraining

Domain
adaptation

VGG Face Facial
recognition
for
identification

2,622 2.6M

Stage 2:
backbone
finetuning

Reducing
identity bias

AffectNet Categorical
emotion
annotation

450,000 1M

Stage 3:
classifier
finetuning

AU detection DISFA FACS AU
encodings

27 130788

Recognition (FR) data, categorically labeled FER data and AU annotated data for
training the feature extractor in an efficient way.

To best leverage different types of annotations, the feature extractor is trained
using the above-mentioned multi-stage training approach. The training dataset used
for each stage is described in Table1.

More specifically, there are three training stages. At the first stage, the FR dataset,
VGG Face, is used for pretraining the Visual Geometry Group (VGG) [22] CNN.
Despite the fact that this dataset is not tailored to training FER algorithms, it turns
out to be beneficial to pretrain the backbone of FER feature extractors using images
that focus on human faces instead of generic objects. Moreover, since facial recog-
nition datasets are generally more available compared to FER annotated datasets,
and pretrained weights are often readily available for transfer learning purposes, it
makes this type of dataset and the corresponding pretrained-backbone a valid choice
for adapting to the domain of human faces. In this work, we use the model developed
in [1], which is hereafter referred to as VGG Face.

As stage 2, the pretrained convolutional layers are appended with three dense
layers for multi-class classification. These layers are pretrained on a categorical
dataset with several magnitudes more different subjects than FACS encoded datasets
typically have. This pretraining step has the objective of forcing the FR-specific
convolutional layers to start ignoring identity but paying attention to the expression
of an individual.

After convergence on the categorical dataset, the convolutional feature extractor
layers are again appended with new dense layers specific to multilabel classification.
This is stage 3, where the network is finetuned on the dataset Denver Intensity of
Spontaneous Facial Action (DISFA) [20] with FACS-encoded AU annotations for
the final task.
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4 Experiments and Results

The objective of the experiments is to evaluate the effect of each component of
BAUFER in terms of AU detection capability.

4.1 Dataset

The DISFA dataset is used for final finetuning and evaluation. DISFA has 27 subjects
recorded during 4minutes each. TwelveAUs are included in the annotations, ofwhich
six are retained for prediction: AU1: Inner Brow Raiser, AU4: Brow Lowerer, AU5:
Upper Lid Raiser, AU6: Cheek Raiser, AU12: Lip Corner Puller and AU15: Lip
Corner Depressor. This sub-selection is motivated by research suggesting that those
AUs tend to occur more frequently and generally associated with both positive and
negative emotions [3, 7, 23]. Since BAUFER in the future may be used in clinical
trial research, it was important to focus on AUs that are commonly encountered
in emotion expression. To enable automatic detection of AUs, each AU annotation
value is cast to 1 if the intensity score is larger than 1 and 0 otherwise.

4.2 Experiments

4.2.1 Frame Selection and Data Balancing

The AU detection problem is posed as multi-label classification. Due to the fact that
occurrences of AUs are typically correlated, the training dataset can not be perfectly
balanced with standard upsampling approaches. A total of 300 images per subject
are gathered for the 26 subjects used for training, giving precedence to rare AUs.
The procedure results in a total test set size of 7800 images. Frames with rare AUs
are then further upsampled so that the maximum difference in AU frequency is 0.6
between the most rare and most common AUs. Weights are further applied in part of
the training procedure to mitigate the imbalance between the positive and negative
class of each AU. Theweights are based on the relative frequencies within each class,
which are displayed in Table2.

4.2.2 Preprocessing

As the preprocessing step, the Haar Cascade [24] model is used for cropping the
human face from a video frame. Unsuccessful crops are removed by an unsupervised
clustering approach based on embedding generated by the convolutional layers of
the open source FaceNet FR model. Furthermore, during the training process, data



BAUFER: A Baseline-Enabled Facial Expression Recognition … 231

Table 2 Weights for positive and negative classes of each AU

AU# n pos nneg wpos wneg

AU1 1772 6968 1.595 0.405

AU4 2474 6266 1.434 0.566

AU5 1769 6971 1.595 0.405

AU6 1827 6913 1.582 0.418

AU12 2928 5812 1.33 0.67

AU15 1767 6973 1.596 0.404

augmentation techniques are applied to artificially increase the number of training
instances and make the network more robust towards variations in factors such as
lighting, camera quality and object orientation. In particular, the following augmen-
tation steps are applied: horizontal flipping; rotation at a maximum of 0.1 radian;
empty spaces are filled by reflecting the original image to avoid the sharp angle of
the otherwise black frame revealing the degree of rotation; cropping with a factor
between 0.8 and 0.98; brightness adjustments with a maximum factor of 0.2; satu-
ration and contrast adjustments with factors between 0.6 and 1.4; hue adjustments
with a maximum factor of 0.1.

4.3 Evaluation and Ablation Study

The performance of BAUFER is evaluated on theDISFAdataset. The standardmetric
Receiver Operating Characteristic AreaUnder Curve (ROCAUC) is chosen for both
the ablation study and evaluation of the end-to-end pipeline.

4.4 Multi-stage Training

For the purpose of feature extractor evaluation, a series of 60 consecutive frames per
subject are selected for validation and the rest are used for training. The index for
the start of the validation data is selected randomly for each subject.

4.4.1 Stage 1: ImageNet Verses VGG Face

First, to study the effect of stage 1 pretraining, backbones pretrained on ImageNet
(Benchmark) and VGG Face (VGGF) are compared, where the datasets are designed
for object classification and facial recognition tasks, respectively. The key difference
between these two datasets is that the former contains generic objects, ranging from
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Table 3 Model results for the EfficientNet B0 benchmark model that is only trained on the DISFA
subjects, the VGGF model, the EfficientNet model pretrained on Affectnet and the VGGF model
pretrained on Affectnet. The Best performance is achieved by VGGF pretrained on affectnet with
a training strategy that neither makes use of weighted classes nor a frozen start

Name Frozen start Learning rate ROC AUC

Benchmark No 1 · 10−6 0.820

VGGF No 1 · 10−6 0.909

VGGF-A Yes 1 · 10−5 0.918

No 1 · 10−6 0.942
No 1 · 10−6 0.8854

VGGF-R Yes 1 · 10−5 0.906

No 1 · 10−6 0.931

volcanoes to ants, whereas the latter is specific to the domain of human faces. The
result shows that domain adaptation plays a crucial role in the first stage backbone
pretraining, even if the annotation itself (i.e. facial recognition) is not exactly the
final task (i.e. AU classification).

4.4.2 Stage 2: AffectNet Verses RAF-DB

To analyze the training strategy for the second stage, the feature extractor is further
evaluated using two different categorical datasets; Affectnet and RAF-DB [16]. The
labels of the former are notoriously far fromground truth due to the limited annotation
resources, while the latter has a fewer number of subjects but with more accurate
labels. The purpose of the evaluation with these two datasets is to get an indication
of the importance of the label quality versus the data quantity for stage 2. The result
shows that at this stage, it is more beneficial to pretrain the pipeline with a large data
quantity instead of cherry picking fewer images with high quality annotations.

4.4.3 Stage 3: Finetuning with DISFA

The final training stage is to finetune BAUFER on the AU annotations, which is
a necessary step to enable the final AU detection. During the ablation study, this
fine-tuning step is applied to each version of the pipeline presented in Table3 for
comparing the effect of each dataset.
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Table 4 ROC AUC for the four most successful models while evaluated on unseen subjects are
shown in the table. These are the models pretrained on RAF-DB and Affectnet, with and without
a baseline implementation. The results suggest that training with Affectnet is superior to RAF-DB
with regards to generalizability

Model AU1 AU4 AU5 AU6 AU12 AU15 Average

ROC AUC VGGF-R 0.757 0.879 0.922 0.893 0.926 0.807 0.864

VGGF-RB 0.779 0.883 0.920 0.887 0.927 0.824 0.870

VGGF-A 0.839 0.867 0.949 0.884 0.940 0.796 0.879

VGGF-AB 0.866 0.884 0.944 0.885 0.928 0.815 0.887

4.5 Baseline Versus No Baseline

The purpose of the baseline implementation is to further mitigate the problem of
identity bias. Therefore, the effect of the baseline on AU classification performance
is evaluated on unseen subjects usingCross Validation (CV). The result can be found
in Table4. Specifically, two subjects at a time are excluded from the training data. The
CV is thus run for a total of 13 splits on the 26 DISFA training subjects, while subject
11 is retained for testing. The evaluation results of each CV model is aggregated to
give an indication of model performance on identity bias. The performance of VGG-
Face when pretrained on both RAF-DB and AffectNet is better with a baseline.

4.6 Performance of BAUFER

VGGF-A has a clear advantage over both the Benchmark model and VGGF trained
without intermediate steps. The model achieves a ROC AUC of 0.942 when eval-
uated on familiar subjects. At 0.879 without a baseline and 0.887 with a baseline,
the performance remains high on unseen subjects. The Benchmark network trained
on ImageNet never reaches a ROC AUC above 0.83 regardless of training strat-
egy making it inferior to its facial image pretrained counterpart. The results imply
the importance of domain adaptation: FR-specific weights are superior to transfer
learning with few or no faces.

The ROC AUC curves per AU for VGGF-AB are displayed in Fig. 3 to provide a
more granular view on BAUFER’s capacity for detecting each AU.

5 Discussion

VGG Face is already capable of encoding relevant facial features even if late layers
are overly FR-specific due to the original objective of ignoring expression and focus-
ing on identity. While training on AffectNet, the VGG Face architecture unlearns the
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Fig. 3 CV ROC AUC curves and the 95% confidence interval for VGGF-AB on each AU

relevance of identity and learns the relevancy of expressions. The pretrained feature
extractor requires limited fine-tuning in order to perform well on DISFA given fea-
tures now being FER-specific. The network does not collapse into predicting one
class per AU and individual due to the low learning rate and proximity to a more
generalizable local optima.

The fact that the AffectNet labels are far from ground truth does not seem to
impact performance on DISFA. The results indicate that neither the label type of the
pretraining dataset nor the validity of its labels have a high impact on performance
when pretraining a feature extractor for transfer learning.

The baselinemodel in BAUFER turns out to be an efficient way to further mitigate
identity bias. One should note that the baselining approach is designed to correct for
false positives while the opposite problem of false negatives is not addressed, i.e.
subjects that indeed do express an emotion while the model perceive them as neutral.
Correcting such errors is likely to require a more advanced approach where the the
relative intensity of emotion is utilized to normalize over subjects.

Interestingly, we discover that despite being more coarse compared to AUs,
datasets annotated with categorical emotions in fact have enhanced the capability
of the model for recognizing the more fine-grained AU labels. This provides the
opportunity of bootstrapping more resource-intense labels from cheaper and easier
ones.

For instance, themodel is capable of identifyingAU5 (Upper LidRaiser), aminor-
ity class in DISFA, with a high detection rate due to the fact that AU5 distinctively
appears in AffectNet as shown in Fig. 4.
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Fig. 4 This image illustrates howAU5 (Upper Lid Raiser) appears distinctively in AffectNet within
the category fear

6 Conclusion

Facial Expression Recognition (FER) can provide valuable information about human
emotions. In this paper, we propose a deep learning based FER pipeline, named
BAUFER and developed with non-clinical but emotionally expressive data, for
detecting the presence of Action Units (AUs), which are anatomically-based facial
muscle movements that are reliably linked to emotional experiences. To minimize
false positives, BAUFER incorporates a personalized baseline that provides a means
to calibrate for each individual’s neutral facial expression. Due to the scarcity of AU
labeled datasets, BAUFER is developed with a multi-stage training strategy utilizing
different types of annotated data. From the experiments, we observe that by first
pretraining the backbone model with facial recognition dataset for domain adapta-
tion, followed by a second stage pretraining using a categorical emotion dataset to
reduce identity bias, it improves the performance for the final AU detection task. In
addition, the baseline model is effective for improving the system performance. The
development of the baselining mechanism is an interesting topic for future research.
Future work should also examine how FER pipelines can bolster research aimed
to understand participants’ overall experience and well-being in clinical trials and
beyond.
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Robustness for ECG Classification
by Adversarial Training Over Clinical
Features

Suparshva Jain, Amit Sangroya, Lovekesh Vig, and C. Anantaram

Abstract Recent work employing deep learning for ECG signal classification has
achieved state of the art performance on benchmark datasets, comparable to the
accuracy achieved by cardiologists in some cases. However, whether these models
discover and attend to the same clinical features that cardiologists utilize for diag-
nosis remains unexplored. This paper looks at a well known state of the art deep
learning model for ECG classification, and observes its performance on high level
perturbations. Surprisingly, we find that the model is not always sensitive to these
high level perturbations suggesting that they may be relying on medically mean-
ingless correlations to make predictions. We then perform adversarial training on
these clinically perturbed ECG signals to enhance model robustness. Additionally,
we perform conventional adversarial training against low-level perturbations simul-
taneously to ensure robustness against adversarial attacks. Experimental results show
that the proposed training regimen can improve both model accuracy and the adver-
sarial robustness by a significant margin. We demonstrate that the resulting models
are (1) more sensitive to clinical features, (2) robust to adversarial attacks, and (3)
yield state of the art performance and (4) clinical perturbations add to the robustness
of the model over standard adversarial training.
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1 Introduction

A notable deep learning healthcare application has been the analysis of electrocar-
diogram (ECG) signals via deep models for detecting arrhythmias. These models are
often embedded within wearable devices with recent reports testifying to the tech-
nology’s life saving capabilities. As with other deep learning applications, training
models to detect arrhythmias on patient data requires large volumes of real world
patient data. However, a subtle nuance is often overlooked with regard to the gen-
eration of training labels. ECG datasets for arrhythmia detection are annotated by
teams of cardiologists but unlike common annotation protocols, annotation follows
the application of strict well defined rules over high level clinical features [16]. For
example, a rule which cardiologists follow to detect atrial fibrillation is the “absence
of P-waves in the signal and presence of irregular and narrow QRS complexes”. In
effect, we have knowledge of the label generation process and ideally would expect
the deep model trained on raw ECG signals to discover and exploit the same clinical
features. In this paper, we attempt to verify whether this is indeed the case and find
that even state of the art deep models for arrhythmia prediction are insensitive to
clinical features, and rely on potentially spurious correlations to make a prediction.

This raises the question “why not force the network to extract these clinical fea-
tures directly?” and simply apply the rules on top of these features. The problem is
that these intermediate clinical features are often difficult to identify from noisy time
series data and annotating signals for these clinical features at scale is both unreli-
able and expensive. Further, the resulting clinical feature extractors trained on one
dataset may need to be fine tuned for different populations. Thus, forcing the network
to predict clinical features via direct supervision may be impractical. In this paper,
we explore the possibility of introducing clinical perturbations to the training data to
enhance model sensitivity to the desired clinical features. We exploit the consistent
patterns present in ECG data for normal, healthy patients to accurately detect and
perturb clinical features like P-waves, R-R intervals, and R-R regularity using signal
processing. Our experiments demonstrate that by training on these perturbations, the
resulting models are significantly more sensitive to clinical features while retaining
accuracy.

Another desirable property of a deepmodel is that its performancebe robust to con-
ventional adversarial attacks. Grave security concerns still plague models embedded
in healthcare devices that use ECG classification algorithms, which can potentially
be tricked into misdiagnosing patients. Unlike traditional non-deep learning models
where no gradient information can be exploited, deep learning based ECG classifi-
cation models are susceptible to both white-box and black box attacks by exploiting
their gradient information. We train our ECG classification model against both Fast
Gradient Method (FGM) and Projected Gradient Descent (PGD) attacks along with
training on the high level clinical perturbations. We find that the training against high
level feature perturbations not only improves sensitivity to clinical features but also
improves model robustness against gradient based adversarial attacks.
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Fig. 1 Sensitivity of SOTA model to high level perturbation

Table 1 Accuracy (using F1-Score) when applying adversarial attacks on selected deep learning
models

SOTA model [[14]]

Original test set 0.80

After FGM attack (ε = 0.1) 0.34

After PGD attack (ε = 0.1) 0.32

We conducted an experiment using a well known state of the art (SOTA) deep
learning model for ECG classification [14], where we fed ‘Normal’ ECG Signals
with high level clinical perturbations. Surprisingly, we found that the model was
not sensitive to these high level perturbations suggesting that it may be relying on
medically meaningless correlations (i.e. correlation is not obvious) to make pre-
dictions (Fig. 1). Moreover, when this model is subjected to conventional low level
perturbations (using FGM and PGD attacks), its performance drops significantly
(See Table1).

To address these problems, we perform adversarial training on these clinically
perturbed ECG signals to enhance model robustness. Additionally, we perform con-
ventional adversarial training against low-level perturbations to ensure robustness
against adversarial attacks. We compare the accuracy and robustness of the adver-
sarially trained model with current benchmarks. Our results show that the proposed
training regimen improve both model accuracy and the adversarial robustness by a
significant margin.

Prior work in the area of generating adversarial samples for time series classifi-
cation has not focused on higher level clinical perturbations for training. To the best
of our knowledge, this is the first instance of a deep learning based ECG classifi-
cation model that is adversarially trained to support sensitivity to high level feature
perturbations. The key contributions of this work are:
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1. Firstly, we demonstrate that the current SOTA deep learning model for ECG
classification is not sensitive to clinical feature perturbations and adversarial
training using clinical/high level feature perturbations make the model more
sensitive to these features.

2. Further, training against conventional adversarial attacks to prevent malicious
misdiagnosis provides additional robustness to the model.

3. Training against low level adversarial attacks in addition to clinical perturbations
results in even greater model robustness than training against either individually.

4. Finally, our model that combines conventional adversarial training using low
level perturbations with high level (clinical) perturbations, results in models that
are (i) more sensitive to clinical feature perturbations; (ii) more robust to low
level perturbations; and (iii) yield performance comparable to SOTA.

2 Background and Preliminaries

2.1 Low and High Level Clinical Features

In literature, the terms “high-level” and “low-level” are generally used to refer to the
features generated by a deep model like a CNN (convolution neural network) via its
intermediate representations [20]. For instance, in image classification, as the CNN
learns low-level features (such as edges, corners) through the first hidden layers,
mid-level features (squares, circles, etc.) through intermediates hidden layers, and
high-level features (faces, text, etc.) through the final hidden layers. The feature
level is primarily related to the content of the feature maps based on the task. In this
paper, we propose perturbations at following two levels for ECG domain:

1. Low Level Features: These are the features which are at a finer granular level
and normally difficult to interpret. For example: pixels, dots and lines in case
of images. Feature maps that correspond to a learned motif of an ECG signal
window are “high-level” and small oscillations in time series are “low-level”.

2. High Level Clinical Features: These are the features which are understand-
able by end users (medical professionals in our case). For example: P wave,
QRS complex, Rhythm etc. We also call them clinical features, since they are
interpretable by clinicians. These features have been used by classical AI based
systems such as Kardio where a medical expert system is designed based upon
a model of the human heart. The Kardio rule based expert system was designed
for the diagnosis of cardiac arrhythmias [3, 16]. One interesting aspect about the
Kardio system is that the explanations of arrhythmias generated by the system
are based on domain concept features such as P waves, and Rhythm.
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2.2 Adversarial Attacks

Maliciousmanipulation of data/gradients can create amismatch between training and
test data distributions,misleadmodels, and significantly harm their performance. The
community refers to this kind of malicious manipulation as an adversarial attack.
Several approaches have been proposed to increase a model’s robustness against
adversarial attacks. Reference [12] proposed augmenting the training set with adver-
sarial examples. At training time, they minimize the loss for real and adversarial
examples, while adversarial examples are chosen to fool the current version of the
model.

A popular kind of adversarial attack is performed by altering the data with very
minute perturbations (like gaussian noise) that can cause misclassifications but are
often imperceptible to humans and therefore may go through undetected. Another
possibility is perturbing the hidden layers of a deep network. Researchers have com-
pared the impact of perturbation of the input with perturbation of the hidden layers.
In [25], and found that it is usually better to just perturb the original input.

2.2.1 High Level Perturbation Examples

Figure2 exhibits the ECG signal before and after ‘P-wave Removal’ perturbation is
applied. Similarly, Fig. 3 exhibits the ECG signal before and after ‘P-wave removal
and Irregular Rhythm’ perturbation is applied.

Fig. 2 Example for P-wave removal
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Fig. 3 Example for P-wave removed (Top) and Irregular rhythm (Bottom)

3 Proposed Methodology

Convolution neural network models have achieved SOTA results for ECG signal
classification. In this work, firstly, we try to assess the performance of these models
against perturbations to low and high level features. Thereafter, we perform adversar-
ial training including conventional training on these clinically perturbed ECG signals
to enhance model robustness. The overall architecture is shown in Fig. 4.
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Original Training Set (DB1)

High Level Perturbations

(DB1 + DB2)
Augmented 
Training Set

Perturbed Signals(DB2)

At each epoch

DB1 + DB2

DB3

Gradient step is 
taken based on 

(DB1+DB2+DB3)

1
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3

Low Level Perturbations

Final Trained
Model

4PGD 
Adv.
Attack
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Fig. 4 PGD Adversarial training with High level perturbations: High level perturbations as men-
tioned in Sect. 3.2 are performed on the training set (DB1) to form an augmented training set
(DB1+DB2). PGD Adversarial training is performed on this augmented training set (DB1+DB2).
During PGD Adv training at each epoch, PGD attack is use to create signals (DB3) for Adversarial
training

3.1 Low Level Perturbations

In this step, very minute perturbations are introduced into the original ECG signals
and the performance of the model on these perturbed signals is recorded. Since the
introduced changes are quite small, a robust model is expected to exhibit minimal
drop in performance. However, if there is a significant drop in the performance of the
model, we argue that themodel is not robust, as it vulnerable tomisclassification even
with small changes to the input signal. In order to make these minuscule changes to
a signal, gradient based adversarial attacks (namely FGM and PGD) are being used
here. The performance of amodel against these gradient based attacks is a commonly
used practice to examine robustness. Gradient based adversarial attacks attempt to
unearth the perturbations that maximise loss on a particular input, while keeping the
size of these perturbations smaller than a threshold (ε). Hence, these gradient based
adversarial attacks are often used to gauge the robustness of the model.

3.2 High Level Perturbations

The other aspect we seek to examine is the sensitivity of the model to perturbations
of high level clinical features. This is meant to gauge if the model is actually focusing
on the features that a clinicianwould consider important. Our hypothesis is that if one
of the high level features is perturbed, then an important aspect to the signal has been
changed. Therefore we expect to see a change in the output of the model, as opposed
to traditional adversarial perturbations where we expect the model not to change its
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predictions. This change in the output should be predictable based onmedical theory.
For example absence of p-waves and an irregular rhythm are typically signs of Atrial
Fibrillation (AF) hence, if wemake these changes to aNormal ECG signal we expect
the model’s output would observe a considerable drop in ‘Normal’ class score. If
the model’s response to these high level perturbation is as expected, then we can
say that the model is actually focusing on these high level features. Then, we want
the model to be sensitive to these high level perturbations. In order to make these
specific perturbations we only use signals that are labeled ‘Normal’ in the dataset.
We leverage the Neurokit signal processing library to perturb one or more of these
features.

1. P-wave removal: ThepresenceofP-waves are an important factor in determining
the presence of Atrial fibrillation in an ECG signal. In case of Atrial Fibrillation
(AF), the P-wave is either not consistently present or is absent all together.
Therefore, when perturbing a normal signal by removing P-waves we would
expect the ‘Normal’ class probability score to decrease. In order to perform this
perturbation, we first identify the onsets and offsets of the P-waves and then we
use linear interpolation to connect the P-wave onset and offset points, effectively
flattening out the P-waves.

2. Irregular Rhythms: Irregular Rhythm here refers to the irregular time intervals
between the R-peaks in an ECG signal. Irregular rhythm in an ECG signal can
also be a good indicator for the presence of Atrial fibrillation in a signal. There-
fore, again after performing this perturbation, we expect the model’s ‘Normal’
class probability score to decrease. In order to make this perturbation, we first
identified the R-peaks within the signal. Thereafter, the interval between two
R-peaks is stretched or squeezed in accordance with a normal distribution.

3. P-wave removal and Irregular Rhythms: Absence of P-waves in conjunc-
tion with irregular rhythm is a clear indicator that Atrial fibrillation is present
in an ECG signal. Hence, not only should the ‘Normal’ class probability score
decrease, but also themodel should largely classify these signals as “Atrial fibril-
lation”. In order to achieve this perturbation, we first remove the P-waves within
the signal (as described above) and then proceed to make the rhythm irregular
(as described above). A sample signal before and after these perturbations is
shown in Figs. 2 and 3.

3.3 Adversarial Training Against Perturbations

We found that the original model did not perform well against these low and high
level perturbations. Therefore, in order to make the model more robust against low
level perturbations whilemaking themodel more sensitive to high level perturbations
we employed adversarial training. In our experiments, we try two types of adversarial
training as explained in the following two subsections.
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1. Adversarial Training using Low level perturbations: Adversarial training
against FGM and PGD attacks is one of the most commonly used methods for
adversarial training to ensure model robustness against these low level attacks.
Weuse our basemodel and train it for 10 additional epochs.During this additional
training, at each epoch, new adversarial samples are generated based on the
samples in the training set and then these adversarial samples are used to train
the model.

2. Adversarial Training using High and Low level perturbations: In order to
train the model against both high level and low level perturbations, first we
generate signals using ‘Normal’ signals in the training set, where the P-waves
are removed and the rhythm is made irregular. These newly generated signals
are now labeled as AF (Atrial fibrillation), as absence of P-waves and irregular
rhythm is characteristic of an ECG signal with Atrial Fibrillation. Further, these
generated signals are then added to the training set which is used for adversarially
training our base model against PGD attack for an additional 10 epochs.
In order to ensure that the adversarial samples that we are adding to the training
data are clinically meaningful, we performed a human validation with the help
of a senior cardiologist. In this experiment, we validated a subset of perturbed
signals via a cardiologist who confirmed that for 85% of the generated data
samples resemble an abnormal ECG signal.

4 Experiments

Weuse Physionet 2017 dataset, which includes 8528ECG samples. Each data sample
is labeled as one of the four possible classes: Normal, Atrial Fibrillation, Other and
Noise. For our experiments we are ignoring the ‘Noise’ class since it contained only
a handful of signals. Finally, we used 5154 Normal signals, 771 AF, 2557 Other
rhythm and 46 Noisy signals. For training and test purposes, we have divided this
data into training, validation and test sets in 80:10:10 ratio respectively.

We have used the Stanford cardiologist-level ECG classifier [14] as a base model
for our experiments. Thismodelwas shown to perform better than an average cardiol-
ogist in various ECGclassifications tasks. Thismodel is a ResNet based classification
model with 34 layers capable of classifying ECG of arbitrary length. Since a pre-
trained version of this model was not available, we have trained this model from
scratch on Physionet 2017 dataset.

4.1 Adversarial Training Against Low Level Perturbations

Since our base model is susceptible to gradient based adversarial attacks, we
employed FGM adversarial training as well as PGD adversarial training which are
two of the most commonly used defence against gradient based attacks. We trained
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the model for an additional 10 epochs for both of these methods. We set the maxi-
mum perturbation limit as 0.1 according to l∞ norm, and for the PGD Adversarial
training we set the maximum iterations that the PGD attack can make as 15. Once
the model was trained, we evaluate it against FGM & PGD attacks with the same
hyper-parameters.

Table2 suggests that the PGD adversarial trained model performed much better
against both PGD and FGMattacks. Therefore, we can conclude that the PGDAdver-
sarial trained model is more robust against these adversarial attacks. Next, we also
evaluate the performance of the PGD trained adversarial model against high level
clinical feature perturbations. This is performed in a similar manner as we had done
for the our base model against three types of high level perturbations: (1) P-wave
removed, (2) Irregular Rhythm, and (3) P-wave removed and Irregular rhythm.

From Fig. 6, it is observed that the PGD adversarial trained model is more sen-
sitive to these high level clinical features as well. Beginning, with P-wave removal
perturbation, we observe that there is a further reduction in the ‘Normal’ class score
to 0.462 compared to 0.501 for the base model. This suggests that the model has
become more sensitive to this particular perturbation. Next, for Irregular Rhythm
perturbation again there is a slight decrease in the ‘Normal’ class score to 0.32 com-
pared to 0.361 for the base model, indicating slight increase in the sensitivity to this
type of perturbation as well. However, for P-wave removed and Irregular Rhythm
perturbation, we observe that there is slight increase in the ‘Normal’ class score,
0.27 for the current model as opposed to 0.224 for the base model. This suggests
there is no improvement in the sensitivity to this particular perturbation.

4.2 Adversarial Training Against High and Low Level
Perturbations

We would like to make the model more sensitive towards high level clinical fea-
tures. To achieve this, we expand our training set to include these high level feature
perturbations, similar to adversarial training. [22] have documented that adding gen-
erated data along with adversarial training leads to a more robust model. In our case,
we have used the ‘Normal’ samples form our training set to generate new samples
by performing the p-wave removal and irregular rhythm perturbation and labeling
them as ‘AF’, (described in Sect. 3). Once the model is trained we report its perfor-
mance against the test set as well as PGD and FGM attacks. We also compare the
performance of the newly trained model with other models, as seen in Table2.

From Table2, we observe that the newly trained model (PGD Adv. Trained and
High level trained model) is slightly more robust against FGM& PGD attacks when
compared against only PGD Adversarial Trained model. While maintaining similar
F1-score against original test set. Therefore, this experiment shows that the newly
trained model is more robust than the other models, without sacrificing the accuracy
on the original test dataset.
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Table 2 Comparing robustness of models using F1-score

Original testset FGM attack (ε = 0.1) PGD attack (ε = 0.1)

Base model 0.809 0.343 0.321

FGM adv. trained 0.868 0.649 0.707

PGD adv. trained 0.844 0.751 0.802

PGD Adv. and
high-level trained

0.855 0.785 0.803

Fig. 5 Performance of the models against adversarial attacks



248 S. Jain et al.

In order to confirm if the model trained with against high level clinical feature
perturbations as well as PGD adversarial attack is more robust than the other two
models, we subjected each of these models to PGD and FGM attacks of varying
strength ranging from ε = 0.001 to ε = 0.25, the F1-score obtained on by eachmodel
against these attacks is plotted in Fig. 5. Here, its observed that as the attack strength
increases the F1-score of our basemodel falls sharply for both PGDandFGMattacks.
The F1-score of the PGD trained model also shows a significant drop, however the
performance of this model is much better than our base model’s performance. It is
observed that the model trained against both high level perturbations and PGD attack
performances significantly better against these attacks, there is only a slight drop in
the F1-scores. Therefore, we can say that the adversarial training against high level
feature perturbations along with PGD adversarial training has yielded a more robust
model.

Next, we also examine the sensitivity of the newly trained model to the high level
feature perturbations. This is done in the same manner that we had done for the
other two models. In order to compare the sensitivity of the three different models
to high level feature perturbations, the average ‘Normal’ class score for each of the
models against these high level feature perturbations are plotted in Fig. 6. We can
observe that the newly trainedmodel is evenmore sensitive to these high level feature
perturbations. We see that for p-wave removal perturbation the average ‘Normal’
class score has decreased even more when compared to the PGD adv. trained model.

Similarly, the average ‘Normal’ class score for irregular rhythm perturbation also
decreases further when compared to PGD adv. trained model. And, finally we also
see that for p-wave removed and irregular rhythm perturbation, the average ‘Normal’
class score also decreases to the lowest value of 0.039. Therefore, from these set of
experiments we can conclude that the new trained model which used high level
perturbed data as well as PGD adversarial training is not only more robust but also
more sensitive to high level perturbations.

4.3 Evaluating Robustness to Low Level Perturbations

We use FGM and PGD adversarial attacks to add small perturbations to assess the
robustness of our basemodel. A robustmodel should be able to achieve high accuracy
even when these adversarial attacks are employed. In this experiment, we employed
FGM and PGD attacks and we report the F1- score for (AF, Normal and Other class)
for each attack aswell as on the original test set. The overall F1 scoreswere calculated
by taking the average of the F1 score for each of the three classes. We have used the
same test set for each of the attacks.

From Table2, we observe that the model was performing very well on the original
test set and was able to achieve an F1-score of 0.80. But, as soon as we employ
gradient based adversarial attacks there is a significant drop in the performance of
the model. F1-score after FGM attack reaches 0.34. Similarly, the F1-score drops
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Fig. 6 Sensitivity of models to high level perturbations

to 0.32 after PGD attack. This again highlights that the model is not robust against
these low level perturbations.

4.4 Evaluating Sensitivity to High Level Perturbations

In order to assess the sensitivity of our base model to high level clinical features, we
generated 250 signals for each type of perturbation, from ‘Normal’ signals and then
we report the probability score for each class averaged over these 250 samples.We do
this for both the original set of signals as well as the perturbed signals. We examine
how the model classification changes as each feature is perturbed (See Fig. 6).

From this experiment, we can observe that our base model is not very sensitive
to the high level feature perturbations. This is evident in the p-wave removal pertur-
bation. We can clearly see that even after removing all the p-waves in the signals, a
lot of the signals are still being classified as normal. Further, the model is slightly
more sensitive to the irregular rhythm perturbations, but the classification the ‘Nor-
mal’ class score is still quite high. Finally for P-waves removed and irregular rhythm
perturbation, it is observed that the ‘Normal’ class score is 0.224. This suggests that
the model is more sensitive to this perturbation, when compared to the other pertur-
bations. This experiment shows that the base model is actually not very sensitive to
these high level clinical feature perturbations.
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5 Related Work

While a host of prior techniques exist around ECG classification, very few of these
have looked at adversarial robustness and sensitivity to clinical features. This section
highlights past contributions to ECG classification, Model Robustness and Explain-
ability.

1. ECGclassification:Machine learning algorithms, including deep learning, have
proved to be powerful tools for aiding clinicians in heart patient screening using
ECG data [5, 15, 19]. In a recent study [27], authors generate clean and noisy
versions of an ECG dataset before applying various systematic image transfor-
mations to the signal. A convolutional neural network is used to classify these
image transforms. They highlight that physiological ECG noise impacts classifi-
cation using deep learning methods and careful consideration should be given to
the inclusion of noisy ECG signals in the training data when developing super-
vised networks for ECG classification. Our work can address some of these
issues by giving a better estimate of robustness under noisy conditions.

2. Robustness in Deep Learning: Reference [25] first propose the concept of
adversarial examples that can mislead deep neural networks with small mali-
cious perturbations. Besides generating adversarial examples to attack mod-
els [11], existing studies also concern improving the adversarial robustness and
generalization ability of neural networks via adversarial training [7, 23, 26].
Adversarial training is widely adopted in both the computer vision field [18, 29]
and the natural language processing field [17, 30]. However there have been
only a handful of papers related to adversarial attacks and adversarial training
for ECG classification [13, 24].
Deep learning networks have achieved SOTA performance on ECG classifica-
tion. These models employ various architectures which include CNN based [1,
14], LSTM based architectures [8, 28] and combinations thereof [4]. Some
approaches have even used hand crafted features along with deep learning mod-
els [10]. A CNN based ECG classification model developed by [14] was even
shown to out perform cardiologists for detection of a wide range of heart arrhyth-
mias from single-lead ECG records. However, the susceptibility of the deep
learning models to various adversarial attacks have raised a lot of concern over
the development and deployment of such deep learning models in the medical
field [2, 9]. Further, CNNbased ECGclassificationmodels have also been shown
to be vulnerable against adversarial attacks [13]. They have formulated a type
of adversarial attack which constructs smoothed adversarial examples that are
invisible to a human expert. However, to the best of our knowledge, prior work
has not examined the performance of ECG Classification model against high
level feature perturbations, which is what we seek to explore in this paper.

3. Robustness & Explainability using Clinical features:
Despite some work on visualizing high level features by using the weight filters
in a CNN [6, 21], most researchers use deep learning approaches as a black box
without the possibility to explain results or without the ability to apply mod-



Robustness for ECG Classification by Adversarial Training Over Clinical Features 251

ifications in case of misclassification. In general, automatic feature extraction
from noisy ECG signals requires large scale clinical feature annotations which
can be used for training a machine learning network. Obtaining consistent large
scale clinical annotations for the purpose of training and explainability is highly
impractical and expensive for each use case. We first leverage traditional fea-
ture extraction techniques for obtaining higher level features (conceptual/clinical
features) from normal ECG signals and then exploit the for improving model
robustness and explainability. While abnormal ECG signals can exhibit signifi-
cant variation in the feature shapes and motifs, for normal, healthy patients the
ECG signals follow a very predictable pattern. Thus, we focus on ECG signals
from normal patients to extract high level clinical features.

6 Conclusions and Future Work

In this work, we looked at the sensitivity of a SOTA deep learningmodel to high level
clinical feature perturbations. Our experiments indicate that current deep learning
models are susceptible to low level adversarial attacks and are not sensitive to high
level clinical features. To the best of our knowledge, this is the first instance of work
where a deep model is adversarially trained, to ensure sensitivity to clinical features.
From an explainability perspective, it is important to understand, if the model is
actually focusing on the correct clinical features. We intend to further explore this
as part of our future work.
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A Transformer-Based Deep Learning
Algorithm to Auto-Record
Undocumented Clinical One-Lung
Ventilation Events

Zhihua Li, Alexander Nagrebetsky, Sylvia Ranjeva, Nan Bi, Dianbo Liu,
Marcos F. Vidal Melo, Timothy Houle, Lijun Yin, and Hao Deng

Abstract As a team studying the predictors of complications after lung surgery,
we have encountered high missingness of data on one-lung ventilation (OLV) start
and end times due to high clinical workload and cognitive overload during surgery.
Such missing data limit the precision and clinical applicability of our findings. We
hypothesized that available intraoperative mechanical ventilation and physiologi-
cal time-series data combined with other clinical events could be used to accurately
predictmissing start and end times ofOLV. Such a predictivemodel can recover exist-
ing miss-documented records and relieves the documentation burden by deploying
it in clinical settings. To this end, we develop a deep learning model to predict the
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occurrence and timing of OLV based on routinely collected intraoperative data. Our
approach combines the variables’ spatial and frequencydomain features, usingTrans-
former encoders to model the temporal evolution and convolutional neural network
to abstract frequency-of-interest from wavelet spectrum images. The performance
of the proposed method is evaluated on a benchmark dataset curated from Mas-
sachusetts General Hospital (MGH) and Brigham and Women’s Hospital (BWH).
Experiments show our approach outperforms baseline methods significantly and
produces a satisfactory accuracy for clinical use.

Keywords One-lung-ventilation · Transformer · Medical records · Deep learning

1 Introduction

Among two million people diagnosed with lung cancer each year [4], approximately
one-third need lung resection surgery [21]. An operation on the lung requires one-
lung ventilation (OLV) to deflate and immobilize the operative lung for surgical
visualization. OLV, in turn, presents unique challenges for mechanical ventilation
and for prevention of postoperative pulmonary complications [17]. Transition to
OLV during thoracic surgery is a distinct risk factor for post-operative acute lung
injury, ranging in severity from mild atelectasis to severe acute respiratory distress
syndrome (ARDS) [15]. Strategies for lung-protective management during two-lung
ventilation have evolved from studies of ARDS in ICU populations [1, 19]. These
protective ventilation strategies aim to provide sufficient oxygenation while mini-
mizing ventilator-induced alveolar trauma, inflammation, and cyclic collapse [23].
While lung-protective strategies for two-lung ventilation are well-described, patients
receiving OLV during lung resection, a cohort that is inherently vulnerable to pul-
monary complications, suffer from a paucity of clinically meaningful evidence.

The lack of reliable data on the time of transition from two-lung ventilation toOLV
is a limiting factor that complicates research into the pathophysiology and prevention
of pulmonary complications after lung surgery. The transition from two- to one-lung
ventilation is a time of heightened risk for respiratory decompensation, and is thus a
time of high cognitive and procedural burden for the anesthesia provider. Therefore,
the manually entered documentation of this transition may not be timed correctly
and is often missing (as shown in Fig. 1). At the same time, multiple streams of phys-
iological data that are recorded automatically during the start and end of OLV, make
it possible to accurately impute the occurrence and timing of OLV. For example,
airway pressures, volumes of delivered breaths, and respiratory rate change within
seconds after the start and end of OLV. Other physiological metrics such as heart
rate, blood pressure, exhaled CO2, and hemoglobin oxygen saturation (SPO2) may
also change in response to the start and end of OLV. The missing or incorrectly timed
documentation of OLV illustrates a common clinical scenario where the need for
event documentation in the procedural or emergency care settings competes for clin-
icians’ attentionwith patient care tasks. Furthermore, the need to recall and document
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Fig. 1 Intraoperative sequence of events during lung resection with one-lung ventilation. TLV:
two-lung ventilation; OLV: one-lung ventilation

clinical events contributes to the cognitive overload of clinicians and can result in
burnout [10]. The cognitive burden of clinical documentation may be alleviated by a
machine learning algorithm that automatically detects the occurrence and timing of
clinical events of interest. If used in real-time or near-real time, such an algorithm
can redirect a clinician’s attention toward patient care. In retrospective analysis of
data, it can aid in clinical quality control and imputing missing data for research.

Given large-scale documented historic medical records, we hypothesized that
a data-driven machine learning model could estimate the occurrence and timing of
clinical events using routinely available physiological settings andmeasurement data.
We aimed to test this hypothesis by developing a deep learning model and testing its
ability to detect the occurrence and timing ofOLV start and end in a dataset of patients
undergoing lung resection surgery. Specifically, the OLV timestamp prediction can
be formulated as a time-series detection task, which takes multiple sequences of 1-D
time-series signals as the inputs and outputs the target timestamp of the occurring
event. Recognizing a specific segment of the waveform is the key to locating the
desired timestamps.

This paper proposes aTransformer-baseddeep learning framework forOLV times-
tamp detection. Apart from spatial features, the 1-D signals are transformed into
wavelet spectrum images and fed into customized convolutional neural networks to
extract the discriminative frequency information. Furthermore, an innovative label
temporal smoothing technique is proposed to optimize the procedure to locate the
maximum scores from the prediction curves. Experimental results show that our pro-
posed method significantly outperforms the basic time-series change-point detection
methods and the recurrent-based deep learning methods.
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2 Related Works

The objective of this work is to detect if there is an OLV event occurring for every
minute of the signals. In the area of time-series analysis, Twitter [25] employed
statistical learning to detect anomalies in both applications (Tweets Per Sec) as well
as system metrics (CPU utilization). Reference [22] proposed an approach to detect
outliers in streaming univariate time series based on Extreme Value Theory that
did not require hand-set thresholds. Reference [7] developed a time-series anomaly
detection toolkit by packaging a series of statistic-based methods such as CUSUM
(cumulative sum) and Bayesian Online Change Point Detection. However, they are
not suitable for the OLV detection tasks because there are no observable change
points near the OLV actions for most of the variables. Additionally, some signals
have many change points that are not related to the OLV procedure; thus, many false
positives would be generated.

Traditional hand-crafted features are expensive to create and require expert knowl-
edge of the field. The performances of traditional statistical models are not satisfac-
tory in real applications. Recently, deep learning approaches have shown superior
power in big data analysis with successful applications to computer vision, pattern
recognition, andnatural languageprocessing [14].Researchers are investigating data-
driven models to improve anomaly detection accuracy [9].

Opprentice [13] used existing detectors to extract anomaly features and fed them to
a random forest classifier to automatically select the appropriate detector-parameter
combinations and the thresholds. Reference [28] proposed Donut, an unsupervised
anomaly detection algorithm based on Variational Auto-Encoder (VAE), making it
the first generative-based anomaly detection algorithm. The reconstruction prob-
ability was used as an anomaly indicator. Reference [5] employed a contrastive
learning strategy for change point detection by learning an embedded representation
through self-supervision. Reference [27] proposed an autoencoder-based deep learn-
ing network to learn physiological features and usemultivariateGaussian distribution
anomaly detectionmethod to detect anomaly data. Similarly, [20] proposed a LSTM-
based encoder-decoder network to construct a predicted multivariate “normal” time
series and used the reconstruction error for prediction.

The existing methods are mostly unsupervised and based on statistical station-
arity assumptions. Therefore, they failed to handle the more complicated scenarios
for OLV timestamp estimation and capture the correlations between different vari-
ables addressed in this paper. Another barrier using existing methods is that they are
incapable of using multiple input signals in a complementary way. The widely used
ensemble method that combines predictions of each signal is ineffective since some
variables themselves are not discriminative enough for prediction, and they can only
provide complementary information for other dominant variables. To handle the
above challenges, we design an innovative Transformer-based model that absorbs
multivariate time-series signals and predicts the timestamps of an OLV event under
supervision. The proposed method enables direct communications from signal to
signal; it also provides direct temporal communications in a self-attention manner
by introducing Transformer encoders.
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3 Data Management

Study Design: Our study followed a retrospective cohort design. The Mass Gen-
eral Brigham (MGB) Institutional review board (IRB) committee had reviewed the
research protocol and exempted the requirement of individual informed consent due
to consideration of feasibility and minimal risks to study human subjects (Protocol
ID: #2021P002173).

Inclusion and exclusion criteria: Inclusion criteria: (1) patients who were
18years or older at the time of surgery; (2) lung resection with one lung ventilation;
(3) admitted to study site on or after June 15th 2016 and discharged prior to or on June
15th 2021; Exclusion criteria: (1) age less than 18years old; (2) pregnancy; (3) intra-
operative death. (4) multiple hospital encounters: (5) multiple OLV-included surgical
procedures performed within encounter: (6) multiple OLV episodes in surgery: (7)
no OLV timestamp data.

Data Source: Our study team retrospectively extracted Electronic Medical
Records (EMR) information from theMGB central data repository named Enterprise
Data Warehouse (EDW) utilizing structured SQL queries. We then constructed and
maintained a clinical and observational database of all adult patients who received
open thoracic surgeries at both Brigham and Women’s Hospital (BWH) and Mas-
sachusetts General Hospital (MGH) from 2016 to 2021 for this research project.
There were no a priori power analyses performed to determine the required sample
size due to the innovative model structure.Wemade all extracted EMR records avail-
able for analyses, model development, and validation. The curated dataset consists
of 4245 patient admission records.

Predictors and Features: OLV can lead to immediate changes of value in certain
physiological measures such as gas exchange, ventilation mechanics, and hemody-
namics. Therefore, modeling the patterns of their changes can be utilized to predict
the OLV event. Specifically, we consider variables/physiological measurements that
could show an indication ofOLV status from the signal shape.We divide the variables
into two groups setting values and physiological measurements from biomedical sen-
sors. The former includes (1) VT (tidal volume) set: target volume for each breath,
(2) respiration set. The latter contains (1) peak airway pressure: maximum pressure
during a breath, (2)measured respiration rate, (3) SPO2, and (4)VT exhaled. Detailed
variable descriptions are shown in Table1.

MissingData:Our study collectedmulti-subjectmultivariate time-series data, and
missingness could occur at any feature throughout the entire observational period of
surgical procedures. We assumed that the missing mechanism was under a common
assumption ofMissingAtRandom (MAR), and imputed thewithin-sequencemissing
values for each feature using the classic linear interpolation method. We used the
nearest value padding method to fill in the missing head and tail values of different
feature sequences to achieve the same fixed length of time series data for followed
modeling steps (Fig. 2).
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Table 1 Variable descriptions. The variables are categorized into ventilator setting variables and
physiology measurement variables

Ventilator setting variables Tidal volume (VTset) A mechanical ventilator setting
which determines the volume
goal of each
ventilator-delivered breath

Respiratory rate (RRset) A mechanical ventilator setting
which determines the number
of ventilator-delivered breaths
per minute

Positive end-expiratory
pressure (PEEP)

a mechanical ventilator setting
which determines the lowest
airway pressure after each
ventilator-delivered breath

Respiratory physiology
variables

Exhaled tidal volume
(exhaledVT)

The measured gas volume
returning from the patient’s
lungs to the mechanical
ventilator after each breath

Respiratory rate (RR) Measured number of
ventilator-delivered breaths per
minute, based on the cyclical
variations in composition of
gas mixture returning to
mechanical ventilator

Peak inspiratory pressure (PIP) Maximum pressure in the
airway during each breath

Hemoglobin oxygen saturation
(SPO2)

The measured % of
hemoglobin that is saturated
with oxygen which indicated
how well oxygen is delivered
to blood from the lungs

4 Method

At a high level, our deep learning model consists of two spatial and frequency
branches. The former is primary, and the latter acts as a supplementary. For the
spatial feature extraction, our method first transforms the variable intensity of each
minute to high dimensional feature embeddings, which improves the representation
capability. Furthermore, several transformer encoder blocks are stacked to enable
spatial-temporal fusion, where the inter-signal relationships are also exploited. In
terms of the frequency branch, we apply the wavelet transform to each signal and
obtain 2D spectrum images. In addition, a Gaussian smoothing operation is per-
formed on the ground-truths in order to produce more continuous predictions.
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Fig. 2 Framework overview. The upper branch leverages signal morphological characteristics, and
the lower branch exploits the frequency spectrum from wavelet transform. First, the multivariate
signals are transformed into feature embeddings and fed into the transformer block. We use the
combined features from spatial and frequency for the last layer detection. A label smoothing tech-
nique is deployed to generate the supervision signals. The timestamp corresponding to the highest
OLV occurrence probability is selected as the predicted timestamp. Detailed training and testing
steps are shown in Algorithm 1

4.1 Problem Definition

The goal of the OLV documentation system is to automatically predict the start and
end timestamp of OLV during lung surgery. Formally, the dataset P with M number
of patients is represented by P = {p1, p2, . . . , pM}. Each patient pm consists of
N variables, and pm = {s0, s1, s2, . . . , sN−1}, where si ∈ R

d , and d is the sequence
length (in minute) after pre-processing. This paper proposes a deep learning method
that attempts to learn a function φ(·) that absorbs p and predicts the OLV start and
end timestamp ys and ye, respectively, which can be described as ŷ = φ(p), where
ŷ is an integer and 0 ≤ y ≤ d.

4.2 Variable Embeddings

In practice, the operation time (from surgery start time to surgery end time) varies
significantly from patient to patient, causing the patient-wise signal length to unfixed.
Feeding an arbitrary length of data to machine learning models needs additional
padding steps and brings about more complexity in model building. Therefore, we
propose to segment the entire sequence into fixed-length windows of length lws ,
namely a sliding window method with a certain step size lstep. Specifically, for each
training iteration, we randomly sample a start timestamp t where t < l − lws , then
select the values from time t to t + lws as the input to the deep learning model. Since
there exist multiple synchronized signal recordings for each patient, we concatenate
all the N signals into a channel dimension, resulting in an input x ∈ R

N×lws .
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In general, among the N recorded physiological signals, some signals (e.g., tidal
volume) provide more clues to address the OLV events than others, while it also
happens that informative signals are noisy and the other signals could provide com-
plementary information for prediction. Hence, we decide to represent each signal in
a multidimensional way in order to improve the representation capability and capture
more complex underlying relationships and signal characteristics. To this end, we
employ three linear layers to transform the raw signal recordings x into high dimen-
sional embeddings, and the embedding dimension gradually increases from N to 64,
and then to 512, and another 512–512. After encoding the low-dimension raw signal
intensities to high-dimension embeddings f ∈ R

512×lws , the densely distributed rep-
resentation can better represent the signal patterns. Next, the feature embeddings f
are ready for sequential information extraction.

4.3 Transformer Blocks for Temporal Learning

To capture the temporal patterns existing around the OLV events, introducing a
sequential machine learning model is demanded. Although the recurrent neural net-
works (RNNs) such as long short-term memory (LSTM) [12] could handle the
sequential input, the gating and recurrent steps have shortcomings in modeling
long-distance dependencies and could get trapped into gradient vanishing problems.
Instead, we deploy a self-attention-based transformer encoder framework. It enables
direct interactions among each value in a sequence, thus overcoming the limitations
of RNNs and their variants.

The Transformer encoder [6, 26] is composed of multiple identical sub-blocks,
and each block consists of a multi-head self-attention module and a fully connected
feed-forward layer. Each sublayer is also succeeded by a normalization layer and
residual layer. Since the transformer blocks are not aware of the input order, we add
a learnable positional embedding to the input similar to BERT [6]. And the last layer
output from the network can be described as:

f = MLP
(

Transformer
(

f + xpos
))

(1)

where xpos ∈ R
lws×512 is the positional embedding. The final features are obtained

by applying a fully connected layer to the output of the Transformer.

4.4 Frequency Domain Features

In the previous sections, the methods we present are mainly for spatial feature extrac-
tion, where we focus on morphological patterns. On the other hand, the change in
the spatial domain, namely the frequency domain feature, is a more subject-invariant
cue for time-series event detection. For example, the power spectrum is a solid fea-
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Fig. 3 Scores predicted by the model with (left column) and without (right column) label temporal
smoothing. Different color of the curves denotes a different sliding window. Vertical blue line:
ground truth timestamps; Vertical red lines: predicted timestamps by finding the maximum

ture representation for electrocardiogram (ECG) and electroencephalography (EEG)
[2, 3] for classification. Since the temporal resolution is crucial for timestamp pre-
diction, we adopt the wavelet spectrum [18] 2D image of the input variables as the
initial frequency data. By concatenating the N wavelet spectrum images, which are
calculated from N input signals, we obtain multi-channel 2D feature maps of size
R

100×100. Then, it’s straightforward to utilize convolutional neural network (CNN)
to extract prediction-related information from the 2D spectrum image. Specifically,
we deploy three layers of 2D convolutions together with BatchNorm and non-linear
ReLU operations. The abstracted frequency features f f req ∈ R

64 are further concate-
nated with the spatial features f in Eq.1 to detect the presence of an OLV event. We
describe the calculation as:

ŷ = σ
(

CLS
(

f; f f req
))

(2)

where σ denotes the Sigmoid operation, and ; is feature concatenation. The output
logits ŷ ∈ R

lws are obtained by applying a fully connected classification layer (CLS).
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Algorithm 1 Pseudo code for the proposed model
Training stage:
1: data_loader samples batches of training records
2: for variables in batch do
3: t ← random()

4: xsignal ← variables[t : t + lws ]
5: x f req ← wavelet(xsignal )
6: f ← Transformer(xsignal )
7: f f req ← CNN(x f req )
8: ŷ ← MLP( f ; fgreq )
9: init_label = zeros[0 : ws]
10: if t < tOLV < t + lws then
11: init_label[tOLV − t] ← 1
12: init_label ← Gaussian(init_label)
13: end if
14: Update the model by cross_entropy(init_label, ŷ)
15: end for
Testing stage:
1: data_loader samples batches of testing records
2: for variables in batch do
3: for i = 1 to nseg do � calculated by Equation 4
4: xsignal ← variables[i : i × ws]
5: Repeat step 4 ∼ 8 in the training stage.
6: Obtain ŷiseg
7: end for
8: ŷ = argmax([ŷ0seg; ŷ1seg, ..., ŷnseg−1

seg ])
9: end for

4.5 Label Smoothing

Recall that after the entire sequence is split into segments, we need to prepare the
ground-truths specifically for each segment. First, if the OLV start timestamp ystart
occurs inside the sampled t to t + lws segment, we set the value at ystart − t to 1,
and set all the other timestamps to 0. Second, if there is no OLV event performed in
the sampled segment, we keep the zero-filled label list as the corresponding ground
truths.

However, the above approach to preparing for the labels is sub-optimal. The first
reason is that, due to the burden of documenting clinical procedures, it happens
that clinicians documented the OLV event a few minute later or earlier than the
exact timestamp of the OLV procedural. In other words, the previous approach to
generating the labels is vulnerable to label noise. Second, optimizing themodel using
a label list that has a sudden high probability value at the exact timestamp and zeros
nearby causes the model to generate discrete predictions. Then, it becomes more
challenging to locate the OLV timestamps from the full-length signals. To tackle the
weaknesses, we propose to utilize the Gaussian distribution function to smooth the
ground truths. Specifically, we use a Gaussian distribution centered at the ground
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truth timestamp with the standard deviation σ , to construct the label distribution y
as shown in Eq.3.

yi =
{

4√
2πσ

exp
(

− (ti−tOLV )2

2σ 2

)

, if − 3 ≤ ti − tOLV ≤ 3

0, otherwise
(3)

Note that the smoothing step only applies to the±3 min near the ground-truth times-
tamp.

As for the inference phase, similar to training, a sliding window with size lws , and
a step size lstep are used to split the signals into smaller equal-length segments. The
total number of segments is calculated by:

nseg = floor

(

d − lws

lstep

)

(4)

where d is the original sequence length. To obtain the final predictions for each
patient, we find the maximum response among all the nneg outputs and the corre-
sponding timestamp. Formally,

ŷ = argmax
(

ŷ0seg; ŷ1seg; . . . ; ŷnseg−1
seg

)

. (5)

4.6 Loss Function

The model predicts the probability of an occurring OLV event for each timestamp.
The binary cross entropy loss is used for optimization. In addition, we apply an
auxiliary cross-entropy classification loss to the frequency feature to classify the
binary occurrence of an OLV event.

5 Results

In this section, we first describe our performance metrics and implementation details
and then provide the comparisons with baseline methods. Following that, we analyze
the importance of each variable through leaving-one-variable-out training and model
interpretation. Lastly, we show the cross-institution generalization ability by training
the model on Site A and testing on Site B, and vice versa.
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5.1 Model Performance

Metrics. Model performance is evaluated in the testing set. We use mean absolute
error (MAE) and accuracy with error margin as the OLV timestamp estimation cri-
teria. The justification of the event prediction accuracy is based on a pre-defined
margin value, which is an allowable temporal range before or after the ground-truth
timestamp. If the predicted timestamp is within this range, the prediction of the OLV
event is a true positive.We use acc3 to represent accuracywith a clinically significant
margin of 3min. The MAE is calculated from the distance between the ground-truth
timestamps and the predicted timestamps.

Implementation details. Our framework is trained using PyTorch. The mini-
batch size is 24, and the learning rate is set to 0.0005. We employed an Adam
[11] optimizer with 0.9 Nesterov momentum, where the weight decay rate is set
to 0.0001. The sliding window size ws is 40min. We split the data into five folds
randomly, and each fold includes 845 records. Five-fold cross-validation is applied
for all experiments. The reported results are the average of every fold. Two identity
models are trained separately to predict the respective start and end timestamps. All
experiments are done in a GeForce RTX 2080Ti GPU. Detailed training and testing
steps are shown in Algorithm 1.

Overall performance and ablation study. Table2 shows the performance using
the full set of variables for training. Figure4 describes the histogram of the prediction
errors for five folds of the testing set. The results show that most of the errors are
centered around 0. A majority (81.7%) of the predictions are within the 3min error
margin. The highest portion is at 0 min error, where the model has successfully
predicted the timestamp at the exact minute of the ground truth, and as the distance
increases, the error percentage decreases significantly. We claim that most of the
predictions are within a 3 min error margin.

As compared to the baseline models, it can be seen from Table2 that our proposed
consistently outperforms all the baselines by a considerablemargin.We implemented

Table 2 Model performances and ablation studies. Change-point: locating the maximum change
point from the most OLV-correlated variable;Base-NN: baseline model using basic fully connected
layers;Base-LSTM: baselinemodel by replacing transformerwithLSTMcells. acc(n): the accuracy
under a n minutes margin, as discussed in the metrics section. The left and right side of “|” denotes
OLV start and end, respectively

Method MAE↓ acc5↑ acc4↑ acc3↑ acc2↑ acc1↑
Change-point 15.3 | 20.3 71.1 | 73.1 68.5 | 71.4 65.1 | 67.6 55.8 | 55.7 34.5 | 31.5
Base-NN 19.0 | 27.5 67.0 | 62.8 63.9 | 61.3 59.7 | 58.0 53.3 | 51.1 41.0 | 36.8
Base-LSTM 6.0 | 9.2 80.0 | 84.3 77.1 | 82.7 72.9 | 80.4 66.7 | 74.7 52.2 | 57.8
w/o smoothing 5.8 | 5.5 80.7 | 89.1 78.1 | 87.5 73.4 | 85.4 67.1 | 80.8 52.7 | 67.1
w/o spectrum 4.5 | 5.1 82.7 | 89.9 79.6 | 88.5 75.0 | 86.1 68.6 | 80.9 53.3 | 64.5
Full model 4.4 | 4.1 83.6 | 91.3 80.2 | 90.0 75.8 | 87.6 69.4 | 82.3 55.7 | 67.2
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Fig. 4 Histogram of prediction errors for OLV start and end timestamps

a heuristic method that locates the top 2 change points from the most OLV-correlated
variable (i.g., VT _set). The results show that the hand-crafted feature based method
produces inferior MAE and accuracy than data-driven learning-based methods. It’s
worth noting that the basic neural network with fully connected layers is not com-
parable to the sequential models such as LSTM (Long short-term memory) and
Transformers. This indicates that incorporating temporal information is crucial for
OLV detection. Although the LSTMs can learn temporal evolution using recurrent
gates, they are sub-optimal compared to Transformers. Transformers enable direct
connections between each node of timestamps, and the direct attention mechanism
allows longer sequential modeling.

In terms of the ablations as shown in Table2, we observe an obvious decreasing
in accuracy (from 83.6|91.3 to 80.7|84.3) and increasing of MAE (from 4.4|4.1 to
5.8|5.5) after removing the label temporal smoothing training. It demonstrates that
smoothing the target timestamps during training produces score curves that have
smoother transitions from OLV occur to not occur, consequently making it easier
to locate the maximum response from the prediction curves. As shown in Fig. 3,
after smoothing the supervision signals with the Gaussian function, the predicted
scores at each timestamp are also curved and noise reduced. On the contrary, without
smoothing, the output scores present noticeable noise that interferes with locating
the maximum score, thus yielding a biased predicted timestamp.

In order to see how much the frequency domain features affect the performance,
we train our model again without the spectrum input and compare it to our original
method. Utilizing the frequency domain features decreases the MAE from 4.5|5.1 to
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4.4|4.1, and acc5 increases from 82.7|89.9 to 83.6|91.3. It shows the effectiveness
of frequency features that can provide solid extra information for time-series OLV
detection.

5.1.1 Cross-Site Generalizability

Recall that our dataset is curated from two institutions. Regarding the within-site
results, we observe that site B yields better performance than site A. This makes
intuitive sense because Site B consists of more patients’ records than Site A. To
investigate themodel generalization ability across two sites, we use the data from one
site for training and thedata from theother for testing.Regarding cross-site validation,
the MAE increases to 5.8|5.5 and 8.7|6.5. While underlying reasons remain unclear
for further investigation, we attribute this to the distribution shift between the data
from the two sites introduced by differences in patient demographics and clinical
characteristics. We leave it as our future work to incorporate domain adaptation
modules to fine-tune our models to improve the model generalizability [8] (Table3).

5.2 Feature Importance Decomposition

To explore how important each variable contributes to the prediction model training
and which variable has more information to predict the OLV start and end times-
tamp. We conduct our experiments in two aspects: (1) training without one of the
variables and (2) computing the integral of the gradients of the output prediction for
the predicted label with respect to the input variables [24].

As can be seen from Table4, after removing either of the VT _set or the
VT _exhaled, the MAE drops more significantly than the others. In contrast, the
rest variables have a minor contribution to accuracy. Some variables contain easier-
recognized signal patterns driven by OLV operation than others, which is consistent
with our observations. By feeding all the variables to the model, the best perfor-
mance is achieved. We can see that although some variables are much less informa-
tive than VT _set or VT _exhaled, they still provide supplementary information for

Table 3 Cross-institution validation results. The left and right side of “|” denotes OLV start and
end, respectively

Train Test MAE↓ acc5↑ acc4↑ acc3↑ acc2↑ acc1↑
Site A Site A 7.5 | 5.9 67.4 | 88.2 60.7 | 86.5 52.5 | 82.9 39.7 | 77.7 26.9 | 65.0
Site B Site B 3.6 | 3.9 87.8 | 91.7 85.3 | 90.4 81.9 | 88.8 76.3 | 84.5 61.0 | 71.5
Site A Site B 5.8 | 5.5 83.4 | 89.5 80.0 | 88.0 72.9 | 84.9 59.7 | 75.8 38.4 | 52.1
Site B Site A 8.7 | 6.5 67.0 | 86.4 60.8 | 83.6 52.4 | 78.0 42.7 | 66.2 29.3 | 42.4
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Table 4 Training by leaving one variable out. “s” and “m”means setting variables andmeasurement
variables, respectively. Detailed variable descriptions are shown in Table1. The left and right side
of "|" denotes OLV start and end, respectively

Metrics MAE↓ acc5↑ acc4↑ acc3↑ acc2↑ acc1↑
w/ all 4.4 | 4.1 83.6 | 91.3 80.2 | 90.0 75.8 | 87.6 69.4 | 82.3 55.7 | 67.2
w/o VT(m) 6.5 | 5.8 78.2 | 88.0 75.1 | 86.5 70.6 | 84.2 64.8 | 78.3 50.4 | 62.4
w/o VT(s) 5.6 | 5.1 82.0 | 90.0 78.5 | 88.4 74.2 | 86.1 66.6 | 80.5 49.8 | 65.2
w/o PIP (m) 4.6 | 5.2 82.2 | 89.6 79.4 | 88.2 74.7 | 85.6 68.2 | 79.1 53.3 | 63.1
w/o PEEP (m) 4.5 | 4.5 83.0 | 90.7 79.8 | 89.2 75.3 | 87.0 69.0 | 81.7 53.6 | 66.6
w/o RR (m) 4.3 | 4.7 83.4 | 90.4 80.4 | 89.1 75.6 | 86.6 69.1 | 81.5 53.4 | 65.8
w/o RR (s) 4.6 | 4.7 83.2 | 90.6 80.3 | 89.3 76.0 | 86.7 69.0 | 80.8 53.3 | 65.8
w/o SPO2 (m) 4.4 | 4.3 83.3 | 90.8 80.3 | 89.3 75.8 | 87.0 69.8 | 81.9 54.4 | 66.5

Fig. 5 Normalized attribution scores of each variable

OLV prediction and contribute to higher accuracy. Figure5 shows the average of the
attribution score of each variable of the patients using the integral of the gradients.
Consistently, we observe higher attribution scores for VT _Set and VT _exhaled.
Following them, P I P and RR present a high importance score less frequently.
Moreover, the scores are widely scattered between 0 to 1, which indicates that there
exists a small portion of cases when P I P and RR contribute the most and act as
dominant variables. The deep learning model adaptively attends to the variables that
are correlated most to OLV events, and it lowers the reliance on the variables that
hardly show OLV-correlated patterns. In contrast, the anomaly detection methods
using hand-craft statistical patterns are incapable of weighing the reliance on the
variables except by using pre-defined weights and thresholds.
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6 Discussion and Limitation

In this paper, we developed and validated an innovative Transformer-based deep
learning model for predictions of start/end timestamps of OLV procedures utilizing
objective physiological monitoring data. We obtained a satisfactory predictive per-
formance for this DL algorithm, and this framework can be potentially extended to
applications of clinical auto-documentation of other OR clinical events or procedures
in other medical settings such as Intensive Care Units (ICU) or Post Anesthesia Care
Units (PACU). Additionally, our extended experiments allow us to track down the
contributing factors of observed between-institution variance, providing insights for
interventions to improve the quality of collected data.

Our study has limitations. First, this work utilizes a retrospective observational
clinical dataset, which is inevitably exposed to selection bias when sampled from
the target patient population. As the first pilot study of this program of research,
we decided to first focus on clinical cases containing only one OLV event due to
practical considerations of data quality control and conditioning, and the convenience
of modeling. This choice was based on assumptions that the majority of thoracic
cases would undergo only one OLV procedure, and that OLV timestamps of one-
OLV cases would be documented more reliably compared to multiple-OLV cases.
However, such choices might have ruled out cases with higher clinical complexity
and more/shorter OLV procedures hence introducing selection biases into our study
sample. It partially explains the discrepancy of predictive performance in cross-site
generalizability analysis due to different clinical characteristics by selection.We plan
to further include and adjust clinical confounding factors to overcome this issue in
our next research. Second, deep learning models are known to be difficult to interpret
and prone to overfit the observed data. We will address this limitation by introducing
the game-theory-based SHAP [16] values for explanations and minimizing over-
fitting by utilizing internal cross-validation techniques and performing cross-sample
(Site A vs. Site B) validations to assure model generalizability across samples from
different institutions. We plan to refine our algorithm in followed studies to predict
both non-event and multiple-events by incorporating external validation data sources
from other institutions such as Columbia University Hospital systems.
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Abstract During the COVID-19 pandemic, news stations have used social media
platforms such as Twitter to deliver information to the general public. To understand
the trends as well as impact of these posts, we analyze 500k tweets and responses
across 15 news outlets from USA, Canada, and UK, through three research ques-
tions. The first question is related to topic popularity where a zero-shot classification
algorithm is used to determine what type of COVID-19 related tweets users are
mostly interacting with. Then, the second question looks to determine how the audi-
ences differ in their responses between news stations within each country by using
a sentiment, emotion, and stance analysis algorithm as well as statistical hypothe-
sis test. Lastly, the third question uses the previous analyzes’ results along with the
political leanings of each news station to see if there is a correlation in differences.
As a result, we discover that the topic of vaccine is the most popular, audiences in
the USA and UK have a considerable amount of differences in their responses, and
that the differences in political leanings strongly match with differences in audience
response.
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1 Introduction

Since the emergence of COVID-19 at the beginning of 2020, there has been a mixed
reaction from the public in regards to health related topics such as vaccines, pub-
lic mandates, and political responses [1, 2]. This can be observed on social media
platforms such as Twitter where users have the ability to respond to news stories
posted by various outlets. However, due to the differing biases and opinions of these
channels, divisions in the responses can lead to harmful outcomes such as vaccine
hesitancy, protests, and distrust in public health officials [3–5]. To better understand
these trends and the impact of such posts, it would be beneficial to have a framework
that can compare how the audiences of different news stations react to COVID-19
tweets. Therefore, this work proposes a solution and applies it to three different
countries to analyze the results.

To begin, a dataset of nearly 500k tweets is created via the Twitter Academic API
by collecting 15 news stations’ tweets and the responses to them from the first two
years (January 1, 2020–January 1, 2022) of the pandemic in the USA, Canada, and
UK. Then, the following three research questions are defined to understand the trends
and impact of these posts using a framework with pre-trained language models:

• RQ1: Which COVID-19 related topics from different news stations were the most
popular overall?

• RQ2: Is there a difference in the responses to COVID-19 related tweets from
different news stations?

• RQ3: Do differences in the responses to COVID-19 related tweets occur between
news stations with different political stances?

To answer these questions, a zero-shot model is ran to classify the tweets into a
set of COVID-19 related topics such that the first research question can be answered
by looking at overall engagement. Next, models that perform sentiment, emotion,
and stance analysis are ran to determine the respective information for each of the
responses. From this, the second research question can be answered by performing
a statistical hypothesis test to observe whether or not the means of the results differ
between news stations. Lastly, based on the observations made and political stance
information obtained from reputable websites, the third research question can be
answered to see if there is a correlation.

As a result, this work provides a detailed overview of the trends in responses to
COVID-19 related tweets, as well as the impact different news stations have on their
audiences. Our overall goal is to demonstrate that tweets discussing similar stories
can be conveyed in different ways by analyzing the reactions from the general public.
This is important to consider as strong biases or stereotyping for example may elicit
a more negative response whereas another news station discussing the same story in
a more positive manner may not receive the same attention [6].
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2 Related Works

2.1 COVID-19 Pandemic

The use of deep learning for COVID-19 problems has become a very popular applica-
tion area in recent times. Due to the amount of engagement on social media platforms
such as Twitter, analyzes can be ran to better understand how the general population
is responding to certain topics. For example, Durazzi et al. [7] looked to analyze
∼350m English tweets from ∼26m users between January 13, 2020 through June
7, 2020 to identify COVID-19 related clusters and see what similarities they have.
This was accomplished by using a community detection algorithm to see how users
are connected to one another in terms of (1) classification (e.g., science or media), (2)
presumed physical location, and (3) engagement (i.e., retweets and responses). As
a result, they found that there were four main “super-communities” (science-health,
national elite, political, and other), several country-specific communities related to
politics, and that the science-health community received significantly more attention
at the beginning of the pandemic.

In a more focused approach, Han et al. [8] gathered 34,352 COVID-19 related
tweets from UK news stations and citizens between April 2, 2020 through April 8,
2020 to see if similar topics were discussed. They used unsupervised text anal-
ysis methods via structural topic modelling to find that there was a difference
between them: news stations focused on safety advice, death news, and international
COVID-19 news while citizens mainly posted about COVID-19 discussions, feel-
ings towards the pandemic, and activities they were doing. Since previous works
had focused on English tweets only, Garcia et al. [9] looked to propose a multi-
lingual framework to also deal with Portuguese. This was accomplished by using
BERT [10] to perform emotion analysis and an algorithmic approach for topic mod-
elling to compare ∼7m COVID-19 related tweets between the USA and Brazil. To
be able to input the Portuguese tweets, a dataset from Kaggle1 was used to pre-train
a separate instance of the model. From this, they found that the majority of emotions
were negative (anger, fear, and sadness) and that 70% of the main topics discussed
were equivalent between the two countries- the most popular in USAwas “economic
impacts” while Brazil’s was “proliferation care”.

2.2 Political Campaigns

Although the application of natural language processing on pandemic datasets has
become common in recent times, another related area is analyzing the tweets during
political campaigns. For example, Mueller et al. [11] performed sentiment analysis
on 97,909 tweets from 342 US politicians during the 2018 midterm elections to see

1 https://www.kaggle.com/datasets/augustop/portuguese-tweets-for-sentiment-analysis.

https://www.kaggle.com/datasets/augustop/portuguese-tweets-for-sentiment-analysis
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if more negativity results in more interaction with the posts. They developed a novel
statistical measurement to determine negativity incentive and used statistical models
including negative binomial, ordinary least squares, aswell asNaiveBayes to analyze
the tweets. After performing the analysis, their hypothesis was demonstrated to be
true as the amount of interaction a negative tweet received was substantially higher
than others. Similarly, Sahly et al. [12] analyzed how Trump and Clinton differed in
the development of their posts on Twitter and Facebook during the 2016 presidential
election to see if it affected audience engagement. They used two annotators (kappa
score of 0.91) that were trained with frame definitions to label their data so they
could determine if the candidates differed in the frequency of conflict, morality,
and attribution of responsibility frames. The results showed that, on Twitter, the
politicians’ use of tweets framed in a negative way were statistically different with
more negativity resulting in more interaction. To understand the data preparation
steps and deep learning methods used in our work, the next section will discuss the
methodology.

3 Methodology

3.1 Data Preparation

Using pre-existing algorithms that will be described in the next subsection, our analy-
sis focuses on the following three countries: USA, Canada, andUK. Following Fig. 1,
step 1 begins with selecting five news stations, for each country, to gather tweets from
between January 1, 2020 through January 1, 2022 (step 2) that contain the keywords
pandemic, vaccine, virus, outbreak, coronavirus, or covid: USA- ABC, CNN, Fox
News, MSNBC, NBC, Canada- CBC, CTV, Globe and Mail, National Post, Global
News, and UK- 5 News, Channel 4 News, ITV News, Sky News, BBC. The key-
words were developed after manually extracting relevant high-level words from a
subset of the tweets, and news stations were selected based on high follower counts.
In step 3, for each tweet, all replies are collected to allow for analysis on the audience
engagement across different COVID-19 related topics. At this stage in the process,
there are just over 10 million tweets and replies in total before any additional steps.

Using the raw dataset, sentiment analysis is performed to determine how many
common tweets there are across each news station within each country. This is done
in step 4 by selecting the news station that had the most tweets with responses:
USA- NBC, Canada- Global News, and UK- BBC. Then in step 5, for each of their
tweets, the contents are compared to each of the other news stations’ tweets within
their respective country using a semantic similarity algorithm [13] to extract the most
similar results. After setting aminimum threshold of 60–70% in step 6, the remaining
number of tweets and replies are as follows: Canada- 1,290 tweets and 81,533 replies,
US- 1,180 tweets and 324,246 replies, and UK- 725 tweets and 85,226 replies. Using
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this information, the three research questions can then be answered by analyzing the
topics of the tweets and contents of the replies [14].

3.2 Prerequisites

3.2.1 Semantic Similarity

In order to perform the analyses, the tweets from each news stationwere first grouped
together such that a set of common stories can be extracted. To do this, an algorithm
referred to as Sentence-Bert (SBERT) [13] is used which is a modified version of
BERT [10] and performs semantic similarity on a pair of text. Their framework
consists of a siamese (i.e., dual) and triplet network structure that aims to produce
better sentence embeddings than previous approaches so it can be compared using
consine similarity. The former networkworks to produce these results while the latter
network applies the following loss function when training:

max(||sa − sp|| − ||sa − sn|| + ε, 0) (1)

where sa is an anchor sentence, sp is a positive sentence, sn is a negative sentence,
and ε is a Euclidean distance set to 1. In this work, a pre-trained model from the
authors is used that learned from a combination of two datasets which contain a total
of ∼1 million sentence pairs [13]. Consider the following example from our dataset
where the similarity between the two tweets are ∼88.18%:

NBC NEWS: The FDA has told Johnson & Johnson to discard about
60,000,000 doses of its Covid-19 vaccine that were produced at a
troubled plant in Baltimore, according to 2 people familiar with the
matter.

FOX NEWS: FDA reportedly tells Johnson & Johnson to toss 60M COVID-19
vaccine doses over contamination concerns LINK

For quality assurance, the following two conditions must be met in order for an
extracted story across all 5 news stations within a given country to be considered
for further analysis: (1) the most similar tweets must meet a minimum similarity
threshold (Fig. 1, Step 6) and (2) the most similar tweets must be within a week
range of each other at most.

3.2.2 Topic Identification

Once the tweets have been grouped into a set of common stories, the next step
is to determine the different topics that are being discussed. For the purpose of
this work, consider the following possibilities: vaccine, restriction, infection, death,
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Fig. 1 An overview of the
data preparation process
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and other. In order to perform this classification, an algorithm referred to as XLM-
RoBERTa (XLM-R) [15] is used which is based on the XLM approach [16] and
RoBERTa architecture [17]. The authors looked to improve over existing models
by utilizing a large dataset consisting of 100 languages while ensuring that overall
performancewould not be impacted. Thiswas achieved by using transformers trained
with a multilingual masked language model (MLM) objective [10, 16], and not
using language embeddings to better deal with code-switching between inputs. As
a result, a CommonCrawl Corpus was developed which contains significantly more
data in comparison to previous approaches which typically used English data from
Wikipedia articles. Although the tweets in this work do not utilize the multilingual
aspect of this model, it is a more desirable approach since it was able to learn from
a large variety of data. For instance, in the previous example shown for semantic
similarity between two tweets discussing the Johnson & Johnson vaccine, the zero-
shot classifier placed the story under the vaccine category.

3.2.3 Sentiment Analysis

To determine the sentiments of responses to new stations’ tweets, an approach
referred to as Time Language Models (TimeLMs) [18] is used which implements
the RoBERTa algorithm [17]. The novelty of this framework is that the models are
continuously updated with labelled Twitter data every 3months to ensure that they
are up-to-date with current trends and improve overall accuracy.When the article was
initially published in 2019, they had used a dataset consisting of 90million tweets for
pre-training to see how adding additional data over time would affect performance.
As a result, they have been able to demonstrate that the additional training does
improve accuracy on pre-exisiting data, with the version used in this paper being
trained on a total of 124 million tweets. To demonstrate this algorithm, consider the
following example from our dataset that was labelled positive:

I think he is doing a great job and anyone ask how is doing cause he is
human like us.

3.2.4 Emotion Analysis

Similar to the previously discussed TimeLMs [18], our emotion analysis uses the
RoBERTa algorithm [17] which was identified by the TweetEval framework [19] as
being a top performer for the problem. This was done by comparing the performance
of themodel on a dataset consisting of∼11 k labelled tweets [18, 19].After analyzing
the results of five other models, we chose to use their pre-trained version of this
algorithm for our work and demonstrate it on the following tweet from our dataset
that was labelled anger:

Vaccine bogus. I wonder how many MORE UNDERLING HEALTH ISSUES It does
not protect.
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3.2.5 Stance Analysis

To determine the stance that replies are taking, we chose to use the Knowledge
Enhance Masked Language Modeling (KE-MLM) method [20] which fine-tunes a
BERT model to incorporate contextual knowledge for a given topic. This was accom-
plished by utilizing a weighted log-odds-ratio technique with informed Dirichlet
priors, which helps extract important words for determining the classification (i.e.,
against, in favor, neutral) [20]. In traditional approaches, the authors noted that TF-
IDF was typically used for this aspect which they felt was a limitation in achieving
better performance. As a result, after training on a dataset related to the 2020USPres-
idential election, their approach was demonstrated to outperform previous methods
which is why we use their pre-trained model for this analysis [20]. As an example,
consider the following tweet from our dataset that was labelled in favor:

Let’s focus on safety first. Measures need to put in place to prevent
the spread of the virus. Contain this virus and no racism. We can do
both.

4 Results

4.1 RQ1: Which COVID-19 Related Topics from Different
News Stations Were the Most Popular Overall?

After extracting sets of similar tweets between news stations, the zero-shot algo-
rithm [15] is ran to classify them into one of the following five topics: vaccines,
infections, restrictions, deaths, and other. As this step is being entirely labeled by
an algorithm, we chose to use a concise list of high-level topics to help reduce the
loss in overall accuracy. Figure2 shows how the overall responses are distributed
for each news station within each country where it can observed that vaccines are
the most engaged (see folder Topics). Furthermore, the new stations with the highest
distribution on this topic are CNN (USA), Global News (Canada), and Channel 4
News (UK) meaning that their audiences were the most responsive to it. Another
observation that can be made is that in Canada, the topic of vaccines are significantly
more popular than others whereas in the UK, it is relatively close to the topic of
infections.
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Fig. 2 Summaries of the response distribution for each country
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4.2 RQ2: Is There a Difference in the Responses
to COVID-19 Related Tweets from Different News
Stations?

To determine whether or not there is a difference in the responses to COVID-19
related tweets, three analyzes are performed to determine (1) sentiments (positive,
neutral, negative), (2) emotions (anger, sadness, optimism, joy), and (3) stances
(against, neutral, in favor). Then, using the total counts for each respective classi-
fication, a statistical hypothesis test (t-test) is performed to see if the news stations
have statistically significant differences between one another by using a threshold of
0.05 for the p-value. Since each comparison is independently done (i.e., there is a
separate hypothesis for each comparison), adjustments such asBonferroni correction
are not made [21]. To visualize the label distribution of these analyses, a repository is
available at the URL: https://github.com/andrfish/COVID-Tweet-Response-Trends.

4.2.1 Sentiment Analysis

The classification distribution for sentiment analysis is shown in the Sentiments
folder of the repository where it can be observed that, on average, negative is the
most prominent overall. When performing the statistical hypothesis test, we consider
the following hypothesis: Is the mean of {negative, neutral, positive} responses to
news station A’s tweets different than news station B’s tweets? The null hypothesis
is that “they have the same mean” and the alternative hypothesis is that “they have
different means”. After performing the test, consider Tables1, 2, 3 which shows
the rejections of the null hypothesis (i.e., acceptance of the alternative hypothesis)
for USA, Canada, and UK respectively. It can be observed that a large amount of
rejections between news stations happen in the USA while in the UK, a majority of
the rejections occur with one news station (Sky News Break).

4.2.2 Emotion Analysis

The classification distribution for emotion analysis is shown in theEmotions folder of
the repository where it can be observed that, on average, anger is the most prominent
overall. When performing the statistical hypothesis test, we consider the following
hypothesis: Is the mean of {angry, joyful, optimistic, sad} responses to news station
A’s tweets different than news station B’s tweets? The null hypothesis is that “they
have the same mean” and the alternative hypothesis is that “they have different
means”. After performing the test, consider Tables4, 5, 6 which shows the rejections
of the null hypothesis (i.e., acceptance of the alternative hypothesis) forUSA,Canada,
and UK respectively. Similar to the sentiment analysis, it can be observed that a large
amount of rejections between news stations happen in the USA while in the UK, a
majority of the rejections occur with one news station (Sky News Break).

https://github.com/andrfish/COVID-Tweet-Response-Trends
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Table 1 Rejections of the sentiment analysis null hypothesis for responses in USA

News station A News station B Label P-value

ABC CNN Negative 0.033

ABC Fox news Negative 0.001

Fox news MSNBC Negative 0.023

Fox news NBC Negative 0.002

ABC CNN Neutral 0.032

ABC Fox news Neutral 0.001

Fox news MSNBC Neutral 0.003

Fox news NBC Neutral 0.0

ABC Fox news Positive 0.007

Fox news MSNBC Positive 0.013

Fox news NBC Positive 0.003

Table 2 Rejections of the sentiment analysis null hypothesis for responses in Canada

News station A News station B Label P-value

CBC news Globe and mail Negative 0.027

CBC news Globe and mail Neutral 0.044

Table 3 Rejections of the sentiment analysis null hypothesis for responses in UK

News station A News station B Label P-value

5 news SkyNews break Negative 0.044

5 news BBC news Negative 0.04

Channel 4 news SkyNews break Negative 0.047

ITV news SkyNews break Negative 0.044

5 news SkyNews break Neutral 0.036

5 news BBC news Neutral 0.037

Channel 4 news SkyNews break Neutral 0.044

ITV news SkyNews break Neutral 0.039

5 news SkyNews break Positive 0.028

Channel 4 news SkyNews break Positive 0.033

ITV news SkyNews break Positive 0.027
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Table 4 Rejections of the emotion analysis null hypothesis for responses in USA

News station A News station B Label P-value

ABC CNN Anger 0.018

ABC Fox news Anger 0.001

Fox news MSNBC Anger 0.028

Fox news NBC Anger 0.002

ABC Fox news Joy 0.002

CNN MSNBC Joy 0.034

Fox news MSNBC Joy 0.002

Fox news NBC Joy 0.001

ABC CNN Optimism 0.021

ABC Fox news Optimism 0.002

Fox news NBC Optimism 0.001

ABC Fox news Sadness 0.003

Fox news MSNBC Sadness 0.0

Fox news NBC Sadness 0.001

Table 5 Rejections of the emotion analysis null hypothesis for responses in Canada

News station A News station B Label P-value

CBC news Globe and mail Anger 0.028

CBC news Globe and mail Optimism 0.047

4.2.3 Stance Analysis

The classification distribution for stance analysis is shown in the Stances folder of the
repositorywhere it can be observed that, overwhelmingly, none is themost prominent
overall. When performing the statistical hypothesis test, we consider the following
hypothesis: Is the mean of responses {against, in favor, neutral} to news station A’s
tweets different than news station B’s tweets? The null hypothesis is that “they have
the same mean” and the alternative hypothesis is that “they have different means”.
After performing the test, consider Tables7, 8, 9 which shows the rejections of the
null hypothesis (i.e., acceptance of the alternative hypothesis) for USA, Canada, and
UK respectively. Similar to the previous two analyzes, it can be observed that a large
amount of rejections between news stations happen in the USA while in the UK, a
majority of the rejections occur with one news station (Sky News Break).
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Table 6 Rejections of the emotion analysis null hypothesis for responses in UK

News station A News station B Label P-value

5 news SkyNews break Anger 0.043

5 news BBC news Anger 0.039

Channel 4 news SkyNews break Anger 0.047

ITV news SkyNews break Anger 0.044

5 news SkyNews break Joy 0.032

5 news BBC news Joy 0.046

Channel 4 news SkyNews break Joy 0.04

ITV news SkyNews break Joy 0.032

5 news SkyNews break Optimism 0.045

5 news BBC news Optimism 0.039

Channel 4 news SkyNews break Optimism 0.047

ITV news SkyNews break Optimism 0.048

ITV news BBC news Optimism 0.047

5 news SkyNews break Sadness 0.03

5 news BBC news Sadness 0.038

Channel 4 news SkyNews break Sadness 0.038

ITV news SkyNews break Sadness 0.032

Table 7 Rejections of the stance analysis null hypothesis for responses in USA

News station A News station B Label P-value

ABC CNN Against 0.027

ABC Fox news Against 0.008

CNN MSNBC Against 0.004

CNN NBC Against 0.0

Fox news MSNBC Against 0.003

Fox news NBC Against 0.0

ABC MSNBC Favor 0.038

ABC CNN None 0.035

ABC Fox news None 0.001

Fox news MSNBC None 0.012

Fox news NBC None 0.001

Table 8 Rejections of the stance analysis null hypothesis for responses in Canada

News station A News station B Label P-value

CBC news Globe and mail None 0.035
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Table 9 Rejections of the stance analysis null hypothesis for responses in UK

News station A News station B Label P-value

5 news SkyNews break Against 0.04

5 news BBC news Against 0.046

Channel 4 news SkyNews break Against 0.045

ITV news SkyNews break Against 0.04

ITV news BBC news Against 0.043

5 news SkyNews break None 0.039

5 news BBC news None 0.039

Channel 4 news SkyNews break None 0.045

ITV news SkyNews break None 0.041

4.3 RQ3: Do Differences in the Responses to COVID-19
Related Tweets Occur Between News Stations
with Different Political Stances?

To begin, each news stations’ political leaning is first determined. After examining
the methodology of prior works [22, 23], three websites are used2,3,4 to compile the
following list:

• Left: CNN, MSNBC
• Lean Left: ABC, NBC, CBC News, Channel 4 News, 5 News
• Center: Global News, Globe and Mail, CTV News, BBC News, SkyNews Break
• Lean Right: National Post, ITV News
• Right: Fox News

When reviewing the results shown in Tables1, 2, 3, 4, 5, 6, 7, 8, 9, it can be
observed that every null hypothesis rejection (i.e., difference in responses) has dif-
ferent political leanings except for CNN and MSNBC when they differed in the
emotion analysis for joy as well as the stance analysis for against. To summarize,
in the USA, 34/36 (∼94.4%) rejections of the null hypothesis had different political
leanings, 5/5 in Canada, and 37/37 in the UK. This demonstrates a strong correlation
between differences in responses to differences in news stations’ political leanings
to positively answer the third research question.

2 https://www.allsides.com/media-bias.
3 https://adfontesmedia.com/interactive-media-bias-chart.
4 https://mediabiasfactcheck.com.

https://www.allsides.com/media-bias
https://adfontesmedia.com/interactive-media-bias-chart
https://mediabiasfactcheck.com
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5 Discussion and Future Work

After developing a dataset from the first two years of the pandemic, RQ1 looked to
determine what the most popular topic was overall. To do this, for each country, a
semantic similarity algorithm was ran to group the news stations’ tweets such that
sets of common stories could be extracted. Then, a zero-shot classification algorithm
was ran to group these stories into COVID-19 related topics so the amount of user
interaction could be observed. From this, it was discovered that vaccineswas themost
popular across all news stations and countries. Because of this, it may be possible for
future work to find that social media plays a role in influencing people about whether
or not to get vaccinated. As for RQ2, the goal was to determine if the audiences
of each news station react differently to COVID-19 related tweets by performing
sentiment, emotion, and stance analyzes. Overall, it was observed that the USA had
many differences, Canada had few differences, and the UK primarily differed with
one news station. Lastly, based on RQ2’s results, the purpose of RQ3 was to observe
if the differences if responses matched with differences in political stances between
the news stations. This was discovered to be true in all instances except for the
differenceswithinUSAbetweenCNNandMSNBC. Therefore, futureworkmay find
that audiences are influenced by the different stances news stations have on COVID-
19 topics. However, to provide more evidence for this statement, another analysis
should be performed to determine if there is division within political leanings, or to
cover a wider variety of topics by expanding the keyword list. Furthermore, another
extension of this work could be to compare country to country or to check for sarcasm
in the replies to ensure that the labels extracted are accurate.

6 Conclusion

In this article, three research questions were answered to better understand how
Twitter users responded to COVID-19 related tweets from news stations in the USA,
Canada, and UK. As a result, an analysis on the popular topics and differences in
user engagement were presented by using natural language processing techniques as
well as statistical hypothesis tests. From these results we hope to demonstrate that
news stations play a role in influencing their audiences’ response to the COVID-19
pandemic, and provide future work with ideas on how the analysis can be expanded.

Acknowledgements Thiswork is supported byNSERCDiscoveryGrant RGPIN-2017-05377 held
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Understanding the Role of Questions
in Mental Health Support-Seeking
Forums

Aylin Gunal, Ian Stewart, Rada Mihalcea, and Verónica Pérez-Rosas

Abstract People who seek mental health help online often receive supportive com-
ments from other users, but their intentions may not be clear, as when someone
asks a question that does not require a response. In this work, we explore the role
of questions asked in response to support-seeking posts during online interactions
centered around mental health support. We introduce a new dataset consisting of
1,089 mental health related post-response pairs from Reddit containing response
questions annotated as rhetorical, information-seeking or not applicable. Through
several experiments, we find that we can effectively distinguish between rhetorical
and information seeking questions using linguistic features. Our findings highlight
the importance of surrounding context and functional features (e.g., auxiliary verbs)
as opposed to semantic (e.g., words related to mental processes) being significant
predictors of question type.

1 Introduction

Online mental health communities are growing as more people seek support or offer
it to others. Several works have explored the nature of interactions within these com-
munities, including expressions of empathy and members’ motivations for partici-
pation [6, 25, 28]. However, few studies have examined the role and characteristics
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of questions posed by members of these communities [8, 27], which can reflect how
people request information and make arguments about mental health.

In this work, we study the linguistic cues associated with different types of ques-
tions posed in mental health forums on Reddit. We focus on interactions where
supporters ask questions in response to support-seekers, since understanding the
nature of these questions can help counselors and non-professionals alike understand
how to connect meaningfully with patients. While online help-seeking interactions
might differ from their counseling counterparts they also share important charac-
teristics such as information probing through questioning and expressing empathy.
We believe that our study can contribute to understanding what types of questions
are asked by support givers around mental health topics in both peer and counseling
settings. Furthermore, since questions play a key role in counseling techniques such
as Motivational Interviewing [16], our work presents a first step into understanding
the intent and nature of questions in psychotherapy.

We introduce Mental heAlTh quEstions (MATE), a new dataset of questions
from mental health subreddits that are labeled as information-seeking or rhetorical.1

We evaluate the use of linguistic features in the task of classifying rhetorical ver-
sus information-seeking questions. Our findings show that functional features (e.g.,
auxiliary verbs) are significant predictors of question type, and that question clas-
sification models benefit from the addition of context-related features. This study
provides insights into differences in the way questions are asked in the mental health
domain. In addition, our work contributes an important resource for question gen-
eration studies, where training with low-quality data can lead to harmful generated
text [9].

2 Related Work

Proposed taxonomies of questions often focus on sentence structure (e.g., wh-word
appearance; Kearsley [11]), and on the intent of the speaker (comparison versus
explanation; Nielsen et al. [17]). Two particularly common question categories in
online discussions are information-seeking, where the inquirer looks for new infor-
mation, and rhetorical, where the inquirer uses the implied answer to the ques-
tion as a rhetorical device [23]. Prior work on the classification of rhetorical versus
information-seeking questions has demonstrated that a bag-of-words representation
provides a strong baseline [2, 29], but has done less to explore the relative importance
of different linguistic features. Our work provides an analysis of different seman-
tic, functional, and contextual features in question classification, specifically within
mental health discussions where determining question intent can prove critical to a
successful conversation.

1 We will release the code and annotated dataset upon completion of screening the dataset for
personal identifiable information, in line with previous similar work [9].
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3 Data Collection

We use the dataset collected by [13], consisting of posts and responses discussing
mental health issues onReddit. This dataset both alignswith the domain aswell as the
dialogue structure we are interested in observing, i.e. questions asked in response to
common mental health concerns. From the full set, we focus on posts with responses
that include follow-up questions. We identify the post-response pairs by filtering
responses that contain question marks–a simple approach that previous works have
successfully applied [1, 29] to identify questions on social media.

We further filter the resulting set to remove posts written by known bots, ques-
tions duplicating content from the original post, and URLs that were incorrectly
identified as questions due to their use of question marks. Because some comments
includemultiple questions, we createmultiple post-comment pairs by extracting each
individual question from the comment. We obtain 76,476 post-response pairs from
48,784 unique responses fromwhich we collect their post content and corresponding
author “flairtags” i.e., a label indicating the support provider expertise (e.g., “Mental
Health Practitioner”). Table1 shows an example of a post-comment pair from the
resulting set along with its author flairtag.

3.1 Annotation

To enable our experiments, we manually annotate a randomly sampled subset of
1,100 questions with three main types of questions as described below.
Information-Seeking (IS) Questions that explicitly ask for information from the
author of the original post.

Rhetorical (R) Questions that address the author of the original post but do not
explicitly seek information.

Table 1 Example of a post and a responding comment that contains a question

Post Comment Post-author flairtag Comment-author flairtag

How should I ask my
therapist for my
diagnosis?

Are you paying with
insurance? Because
many therapists
actually are very
hesitant to formally
diagnose clients.
However, when using
insurance it is
required in order to
get paid.

No expertise High expertise
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Table 2 Example questions with context from the dataset

Questions with context Label

Would therapy help? I’d say there’s a good
shot.

R

Some people have difficulties with more
intimate relationships. Do you believe you
could be on the spectrum?

IS

Table 3 Dataset statistics

Statistics IS R

Avg. sentence length (tokens) 10.9 10.7

Questions with preceding context 325 (67.0%) 224 (75.6%)

Questions with following context 224 (46.1%) 261 (88.2%)

Not Applicable (NA)Questions that were neither IS or R due to one of the following
conditions: (1) being unrelated to mental health support (e.g., seeking career advice);
(2) not being directed towards the author of the original post (e.g., community post);
(3) including harmful content (e.g., trolling, bigotry).

Two annotators independently label each question. The annotators are undergrad-
uate students who read the instructions carefully and practiced the guidelines before
annotating. During the annotation task, they are shown the question as well as the
sentences preceding and following the question, whenever available. Annotators dis-
card 11 post-responses that do not fit into any of the IS, R, or NA categories (e.g.
emojis). Disagreements are resolved by a third annotator. The overall inter-annotator
agreement is 79% and Cohen’s Kappa was 0.68.

The final dataset includes 1,089 questions, annotated as 485 IS, 296 R, and 308
NA respectively and distributed across 38 different mental health subreddits. The
most popular subreddits in the final set include r/ADHD (394), r/mentalhealth (257),
r/relationship_advice (166), r/askatherapist (56), and r/offmychest (27). Examples
of questions in the dataset including preceding or following context are shown in
Table2, and the dataset statistics are shown in Table3.

4 Features

We explore the effectiveness of different linguistic features in the classification
between information-seeking and rhetorical questions, focusing on lexical, func-
tional, semantic, and contextual features.
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Lexical Features We extract unigrams using TF-IDF counts and word embeddings
with Word2Vec by obtaining the mean of embeddings for individual words in the
question.

Functional FeaturesAquestion-asker may indicate their intention by changing how
their question is framed. We therefore extract words that serve a syntactic function,
rather than content, within a question.2 (1) Head Nouns.We extract head nouns i.e.,
nouns located within the main noun phrase of a sentence, from questions using the
heuristic designed by [15]. (2) Auxiliary Verbs.We extract the leftmost auxiliary verb
i.e., verbs that add context to the main verb, in a target sentence. (3) Wh-keywords.
We extract the leftmost wh-question word (e.g., “where”).

Semantic Features We obtain features that capture semantic aspects of the ques-
tion’s content. (1) Lexical Diversity metrics. Lexical diversity measures the diver-
sity of words that a speaker uses to convey an idea, which may indicate a more
information-heavy sentence and therefore information-seeking. We use the follow-
ing metrics: Measure of Textual Lexical Diversity, Hypergeometric Distribution,
Maas [14], Type-Token Ratio, Mean Word Frequency, Yules K, and Yules I [18]. (2)
LIWC features. Prior work in mental health conversations has found that the Linguis-
tic InquiryWord Count (LIWC) lexicons prove useful in identifying different mental
processes [22], which we hypothesize may extend to expressing rhetorical intent. We
derive semantic features using the LIWC lexicon [21] for the 80 semantic classes
in the lexicon. (3) Concreteness. Words that are highly concrete and refer to well-
formed concepts (e.g. “hair”) may correlate with the intent to seek new information.
Concreteness scores are computed per-word using the dataset from [3], and we use
the mean over all words in the question as the feature. (4) Polarity and NPIs.We cal-
culate the polarity of questions using TextBlob.3 Following previous findings [24]
that consecutive sentences with opposite polarities may indicate rhetorical intent,
we calculate negative-polarity indicators (NPIs) by parsing the dependencies of the
question and its corresponding context sentences, and note whether the question or
either context sentence includes a negative dependency.

Contextual Features We extract both linguistic and social contextual features of a
question. (1) Context. We extract the unigrams TF-IDF embedding for the sentence
immediately preceding the question and for the sentence immediately following
the question within the full response. (2) Context-Question Similarity. Under the
same intuition from the NPI index above, we compute cosine similarity and Word
Mover’s Distance [12] between the word embedding of question and corresponding
context sentences. (3)User Expertise. We embed information about the level of user
expertise using their Reddit flairtags. We label users as high expertise if their tags
indicate subject matter expertise (e.g., ’Psychiatry PhD’), low expertise for tags that
indicate knowledge but not necessarily authority in mental health (e.g., ’depression’)
and no expertise for tags that do not reference mental health experience at all.

2 For extraction of features that require a parser (e.g., auxiliary verbs), we use SpaCy
(https://spacy.io).
3 https://textblob.readthedocs.io/en/dev/.

https://spacy.io
https://textblob.readthedocs.io/en/dev/
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Table 4 Baseline performances for mental health question classification using SVM

Features # Feat. Acc. F1-IS F1-R

Word2Vec 100 0.611 0.718 0.365

Uni 1467 0.743 0.796 0.644

5 Experiments and Results

We conduct a series of experiments to distinguish between rhetorical and informa-
tion seeking questions using the extracted features separately and jointly. Due to
the imbalanced class distribution in our dataset, we upsample using SMOTE [5]
to synthetically generate minority class labels. We use a linear SVM as our main
classifier4 and evaluate using five-fold cross-validation, with accuracy, precision,
recall, and F-score as performance metrics. We use the machine learning algorithm
implementations available in the Scikit-learn5 library with their default parameters.

BaselineModelsWeestablish a baseline performance for the classification task using
lexical features only. Classification resultswhen usingword embeddings (Word2Vec)
and unigrams (Uni) are shown in Table 4. We did not observe a performance gain
when combining these features. Similar to prior work (0.69 F1 in [29], 0.76 F1 in
[19]),we show that a simple classifier using only the question text achieves reasonable
F1 scores, which supports the task’s validity.

Feature Groups We conduct experiments using each of the feature groups defined
in Section Features separately, and in combination with question unigrams. Results
are shown in Table5. The Functional feature set does the best overall, and auxiliary
verbs are often the key features in the set: IS questions typically begin with primary
auxiliary verbs (“Do you have a plan to be safe?”) whereas some R questions begin
with modal auxiliary verbs (“Would I recommend that?”). Overall, the Contextual
feature group that includes the question embedding provides the highest performance
for IS prediction.

Feature Ablation We conduct a set of ablation experiments in order to find the
most important predictive features to classify question type. We start with a model
including all features and then we remove one feature set at the time. Results are
shown in Table6. The best performing model includes all features except for the
question-context similarity metrics, with an F1-IS of 0.84 and F1-R of 0.71.

Performance falls significantly when context sentences are dropped from the fea-
ture set. Interestingly, dropping auxiliary verbs reducesmodel performancemore than
dropping either or both context sentences. Disregarding context, the most dramatic
drops in performance for both IS and R questions occur when functional features
and concreteness are dropped as features.

4 We experimented with other classifiers and found the best performance using the SVM model.
5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 5 Grouped feature results. Underlined values are highest in groups including unigrams (uni),
and bold values are highest in groups excluding unigrams

Feature set # Feat. Acc. F1-IS F1-R

Functional 194 0.695 0.759 0.581

Functional + uni 1702 0.748 0.800 0.657

Semantic 107 0.629 0.692 0.530

Semantic + uni 1615 0.748 0.801 0.655

Contextual 3012 0.683 0.743 0.576

Contextual + uni 4520 0.764 0.821 0.653

Table 6 Ablation results. Bold numbers indicate greatest drop in performance within the feature
group

Feature set Acc. F1-IS F1-R

All features 0.784 0.832 0.696

Functional features

–Auxiliary verbs 0.766 0.820 0.663

–Head nouns 0.771 0.821 0.679

–Wh-keywords 0.775 0.826 0.680

Semantic features

–Concreteness 0.772 0.823 0.680

–LIWC 0.780 0.830 0.685

–Polarity 0.782 0.831 0.694

–NPIs 0.785 0.833 0.696

–Lexical diversity 0.785 0.832 0.696

Contextual features

–Expertise 0.777 0.827 0.688

–Cosine + WMD 0.793 0.838 0.710

–Prec. 0.775 0.823 0.688

–Foll. 0.767 0.819 0.672

–Prec. + Foll. 0.764 0.814 0.677

Question Context Since we observe that dropping context sentences substantially
reduces performance, we train and test models with context sentences and question
unigrams. Results are shown in Table7.

Following context predicts both IS questions andRquestionsmore accurately than
preceding context, and following context also predicts R questions more accurately
than the combination of both preceding and following context. This performancemay
reflect the fact that rhetorical questions aremore likely to have following context than
information seeking questions (as shown in Table3).



296 A. Gunal et al.

Table 7 Effects of adding context sentences. All sentences are represented with the same unigram
features as before

Feature set # Feat. Acc. F1-IS F1-R

Q + Prec. 2975 0.750 0.807 0.647

Q + Foll. 3048 0.766 0.823 0.667

Q + Prec. + Foll. 4515 0.768 0.827 0.643

Adding both preceding and following sentences to the question yields the highest
performance for IS question classification. A possible explanation is that IS ques-
tions may often appear in groups, not in isolation. For example, our data includes the
sequences of IS questions ”Are you really depressed? Could it possibly be a person-
ality disorder?” A mental health counselor may therefore choose to ask questions in
tandem, rather than in separate turns, to make it clear that they are actually seeking
new information.

Additionally, we manually went through the questions that our model fails to
predict correctly. We group the main failures into the following categories:

• Context dependence. For many questions, the model predicted IS when it should
have predicted R given the context. For instance, the R question “Does it sound
likely that it would or is happening?” is followed by the context “Not at all to me”
but the model predicts IS, possibly because the question’s well-formed grammar
outweighs the role of context in prediction.

• Challenges. Some R questions reflect a challenge to the original poster rather
than an intention to engage them in good faith: the R question “And really, do the
labels—ADHD, personality, or character flaw—really matter?” was predicted as
IS by the model. This kind of R question may require more subtle lexical features
than those utilized here, such as discourse markers like “really” [20].

• Non-standard question form. The model sometimes predicted R instead of IS
when the question had a non-standard form, as in “I am curious about what the
flare up looks like when it starts to turn for you?” In such cases, more advanced text
preprocessing may be needed to identify the structure of the underlying question,
i.e. removing embedding phrases like “I am curious about.”

6 Conclusion and Future Work

In this work, we developed MATE, a dataset of mental health-focused questions
annotated by type, and we evaluated the role of linguistic features in question type
classification.

Through extensive feature ablation, we found that functional features–particularly
auxiliary verbs–provide more predictive power than semantic features, which rein-
forces prior findings about the limits of content-based features in question classifica-
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tion [10].We also found that the combination of preceding and following context best
predicts information-seeking questions. Overall, the study shows that subtle choices
in wording and sentence order may be more important than content when it comes
to predicting supporters’ question-asking intentions.

Future work may include further exploration of the relationship between domain
experts and the kinds of questions they produce; in the realmofmental health support,
it seems logical to assume that professionals in the field are more likely to try to
achieve a better understanding of a patient’s state rather than make a point, which
is a common function of rhetorical questions [1]. Similarly, we note that there are
several repeat posters across various subreddits, and it may be interesting to study
how similar users respond to different types of posts.

Additionally, future work may consider how user behavior varies between differ-
ent online communities. The distribution of subreddits in MATE is highly uneven,
and a significant portion of the most popular subreddits are more geared towards a
general audience (e.g. r/mentalhealth). These subreddits accommodate a variety of
users with different degrees of severity of mental health ailments. It may be insight-
ful to analyze how such different users ask or answer questions, because different
conditions lend themselves to different information-seeking needs.

7 Limitations

Because our dataset includes online interactions, the language used includes informal
phrases, slang, or abbreviations, and the questions may be phrased in non-traditional
ways (“YouOK?”). The heuristics we used to extract features such as head nouns and
auxiliary verbs require a correct parse of the sentence structure, and proper sentence
structure is not always to be expected from social media interaction data [7]. A
possible way to mitigate this issue as well as reduce bias associated with interactions
fromReddit would be to expand our data sources to include formal online counseling
platforms such as CrisisTextLine.

Additionally, the validity of our data labels relies on the quality of annotation. We
acknowledge the difficulty in achieving high inter-annotator agreement in such a sub-
jective task–even for annotators collaborating closely throughout the process. Future
work may be centered around mitigating disagreement by adding the “Ambiguous”
label in annotation.

8 Ethics

We acknowledge that mental health is a sensitive area, where the cost of incorrect
model predictions can be disproportionately high compared to the general popula-
tion [4]. We do not intend for any of the models trained in this work to be deployed
without more careful testing of possible biases and performance shortcomings (e.g.,
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systematicmisclassification of abusive content). Themodels used in this work should
not be used to replace a supporter judgment of what makes a question information-
seeking versus rhetorical, but instead to augment their judgment [26] by showing
which features may contribute to different perceptions of their questions.
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