Change Detection and Notification of Web Pages: A Survey

VIJINI MALLAWAARACHCHI, The Australian National University, Australia

LAKMAL MEEGAHAPOLA, Idiap Research Institute & Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland

ROSHAN MADHUSHANKA, ERANGA HESHAN, and DULANI MEEDENIYA,

University of Moratuwa, Sri Lanka

SAMPATH JAYARATHNA, Old Dominion University, USA

The majority of currently available webpages are dynamic in nature and are changing frequently. New content
gets added to webpages, and existing content gets updated or deleted. Hence, people find it useful to be alert
for changes in webpages that contain information that is of value to them. In the current context, keeping
track of these webpages and getting alerts about different changes have become significantly challenging.
Change Detection and Notification (CDN) systems were introduced to automate this monitoring process and
to notify users when changes occur in webpages. This survey classifies and analyzes different aspects of
CDN systems and different techniques used for each aspect. Furthermore, the survey highlights the current
challenges and areas of improvement present within the field of research.

CCS Concepts: « General and reference — Surveys and overviews; « Information systems — Web
searching and information discovery; Web applications; Document structure; Similarity measures; Infor-
mation extraction; Relevance assessment;

Additional Key Words and Phrases: Distributed digital collections, scheduling, change detection, change no-
tification, webpages, websites, web search, search engine

ACM Reference format:

Vijini Mallawaarachchi, Lakmal Meegahapola, Roshan Madhushanka, Eranga Heshan, Dulani Meedeniya,
and Sampath Jayarathna. 2020. Change Detection and Notification of Web Pages: A Survey. ACM Comput.
Surv. 53, 1, Article 15 (February 2020), 35 pages.

https://doi.org/10.1145/3369876

1 INTRODUCTION

The World Wide Web (WWW or Web in simpler terms) is being evolved at a rapid pace, and keep-
ing track of changes is becoming more challenging. Many websites are being created and updated
daily with the advancement of tools and web technologies. Hence, websites at present have be-
come more dynamic, and their content keeps changing continuously. Many users are interested

Authors’ addresses: V. Mallawaarachchi, The Australian National University, Canberra ACT 0200, Australia; email: vijini.
mallawaarachchi@anu.edu.au; L. Meegahapola, Idiap Research Institute, Rue Marconi 19, 1920 Martigny, Switzerland
& Ecole Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; email: lakmal.
meegahapola@epfl.ch; R. Madhushanka, E. Heshan, and D. Meedeniya, University of Moratuwa, Moratuwa, Ban-
daranayake Mawatha, Moratuwa 10400, Sri Lanka; emails: {alwisroshan.13, eranga.13, dulanim}@cse.mrt.ac.lk; S.
Jayarathna, Old Dominion University, 5115 Hampton Blvd, Norfolk, VA 23529, United States; email: sampath@cs.odu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0360-0300/2020/02-ART15 $15.00

https://doi.org/10.1145/3369876

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1145/3369876
mailto:permissions@acm.org
https://doi.org/10.1145/3369876

15:2 V. Mallawaarachchi et al.

in keeping track of the changes occurring on websites, such as news websites, booking websites,
wiki pages, and blogs. Back in the 1990s, people used to register to Really Simple Syndication (RSS)
feeds, originated from the Resource Description Framework (RDF) specification [97] to keep track
of frequently updated content. Later in 2005, RSS was replaced by Atom [83]. Currently, the major-
ity of the users keep track of websites and get the latest updates using bookmarks in web browsers.

Web syndication technologies (e.g., RSS and Atom) emerged as a popular means of delivering
frequently updated web content on time [51]. Users can subscribe to RSS or Atom feeds, and get
the latest updates. However, when considered from a perspective of webpage change detection,
RSS feeds have many potential issues. A study carried out to characterize web syndication
behavior and content [51] shows that the utilization of fields specified in the XML specification of
RSS is less, which can result in missing information, errors and uncategorized feeds. Furthermore,
services such as Google Reader have been discontinued due to the declining popularity of
RSS feeds [47] caused by the rising popularity of microblogging (also known as social media),
shifting of formats from XML to JSON, and market forces promoting proprietary interfaces and
de-emphasizing interoperability.

In the current context, managing and using bookmarked websites and RSS feeds have become a
significant challenge, and people are continuously seeking better and convenient methods. Change
Detection and Notification (CDN) systems [70] make it easy for users to get notified about changes
that have occurred on webpages, without having to refresh the webpage continuously. Google
Alerts [45], Follow That Page [43] and Visualping [118] are some of the most popular CDN services
that are used by many users to get updates about content changes that occur on webpages.

1.1 Change Detection and Notification Systems

CDN systems [73] automatically detect changes made to pages in the web, and notifies about the
changes to interested parties. The significant difference between search engines and CDN systems
is that search engines are developed for searching webpages, whereas CDN systems are developed
for monitoring changes that occur on webpages. In theory, most of the search engines also have an
underlying change-detection mechanism to determine which sites to crawl and keep their search
results up-to-date [46]. The use of CDN systems allows users to reduce the browsing time, and
facilitates users with the ability to check for changes on webpages of their interest [125].

CDN systems emerged in the WWW with the introduction of Mind-it (currently discontin-
ued) [82], the first CDN tool that was developed by NetMind in 1996. Since then, several ser-
vices were introduced such as ChangeDetection (introduced in 1999, now known as Visualping
[118]), ChangeDetect [20] (introduced in 2002), Google Alerts [45] (introduced in 2003), Follow
That Page [43] and Wachete [120]. CDN systems have evolved throughout the past few decades,
with improvements in detection rates, efficient crawling mechanisms and user-friendly notifica-
tion techniques.

CDN systems available at present have become easier to use, and are more flexible to incorporate
user requirements. The majority of the currently available CDN systems such as Wachete [120]
and VisualPing [118] provide various monitoring options, such as:

(1) Multiple webpage monitoring: multiple parts of a webpage, an entire webpage, multiple
webpages or an entire website.

(2) Content to monitor: text, images, links, documents (PDF, DOC, DOCX).

(3) The threshold of changes: the percentage of changes occurring on a given webpage.

(4) Frequency of monitoring: hourly, daily, weekly, monthly or on-demand monitoring.

(5) Frequency of notification: twice a day, once a day, once a week or as changes occur.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:3

1.2 Categories of Change Detection and Notification

Based on the architecture involved, change detection can be segregated into two main subdomains.
The first branch is server-side change detection, and the other is client-side change detection [70].
Server-side change-detection systems use servers that poll webpages, track changes, and notify
them to users. The client-side change-detection systems make the client-side infrastructure poll
the webpages, and track changes on their own.

CDN systems obtain versions of webpages by crawling them, and saving the data to version
repositories. These data are saved in an unstructured manner, mostly in the format of documents
with tags, to allow easy storage and retrieval. Then, changes are detected by comparing a previ-
ously saved version with the latest version of a particular webpage using similarity computations.
The majority of the change-detection mechanisms convert the data of a saved version into an XML-
like format where an element represents opening and closing HTML tags (e.g., <h> and </h>).
Certain CDN systems allow the user to define a threshold of change, and the user gets notified
about a change, only if the change exceeds this threshold.

The majority of the CDN systems operate on predefined monitoring schedules, that are speci-
fied by the user or determined by the system itself. Detected changes are visualized using many
methods. A common means of visualizing text changes is by showing the newly added text in
green color, and the deleted text in red color (often with strikethrough formatting) [120].

Another prominent factor discussed in CDN systems is their crawling schedules. Most of the
currently available CDN systems crawl webpages under predefine schedules [71]. However, web-
pages can be updated at different time schedules (certain webpages may be frequently updated,
whereas some webpages may get updated rarely), thus how often they change can vary. Hence,
CDN systems require mechanisms for estimating the change frequency to create efficient check-
ing schedules for webpages. This will reduce the number of page checks where no changes were
detected, and maximize the probability of achieving optimum resource utilization.

1.3 Survey Motivation

According to our study, only a limited number of surveys have been carried out regarding web-
page CDN techniques. Additionally, it is challenging to find comprehensive evaluations of existing
CDN systems that discuss different aspects of such systems. Oita et al. [84] have reviewed major
approaches used for the change-detection process in webpages. They have reviewed temporal as-
pects of webpages, types of webpage changes, models used to represent webpages to facilitate
change detection and various similarity metrics that are used for detecting changes. Shobhna and
Chaudhary [104] discuss about a selected set of CDN systems with different types of change-
detection algorithms in a summarized manner. However, there is a requirement to explore and
improve CDN systems by comprehensively considering the various aspects of CDN such as the
architecture, monitoring frequency, estimation of change frequency, change notification methods,
and change visualization mechanisms.

Several CDN systems have been developed, and are available for public use [73]. However, we
discovered that still there are issues related to these systems, and limited evaluations have been
carried out. Hence, the first objective of this survey would be to deliver a comprehensive overview
of the different characteristics of CDN systems. The second objective is to study existing CDN
systems, and evaluate their features and various performance aspects. Our final objective is to
evaluate the different aspects of CDN, study new trends and highlight the areas that require im-
provement. We believe that this survey can shed light on the relevant research areas, and possibly,
pave the way for new scientific research fields.

The organization and the aspects discussed in this survey are summarized in Figure 1. Sec-
tion 2 discusses the dynamic nature of webpages, and the experiments that have been conducted

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:4 V. Mallawaarachchi et al.

Web Pages in the World Wide Web

Static Web Pages Dynamic Web Pages

/ Change Detection and Notification Sy \

Scheduler Web Crawling Change Detection Estimation of Frequency of
Web Page Changes

Fetch Page
Content

'S AN YN
] ‘ 'O
: B
¢ LY
Update Web Fetched
Crawler Crawler HTML
to crawl Page

Schedule -
Web pages Content Similarity
Comparison

Crawler Schedule Parser

Predictor
Engine

Changes

i

Detect Changes

Save latest version

Browsing List

Change Frequency

ol

~o

()

hY
Learning Model

Version
Repository

! |

Change Visualization Change Notification
| Ba
@ = .V O D Bnp @ @
—_—
Text Changes Visual Changes Version Differences Change Logs Web Interfaces Browser Plugins SMS Alerts Emails
Al At At Ad Ad Ad ©d

Fig. 1. Organization of the survey and the aspects discussed.

to understand the changing behavior of webpages. Section 3 presents different architectural ap-
proaches, which have been introduced to develop CDN systems. Further, various traditional archi-
tectures and several architectures that have been customized to improve the efficiency of the CDN
mechanisms are presented. Section 4 confers about the techniques used for detecting changes on
webpages. It includes different crawling techniques, change-detection techniques, scheduling al-
gorithms and methods to detect the frequency of webpage changes. Section 5 presents different
notification techniques to notify users when changes have been detected on webpages of their
interest, whereas Section 6 describes how these changes are visualized to the user. Section 7 com-
pares and evaluates the different features of publicly available CDN systems and Section 8 dis-
cusses current trends and issues in the field of CDN. Finally, Section 9 concludes the survey article
with further improvements that can be incorporated into existing CDN systems, and presents the
identified future research directions for CDN systems.

2 DYNAMICS OF WEB-BASED CONTENT

The World Wide Web (WWW) keeps on growing larger and more diverse every day as new content
is being added with the advancement of web content creation tools. The most common units of
information on the web are pages, documents, and resources [102]. These units can include textual

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:5

Send request for a Send request to the ; O\
— y
- static webpage web server -
— ﬁ _) Search for the
— P static webpage
— <€
Send back the Retrieve the
' | | static P static webpage
I

Client Internet Web Server

Fig. 2. Process of retrieving a static webpage.

as well as non-textual information, such as audio files, video files, and images. They can undergo
various changes since the time they were added to the WWW. Hence, it is crucial to understand the
changing frequency and the dynamic nature of webpages to provide efficient solutions to detect
such changes.

2.1 What are Webpages and their Models of Change?

Webpages are individual files that consist of text, graphics and other features, such as links to
scripts and style sheets [107]. Webpages are implemented using HyperText Markup Language
(HTML) or a comparable markup language. The WWW is considered as a collection of such web-
pages. Webpages are linked together to form websites. Once a webpage is requested on a web
browser, the web browser obtains the relevant content, coordinates the resources and presents
the webpage. The web browser uses Hypertext Transfer Protocol (HTTP) to send such requests to
retrieve webpages. Webpages fall into two broad categories, namely, (1) static and (2) dynamic.

2.1.1 Static Webpages. Static webpages have content that does not change after the developer
has saved the webpage to the web server [60]. The webpage remains the same until the developer
replaces it with an updated static webpage in the server. Static webpages are not tailored to each
visitor. They appear the same to all the users who view it. Figure 2 depicts how a static webpage
is displayed once the client requests it.

Static webpages can be created easily as existing web development tools allow us to drag and
drop HTML elements as required. Similarly, it is easy to host, because only a web server is required
to host, without requiring any additional software. Furthermore, static webpages have the advan-
tages of fast loading and improved performance for end-users. However, if dynamic functionalities
such as personalized features are required, then they have to be added separately.

2.1.2 Dynamic Webpages. Dynamic webpages are pages that do not exist until it is generated
by a program in response to a request from a client while guaranteeing that the content is up-to-
date [60]. Their content changes in response to different contexts or conditions. As the information
obtained from the client is used to generate the webpage to be shown, it can be tailored according
to the client. Figure 3 illustrates the process of generating and displaying a dynamic webpage when
a request is made by a client.

Dynamic webpages pave the way for more functionality and better usability, which is not avail-
able via static webpages. They allow the creation of web applications that can be stored on a central
server, and can be authorized to access from any place via a web browser. Details related to the user
and context can be retrieved from external databases to tailor the webpage. Moreover, it reduces
the cost and burden for updating the entire webpage whenever changes occur frequently [108].
However, dynamic webpages may face security risks as corporate applications and databases can
be exposed to unintended parties. Furthermore, additional software should be installed and main-
tained, which is required to generate tailored websites to clients.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:6 V. Mallawaarachchi et al.

Request user

Send request for a Send request to the
- dynamic webpage web server and context data
E— _) _) Generate dynamic _)
- webpage
CGlI

Send back the Send back the Send back user

. dynamic webpag dynamic webpage D/’ and context data

Client Internet Web Server External Database

Fig. 3. Process of retrieving a dynamic webpage.

The Common Gateway Interface (CGI) [60] is the software, which runs in the server that is
invoked when a client requests to retrieve a webpage. It is responsible for generating webpages
dynamically. PHP, ASP.NET and JSP are some of the common languages that are often used to cre-
ate webpages, and they use the CGI to generate dynamic webpages. The majority of the webpages
available at present are dynamic. Dynamic webpages have become popular as many services (e.g.,
Content Management Systems (CMS), such as WordPress [124] and Drupal [14]) are available at
present, where anyone, even a person with limited programming knowledge, can create a website
with a few webpages via a control panel, update pages as required and deploy them instantly.

The content found in webpages may get outdated or maybe no longer required. Hence, timely
maintenance should be done to ensure that the webpages are up-to-date. Three key events, cre-
ations, updates and deletions, are considered to cause webpages to change [4, 64].

(1) Creations: Once a webpage is created, it cannot be seen publicly on the Web until it is
linked by an existing webpage. Hence, adding a new webpage causes at least an update
of an existing one; adding a new link to the newly created webpage. However, at present,
search engines such as Google provide the facility to add the Uniform Resource Locator
(URL) of a newly created webpage, so that it can be indexed, and made available to the
public [48].

(2) Updates: Updates can be made to the existing content of webpages. Updates can be of two
types. The first type is a minor change, where the content of the webpage is almost the
same as its previous version, but slight modifications may have been done, such as at the
sentence or paragraph level. The second type is a major change, where all the content of
the webpage is drastically different from its previous version.

(3) Deletions: A page is considered to be deleted if there are no links available to traverse to
that particular page or if the page itself is removed from the Web. However, there may be
instances where the webpage has been removed but still the link to that webpage exists
(known as a broken link). Furthermore, content can be deleted from a webpage as well.

2.2 Detecting the Dynamic Nature of Webpages

Identifying the amount of change and changing patterns of webpages has been of great interest to
researchers. Many studies have been carried out to understand the changing nature of webpages.
The content of webpages and their change frequencies have been highly focused areas in this
research scope. The available literature demonstrates the ever-changing nature of webpages and
various reasons for those changes. Different factors have been considered regarding the dynamic
behavior of web content.

Cho and Garcia-Molina [24] have conducted an experiment with 720,000 webpages from 270
websites to study how webpages evolve over time. They have crawled these webpages every day

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:7

for 4 months. Based on the results, the researchers have found that more than 20% of the webpages
had shown changes whenever they visited them, and 40% of the webpages had changed in a week.
Over 50% of the .com and .edu webpages had not changed at all during the time frame of the
experiment. A massive-scale experiment that extended the study done by Cho and Garcia-Molina
was performed by Fetterly et al. [40]. They have studied how frequently webpages change, and
the quantity of change occurred, using approximately 150 million webpages over eleven weeks.
According to their findings, approximately 65% of the pages had zero change over the considered
time. Further, it shows the relationships in-between certain top-level domain types (e.g., .org, .gov,
.com), and their respective frequencies of changing. It was revealed that .org and .gov domains
are less likely to change than .edu domains. Furthermore, it was shown that pages that including
spams would change more frequently.

Olston and Pandey [86] have crawled 10,000 web URLs from the Yahoo crawled collection and
10,000 web URLs from the Open Directory listing. According to the results, from the dynamic con-
tent on webpages of the Open Directory listing, about a third has shown a scroll behavior. Adar
et al. [1] have crawled and analyzed approximately 55,000 webpages, which are revisited by users,
to characterize the various changes occurring in them. The authors have tracked the frequency
and amount of change that has occurred in the webpages individually. Thirty-four percent of the
webpages had not shown any changes whereas the remaining pages had displayed at least one
change every 123 hours. This study has shown that popular webpages change more frequently
when compared to less popular webpages. Webpages falling under categories such as sports, news
and personal pages change most frequently, and webpages with government and educational do-
main addresses have no frequent changes.

Furthermore, the work carried out by Elsas and Dumais [38] describes the temporal aspects
of changing web documents. The authors describe news websites to consist of highly changing
webpages. Whenever new stories are available, or the old stories are updated, the news websites
would change. These changes occur in different amounts and at different frequencies. To observe
how documents are changed, the authors have created a set of approximately 2,000,000 HTML
pages, and crawled them every week for 10 weeks. Over the sampled period, over 62% of pages
had no virtual difference. They have also pointed out that highly relevant documents are both
more likely to change, and contain a higher amount of change than general documents. As the
final outcome, the authors have proposed a ranked retrieval model for dynamic documents based
on the temporal aspect of content that lets differential weighting of content. Work done by Saad
and Gancarski [99] has monitored over 100 webpages from the France Televisions (FranceTV)
archive, which depicts the evolution of changes within the French Web. Each page was crawled
every hour, and over 3,000 versions were obtained daily. The results have shown that the pages
at the root level of the archive, such as homepages changed significantly, whereas pages in the
deepest levels did not change.

Table 1 presents a summary of the various research work carried out to detect the dynamic na-
ture of web content. From Table 1, it can be seen that webpages belonging to popular websites such
as sports and news websites tend to change frequently whereas webpages belonging to govern-
ment and educational domains change less frequently. Hence, it can be concluded that webpages
belonging to popular websites tend to change more frequently than those of less popular websites
that target specific functions and niche audiences.

3 ARCHITECTURAL ASPECTS

Several studies have proposed different architectures for change-detection systems. The two main
architectures that are being used widely within current CDN systems are server-based architecture
and client-based architecture [70] and they have their advantages and disadvantages.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:8 V. Mallawaarachchi et al.
Table 1. A Summary of the Work Done to Detect the Dynamic Nature of Webpages
Pages that have Pages that have not
Work Websites crawled | changed significantly changed
Cho and 720,000 webpages | 40% of the crawled Over 50% of .com and
Garcia-Molina from 270 websites | webpages .edu webpages
2000 [24]

Fetterly et al. 2003
[40]

150 million
webpages

Webpages of .edu
domain and spam

Webpages of .org and
.gov domains

Adar et al. 2009 [1] | 55,000 webpages Popular webpages (e.g., | Webpages of .gov and
sports, news, etc.) .edu domains
Elsas and Dumais 2,000,000 HTML Highly relevant 62% of the crawled
2010 [38] pages documents webpages
Saad and Gangarski | 100 webpages from | Webpages at the root Webpages in deepest
2012 [99] FranceTV archive level of the archive levels of the archive
— Poll ==
€« Detect
Web page 1 Changes e
— .. Poll @
Similarity =
Web page 2 . =
eb page Comparison :1 Client 4
Server ==
Fig. 4. Server-based architecture for CDN systems.
3.1 Server-based Architecture

The server-based architecture, as depicted in Figure 4 consists of the main server, which polls
webpages periodically to track changes, and sends alerts about these changes to the subscribed
users (clients) by email notifications. If a large number of webpages exist, then the computational
load for the server will increase as the server must identify changes in each of the webpages added
by users. This can also lead to reduced detection frequencies. The process of scaling such tools with
the server-based architecture becomes expensive and makes the system less efficient. Due to these
issues, the frequency in which changes are detected on webpages will not be sufficient and the
server might fail to observe some changes that have occurred in frequently-changing webpages.
Sitemaps [106] is used by servers to inform search engines about the changes that it thinks are
important, and are made available for crawling. This allows crawlers to identify webpages that
have changed recently without having to download and process HTML pages [11]. Support for
Sitemaps protocol by the search engine industry was announced by Google, Yahoo and Microsoft
in the year 2006 [101]. Since then, many websites, such as Amazon, CNN and Wikipedia, have
begun supporting Sitemaps. Studies have shown that the use of sitemaps has improved crawling
results [101]. Data from Sitemaps can be used by CDN systems to get updated content. The use of
Sitemaps helps to eliminate difficulties faced by crawlers and expose data regarding changes only.

3.2 Client-based Architecture

The client-based architecture involves clients who wish to track changes occurring on web-
pages, and these machines poll webpages in iterations to identify changes. Users having extra

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:9

S— Poll
> Parser
< - Detect Changes
and Notify
Web page 1
X X Poll Versions
Web page 2

Fig. 5. Client-based architecture for CDN systems.

computational resources can detect frequent changes occurring on webpages, and the other users
might be unable to do so. The client-based architecture has been implemented in the form of
browser plugins, and hence, may get bottlenecks due to network connectivity and machine per-
formance. Figure 5 illustrates the client-based architecture for a CDN system.

Out of the currently available CDN systems, a limited number of them are built using the client-
based architecture. They come in the form of browser plugins/extensions, such as Distill [34] and
Check4Change [128]. Once the extension is installed and enabled successfully, the user can add
webpages to monitor. It will regularly check the webpages the user has added to be monitored,
within the user’s browser. If any changes are detected, then the user will get a browser notification.

3.3 Customized Architectures

Several customized architectures of CDN can be found in which researchers have tried to improve
the efficiency from an architectural perspective. A design to crawl webpages in parallel using sev-
eral machines, and integrate the problems with crawling has been proposed by Yadav et al. [125].
They have designed a new architecture to build a parallel crawler. The proposed architecture con-
sists of two main components. They are the Multi-threaded Server (MT-Server) and the client
crawlers. MT-Server is the principal component that manages a collection of client machine con-
nections, which downloads and crawls webpages. It has a special methodology to distribute URLs
among the clients when their “priority index” is determined. The client crawlers are considered as
the different machines that interact with the server. The client count that can be supported may
vary according to the available resources and their implementation. Furthermore, there exists no
communication between clients, and the clients interact only with the server. However, scaling
the system can result in high costs as the count of server nodes has to grow.

Work carried out by Prieto et al. [94] presents a system with a collaborative architecture to de-
tect changes in distributed systems. The authors have proposed the Web Change Detection system
(WCD). The four major components of this system’s architecture are the web client, web server,
WCD agent, and WCD server. Web client is a general browser of the web, which loads the web-
pages. Web server is a general server that caches the webpages that were monitored. WCD agent
is an application operating in the browser that sends information about modifications that have
occurred on webpages to the WCD server. WCD server stores and sends the WCD agents to clients,
and stores the data about monitored webpages. To detect the near-duplicates, PageRank [89] val-
ues have been considered along with the shash tool [29]. High change-detection rates and a low
cost of maintenance have been produced by this tool. However, in times of excessive usage, if the
system gets many requests, then it may fail to process them in real-time.

An “approach for distributed aggregation, faster scalable content classification and change de-
tection in web content” has been proposed by Nadaraj [81]. The author has presented an algorithm
to determine webpage changes, and a method to identify what field has been altered with the help
of a data structure named Bloom filters [7]. Web crawlers are being used to collect details about

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:10 V. Mallawaarachchi et al.
Table 2. A Summary of the Architectures Used/proposed for CDN Systems
Inter-Client Parallel
Architecture Advantage Disadvantage Communication | Processing | Cost
Server- Centralized High load on the No No High
based [70] monitoring server
Client-based [70] | Clients have control |The network No No Medium
bottleneck

Parallel Prioritize URLs to High overheads in No Yes High
crawling [125] |crawl communication
Collaborative Operate in distributed | Can fail to process No No Medium
WCD [94] networks requests in real-time
Distributed Distributes the Overhead of hashing Yes Yes Low
aggregation [81] | workload
Hybrid [70, 73] | Optimal use of client |Need to co- ordinate Yes Yes Low

resources clients

pages and URLs. It uses Bloom filters to identify the duplicate URLs in a webpage. Hash keys for ev-
ery visited URL are saved in the bloom filter. Bloom filter entries will be validated when new URLs
are discovered. This prevents the crawling mechanism from repeating in loops. The system cre-
ates a hash key for the content that has been crawled, and checks the presence of the hash within
the Bloom lookup. If present, then the content is the same as the existing content; otherwise, the
content has been updated. If the hash key for the URL is not found, then the URL is added to the
Bloom filter lookup file, and a hash for the crawled content is created and inserted. This method
increases the efficiency of the crawling process as it distributes the workload. Furthermore, the
strong association of crawlers to working machines will be minimized, and the crawlers will be
able to function without any restrictions in distributed networks.

A hybrid architecture for CDN is proposed by Meegahapola et al. [70, 73]. This architecture is
a hybrid of server-based and client-based architectures. It has two independent crawling sched-
ules for the server and the clients. The server will crawl all the webpages it has registered, and
the clients will crawl the webpages that they want to track. The change-detection process occurs
independently in the server and clients. If the server detects a change, then it will be notified to
the interested clients. If a change is detected by a client, then it will directly report back to the
server, and the server will notify the interested clients. According to this architecture, the time
elapsed in between two consecutive server poll actions is divided among the available clients,
which in turn speeds up the detection process. Table 2 presents a summary of the various architec-
tures that are being used by commercially available CDN systems and that have been proposed by
researchers.

4 DETECTING CHANGES OF WEBPAGES
4.1

A web crawler (also known as a spider) is “a software or a programmed script that browses the
WWW in a systematic, automated manner” [58], and systematically downloads numerous web-
pages starting from a seed URL [9]. Web crawlers date back to the 1990s, where they were in-
troduced when the WWW was invented. The World Wide Web Worm [68] and MOMspider [41]
were among the early web crawlers. Moreover, commercial search engines developed their own
web crawlers as well, such as Google crawler [13] and AltaVista [105]. Later on, web crawlers that
could efficiently download millions of webpages were built.

Web Crawlers and Crawling Techniques

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:11

Web Server
Contact Fetch the
Get the web server webpage
next URL Is the Yes]
crawler Downloader > Process and
allowed? extract content

Storage

Fig. 6. Overview of the web crawling process.

We can consider the Internet to be a “directed graph” where each node represents a webpage,
and the edges represent hyperlinks connecting these webpages [58]. Web crawlers traverse over
this graph-like structure of the Internet, go to webpages, and download their content for indexing
purposes. It is crucial to identify which crawling technique should be used according to the purpose
of the application.

Web crawling can be considered as the main process behind web caching, search engines and
web information retrieval. A web crawler begins crawling from a seed URL and visits pages. Then
it downloads the page, and retrieves the URLs in it. The discovered URLs will be kept in a queue,
and this process repeats as the crawler travels from page to page. Figure 6 shows an overview of the
web crawling process. Many crawling techniques are being used by web crawlers at present [58],
such as (1) general-purpose crawling, (2) focused crawling, and (3) distributed crawling.

4.1.1 General-purpose Crawling. In the general-purpose crawling technique, the web crawlers
collect all the possible webpages from a set of URLs and their links to a central location. It can
fetch numerous pages from many different locations. However, this technique can slow down the
crawling process and reduce the network bandwidth as all the pages are being fetched.

4.1.2 Focused Crawling. Focused crawling is used to collect pages and documents that belong to
a specific topic. This can reduce the workload and network traffic during download as the required
pages are only downloaded. It crawls only the relevant regions of the Web. This method saves
hardware and network resources significantly.

Initially, focused crawling was introduced by Chakrabarti et al. [18] as “a new approach to topic-
specific Web resource discovery.” The focused crawler has three major components. They are as
follows.

(1) “Classifier decides whether to expand links on the webpages crawled.”

(2) “Distiller determines visit priorities of crawled pages.”

(3) “Crawler consists of dynamically reconfigurable priority controls, which are controlled
by the classifier and distiller” [18].

Diligenti et al. [32] have highlighted the importance of assigning credits to different documents
across crawling paths that produce larger sets of topically relevant pages. The authors have pro-
posed a focused crawling algorithm with a model that captures link hierarchies containing rele-
vant pages. Later on, Menczer et al. [74] have discussed different ways to compare topic-driven
crawling techniques, whereas “a general framework to evaluate topical crawlers” was presented
by Srinivasan et al. [109]. Pant and Menczer [92] have introduced a topical crawling technique
to gather documents related to business intelligence, which can support organizations to iden-
tify competitors, partners or acquisitions. The authors have tested four crawlers; Breadth-First,
Naive Best-First, DOM, and Hub-Seeking. The results of precision and recall on a given topic show

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:12 V. Mallawaarachchi et al.

. Change
Indexing Detection
1 [] —]
World Wide Web FT—]
(-] —] p
Send the crawled content to
interested systems and services
Partition the Web Send partitioning instructions
| Space —
¢ Process
Y crawled

[Ei 'i [E :iﬁt E @ Aggregate results content
o and send the crawled
content to the > °
main server 0!

Main Server

Crawling Crawling Crawling
System1 System2 System 3

Fig. 7. Arrangement of components in a distributed crawling system.

that the Hub-Seeking crawler outperforms other crawlers. A popular technique to design-focused
crawlers is the utilization of the “link structure” of the documents. Li et al. [65] have proposed
a focused crawling technique using a decision tree created by anchor texts found in hyperlinks.
Jamali et al. [54] have presented a novel “hybrid focused crawler,” which utilizes the “link struc-
ture” and similarity of the content to a particular topic.

Mali and Meshram [67] have proposed another approach for a web crawler with focused crawl-
ing features. Three layers are present in this architecture; “page relevance computation,” “deter-
mination of page change,” and “updating the URL repository.” During the crawling mechanism, all
the pages are not downloaded. Instead, it extracts the URLs and the words of interest. Frequency
of related words and the number of forward links and backward links to and from the webpage
collaboratively decide the importance of that webpage being parsed. Certain parameters, such as
topic vectors and relevance scores, are used to check the importance of the page. If the relevance
level exceeds a predefined threshold, then it is downloaded for extraction. Otherwise, the page will
be discarded.

Work done by Bhatt et al. [6] has studied focused web crawlers with their advantages and dis-
advantages. Additionally, the authors have suggested methods to further improve the efficiency
of web crawlers. With the advancement in optimization algorithms, researchers have turned their
focus on optimizing web crawlers. Optimizations allow web crawlers to select more suitable web-
pages to be fetched. Focused crawlers have been optimized to increase the efficiency and perfor-
mance of the crawler using search algorithms such as Breadth-First Search [6], Fish-Search [31],
and Shark-Search [50] and evolutionary algorithms such as Genetic algorithms [126, 127] and Ant
algorithms [127].

4.1.3 Distributed Crawling. This method uses multiple processes to crawl webpages and down-
load their content. Web crawlers are distributed over different systems, allowing them to operate
independently. Distributed crawling techniques were introduced due to the inherent problems
faced by centralized crawling solutions, such as reduced throughput of the crawl and link conges-
tion [59].

Figure 7 denotes the general arrangement of components in a distributed crawling system. The
crawlers are distributed across different systems, and they crawl webpages in different parts of the
Web. The Web can be partitioned using different graph partitioning algorithms, and each crawler
is provided with a seed URL to start the crawling process [2]. All the crawled content is then
aggregated and sent to the main server. This content can be processed within the main server or
they can be sent to other services for different purposes, such as indexing and version comparison

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:13
Table 3. A Summary of the Main Crawling Techniques
Crawling Prioritize | Partition
Technique | Crawling Pattern links link space Advantage Disadvantage
General Crawl all the No No Can fetch pages Affects the
purpose [58] | available webpages from many network
by going through different locations | bandwidth
link URLs
Focused Crawl pages Yes No Can retrieve Becomes more
crawling belonging to a content related to a | time consuming as
[18] given topic given topic the topics expand
Distributed |Crawlers Varies Yes Provide more Difficult to manage
crawling are distributed throughput and coordinate
[59] across systems crawlers
independently

within CDN systems. One of the most popular high-performance distributed crawlers found at
present is the Googlebot [46]. Googlebot is the web crawler used by Google to fetch webpages
for indexing. It is designed to be distributed on several machines so that the crawler can scale as
the Web grows. Table 3 summarizes the three main crawling techniques with their advantages,
disadvantages and comparison of features.

Detection of crashed agents is one of the important concerns of distributed web crawlers. Several
distributed crawler solutions have been presented during the past [8, 103]. To address this concern,
crawlers can be designed as reliable failure detectors [19], in which timeouts can be used to detect
crashed agents. UbiCrawler [8] is an example of a web crawler with a reliable failure detector. It
is a distributed web crawler, which consists of several agents that are responsible to crawl their
own share of the Web. However, it does not guarantee that the same webpage is not visited more
than once. Based on the experience with UbiCrawler, the authors have built BUbiNG [9], a fully
distributed web crawler that can detect (near-)duplicate webpages based on the content. However,
it does not support URL prioritization.

Another aspect that has drawn the attention of researchers is the efficient partitioning mecha-
nisms of the Web space. Work done by Exposto et al. [39] has presented a multi-objective approach
for partitioning the Web space by modeling the Web hosts and IP hosts as graphs. These graphs
are partitioned, and a new graph is created with the weights calculated using the original weights
and the edge-cuts. Results show that efficient partitioning techniques have improved download
times, exchange times and relocation times.

Kc et al. [59] have introduced LiDi Crawl (which stands for Lightweight Distributed Crawler),
which is a centralized crawling application with limited resources. It consists of a central node
and several individual crawling components. The distributed crawling nature results in the re-
duced dependence on expensive resources. Kumar and Neelima [63] have proposed a scalable,
fully-distributed web crawler, without a central node. It consists of multiple agents, where each
agent is coordinated so that they crawl their own region on the Web. An agent runs several threads,
where each thread is made responsible to visit a single host. The main objective of having multiple
agents is to break down the task of crawling into separate parts, and allow specialized modules to
carry them out efficiently. Anjum et al. [3] state that web crawlers should be aware of webpage
modifications, and have discussed techniques to retrieve information on such modifications. How-
ever, the authors have found that the presence of multiple JavaScript and CSS files can reduce the
efficiency of certain retrieval techniques.

Efficient crawling of Rich Internet Applications (RIA) is an open problem as RIAs consist of
many characteristics, such as the use of JavaScript and browser plugins, which makes the crawling

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:14 V. Mallawaarachchi et al.

Table 4. A Summary of Various Crawling Solutions Presented in the Literature

Crawler Distributed Advantage Disadvantage
UbiCrawler [8] Yes Failure detection Does not guarantee that
duplications are not present
BUDbING [9] Yes No coupling to machines | Does not allow prioritization
of URLs
LiDi Crawl [59] No Can work with limited Affected by a single point of
resources failure
Dist-RIA crawler Yes Can crawl Rich Internet | Lack of adaptive load-
[77] Applications in parallel | balancing for diverse nodes
MTCCDW [69] No Optimized for the process | Affected by a single point of
of change detection failure

process complex. Model-based Crawling [5] was introduced to determine an optimal crawling
strategy for RIA. An extension of this model is presented by Dincturk et al. [33], which uses a
statistical approach in determining a crawling strategy. The recent work carried out by Mirtaheri
et al. [77], intends to lower the time taken to crawl RIAs by introducing Dist-RIA crawler, which is
a distributed crawler to crawl RIAs in parallel. However, it assumes that all the nodes have equal
processing power, and assigns an equal number of tasks to each node. This can be problematic
when there is heterogeneity.

Multi-Threaded Crawler for Change Detection of Web (MTCCDW) has been introduced by
Meegahapola et al. [69] to optimize the change-detection process of webpages. Many threads
were used to carry out the tasks of (1) “retrieving current versions of webpages,” (2) “retriev-
ing old versions from a version repository,” and (3) “comparison of the two versions to detect the
changes” [69]. Two thread-safe queues were used in between these three tasks to optimize them.
The authors have determined the optimum number of threads to be used in each of these tasks,
to ensure that the CDN system works optimally without idling. This multi-threading-based al-
gorithm differs from standard process optimization tasks because of the I/O operations that are
involved in fetching a webpage from the Web. Hence, this algorithm provides a more significant
improvement in processing times over doing I/O operations and processing in a central processing
unit. Table 4 summarizes the various crawling solutions presented in this subsection.

4.2 Scheduling Algorithms

Among the important research problems observed in the web information retrieval domain, the
scheduling process of visiting webpages along hierarchies of links has become significant. The fre-
quency of change may differ in different webpages as they get updated at different time schedules.
Certain webpages, such as wiki pages, may get updated rarely whereas news websites and blogs
may get updated more frequently. To crawl these webpages more efficiently, dynamic mechanisms
are required to detect the change frequency, and create checking schedules accordingly. Users will
be notified immediately after changes have occurred on webpages that they are interested in.
This will ensure computational resources are used optimally. However, most of these algorithms
are kept proprietary, and a limited amount of details are published about them to prevent being
reproduced [17].

Various solutions have been proposed to determine optimal webpage crawling schedules based
on different assumptions and different statistical frameworks. Work done by Coffman et al. [28] has
described crawler scheduling policies by assuming independent Poisson page-change processes.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:15

Table 5. A Summary of Various Scheduling Solutions

Scheduling Solution Advantage Limitations
Coffman et al. 1998 Schedule crawls when Can be sensitive to parameter
[28] webpages change and reduce changes in the Poisson process
unnecessary crawls
Cho and Garcia- Significantly improves the Affected when resource
Molina 2000 [23] freshness of webpage indexes | synchronization is not uniform
Wolf et al. 2002 [123] | Minimizes the number of Not suitable to be used online
non-relevant webpages for a with large input dimensions
user query
Pandey and Olston Improves the quality of user Does not revisit webpages based
2005 [91] experience with fewer resources | on change frequency
Santos et al. 2013 [100] | Prioritizes crawls according to | Has not considered other
how frequently webpages features such as PageRank and
change crawling cost

Studies carried out by Cho and Garcia-Molina [23] have addressed the problem of determining
the optimal number of crawls per page by using a staleness metric and Poisson process, where
they assume uniform synchronization over time. Work done by Wolf et al. [123] has proposed a
technique to detect optimal crawl frequencies and theoretical optimal times to crawl webpages
based on probability, resource allocation theory and network flow theory. Pandey and Olston [91]
have proposed a scheduling policy based on the “user-centric search repository quality.”

Various scheduling strategies for web crawling have been studied and compared in previous
studies [17, 42]. Among these strategies are optimal, depth, length, batch, partial [17], depth-first
search, breadth-first search, best-first search and best n-first search [42]. However, some of the
strategies that have been considered cannot determine the temporal aspects, such as how fre-
quently webpages are undergoing changes, and prioritize the crawls accordingly. Evolutionary
programming techniques, such as genetic programming [100], can be used to solve this issue by fa-
cilitating schedulers to rank webpages according to how likely they are being modified. Moreover,
certain algorithms may get affected as webpages are crawled even though nothing has changed,
where computational resources are used inefficiently. Table 5 compares the various scheduling
solutions presented previously.

4.3 Change-detection Algorithms

Changes occurring on webpages can be divided into five categories as discussed by Oita and
Senellart [84]. They are (1) content changes, (2) structural (or layout) changes, (3) attribute (or
presentation) changes, (4) behavioural changes and (5) type changes. Content changes include
changes occurring in the text, images, etc., whereas structural (or layout) changes consist of
changes occurring to the placement of HTML tags. Attribute (or presentation) changes include
changes done to the design and presentation of a webpage, such as changes in the fonts, colors or
captions. Behavioral changes occur when active components, such as embedded applications and
scripts of webpages, are changed. Type changes occur when modifications are done to the existing
HTML tags, such as when a p tag becomes a div tag. Studies have been focused on all of these
types of changes [84] and different methods and algorithms have been proposed [10, 53].

A major concern of change detection in webpages is the ability to identify relevant and irrelevant
changes. The research carried out by Borgolte et al. [10] has focused to ignore irrelevant changes,

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:16 V. Mallawaarachchi et al.

such as change of advertisements, and try to detect important changes occurring on webpages
using different methods. The Delta framework introduced in this research, consists of four precise
steps. In the initial step, it retrieves the currently available version of a website, and normalizes
the DOM tree. Then in the next step, similarities are measured in comparison to the base version
of the website. Similar changes are clustered to lower the analysis engine submissions. The final
step is the “analysis of identified and novel modifications with a potential computationally costly
analysis engine.” Compared to many other pieces of research that focus on detecting changes that
have been done to a website, the Delta framework focuses more on detecting significant changes
occurring on a website.

Changes occurring within information collections can be difficult to track due to the vast amount
of data being available. Unexpected changes within the collection can make the content unorga-
nized and outdated, which can cause burdens, such as the removal of outdated resources and re-
placement for lost resources. Jayarathna and Poursardar [55] have presented a study that focuses
on a categorization and classification framework to manage and curate distributed collections of
web-based resources. The selected pages were categorized with their relationships between the
anchor text to identify the relevant information of the target page. They have proposed a digital
collection manager that addresses webpages with textual content only. It has been shown that due
to unexpected changes, documents in these collections can get problematic. Further research is
necessary to detect changes occurring to other resources in digital collections, such as audio files,
video files and documents.

Various change-detection approaches have been proposed across the available literature to de-
tect the different changes occurring on webpages. Elaborated in Table 6 are a few popular algo-
rithms that were considered in this survey. One of the common approaches that have been used
for change detection in hierarchically structured documents such as webpages is the use of tree-
structured data with diff algorithms [27]. Many variations of these diff algorithms have been pre-
sented in the available literature [10, 122]. The basic idea on top of which all of these algorithms
are built on is the process of modeling the hierarchically structured documents in the form of a
tree with nodes, and compare the trees to identify changes that have occurred. Similarly, two trees
can be developed; one with nodes from the parsed content of a previous version and the other with
nodes from the parsed content of the currently available version. The two trees could be compared
to identify which nodes have changed so that the changes can be determined.

4.3.1 Fuzzy Tree Difference Algorithm. The Delta framework proposed in Reference [10] in-
volves tree difference algorithms. First, the modifications that have occurred in a website are ex-
tracted using fuzzy tree difference algorithms. Second, a machine learning algorithm is used to
cluster similar modifications. The authors have employed a tree difference algorithm in which
they have generalized to remove irrelevant modifications during the early phases of the analysis.

4.3.2 BULD Diff Algorithm. The BULD Diff algorithm [27] has been used in computing the
differences among the given two XML documents. It matches nodes in the two XML documents,
and constructs a delta that represents the changes between the two compared documents. BULD
stands for “Bottom-Up, Lazy-Down” propagation [27], which has been derived from its matchings
that are propagated “bottom-up” and “lazily down.” This algorithm can run in linear time. First,
the algorithm matches the largest identical parts of both the XML documents. Then the algorithm
tries to match subtrees and the parents of the matched subtrees. This process is repeated until no
more matches are made. Then the remaining unmatched nodes can be identified as insertions or
deletions.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:17
Table 6. A Summary of Existing Change-detection Algorithms
Algorithm Methodology/Function Advantages Disadvantages Associated Work
Shingling Group a sequence of terms in a Fast detection due to | If the content Detecting
algorithm given document and encode by a | the speed of the considered in the duplicate web
64-bit Rabin fingerprint, referred | algorithm. document is small, documents using
as a “shingle”. Use the Jaccard then it will not be click- through
coeflicient between the shingle able to generate data [95]
vectors to compute the similarity enough shingles.
between the two documents.
Johnson’s Computes the distance between Categorizes the Does not include Walden'’s Paths
algorithm two documents based on change type. Easy links when Path Manager
paragraphs, headings and identification of the | determining changes. | [44]
keywords. Each signature mostly changed
difference is calculated, and the content type.
sum is taken as the total distance.
Proportional | Computes the distance that is Can evaluate changes | There is a slight Walden’s Paths
algorithm normalized and symmetric using | efficiently in the page | performance trade-off | Path Manager
each individual signature. without analyzing all | when compared to [44]
Proportional change of each the related pages in a | Johnson’s Algorithm.
signature is used with regards to | given path.
the total number of changes.
Cosine Compute a cosine value between | Provides a more The context-based Managing
algorithm two vectors of the page considered | meaningful cut-off to | algorithm gives a distributed
and all the pages for the similar identify the level of | mid- level outcome as | collections [30]
topic except the page considered. | change. it tends to generate
Then measure the change in false positives and
cosine value. false negatives.
Fuzzy tree | A tree difference algorithm that is | Can eliminate trivial | Have to define a Delta
difference generalized into a fuzzy-notion. changes momentarily. | suitable (fuzzy) hash | framework [10]
algorithm function.
BULD Diff | Match subtrees of two XML The difference can be | Reduce performance | Detect changes in
algorithm documents till no more matches computed in linear proportionally to the | XML
can be made. Unmatched subtrees | time. tree-depth. documents [27]
are considered to be insertions or
deletions.
CX-DIFF Identifies user specific changes on | Gives notifications to | Can lead to WebVigil [52]
XML documents. Objects of users on time. overloading of the
interest are extracted, filtered for | Optimized space servers due to the
unique insertions and deletions, usage. Efficient highly expensive
and the common order monitoring of types. | computational cost.
subsequence is computed.
X-Diff Compares two XML documents Provides accurate May require a large | X-Diff [122]
depending on their equivalent results by amount of statistical
trees. It generates a “minimum- maintaining an information for the
cost edit script” including a series | unordered view of the | detection process.
of fundamental edit operations document where
that transform a given tree to the | ancestor links add
other at a minimum cost. value to the result.
Vi-DIFF Detects content and structural Can detect semantic | May cost more Vi-DIFF [93]

changes including the visual
representation of webpages.

differences between
two versions.

resources and time
when compared to
other methods.

Level order
traversal

This is a breadth first traversal
algorithm and considers the
changes in the document-tree to
detect the changes.

Simple. Low cost of
computation. Helps
to reduce network
traffic due to the
usage of HTTP
metadata.

May not give
sufficient information
to the user.

Change Detection
in Webpages [125]

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:18 V. Mallawaarachchi et al.

4.3.3 X-Diff Algorithm. The research carried out by Wang et al. [122] has investigated how XML
documents change and methods to perform change detection of XML documents. The authors
have pointed out the fact that XML is becoming important as it is at present the de-facto standard
in publishing web applications and data transfer/transportation. Internet query systems, search
engines and continuous query systems heavily rely on efficiently detecting webpage changes in
XML-documents because of the frequent rate at which webpages change in present days. The
authors have described an algorithm named X-Diff [122], which is an algorithmic model used to
compute the difference in-between two versions of an XML-document. Unordered trees, structural
information of XML-documents and high performance are among the main features of X-diff al-
gorithm. The authors have tested the X-Diff algorithm for its accuracy and efficiency of change
detection by considering three main nodes in the DOM tree, namely, element nodes, text nodes,
and attribute nodes. Going beyond what has currently being done, the authors have compared the
ordered tree model of change detection and unordered tree model that they have used. They have
also discussed the characteristics of XML domain, and established few key concepts, such as “node
signature” and “XHash.”

4.3.4 Tree Difference Algorithms. The research carried out by Jain and Khandagale [53], has
focused on detecting changes in a specific location on a website or any document. This method
involves tree comparison techniques. The majority of the existing techniques/systems check for
changes in the whole webpage without allowing the user to select specific areas to monitor. When
considering frequent changes, the cost of communication (or the information exchange) will cause
inefficiencies by disturbing the focus to a given context. Hence, the authors have proposed a tree
comparison mechanism to overcome these difficulties. They have considered the management of
zone changes (changes in a particular place on a webpage), and it is quite achievable using a tree
mechanism, because once a webpage is converted into XML format, it can be converted into a
tree according to the HTML tags and attributes. When it has to localize the detection mechanism,
the focus is given only to a particular node, and the detection process will continue to their child
nodes. However, the limit for the depth of the tree is not specified, which can be inefficient with
large trees.

Yadav et al. [125] describe a methodology to build a model to efficiently monitor webpage
changes. The authors have suggested an algorithm that efficiently identifies and extracts the
changes on various versions of a particular webpage, and evaluates the significance/importance of
the change. This algorithmic model has three main sections. Initially, a document-tree is created
for the webpage, and then it encodes the tree. Finally, it matches the current version with the pre-
vious version of the encoded tree. The algorithm searches for two change types occurring in web
content. They are, namely, structural changes and content changes.

Tree models can be of two types: the first type is the ordered tree model where the left-to-right
order between nodes is crucial, and this order directly contributes to the result of change detec-
tion; the second type is unordered tree model, where only the ancestor relationships are significant.
Different studies have been carried out using these two tree models. Level Order Traversal [125]
is a form of breadth-first search that uses an ordered tree model. First, it constructs a document
tree by taking in an HTML file and parses the elements. Then, the opening tags are identified
as tree nodes, and the tree is constructed for the webpage as illustrated in Figure 8, while main-
taining parent-child relationships and left-to-right order in-between siblings. Then the algorithm
traverses through the tree to detect changes, and identify at which level of the tree the changes
have occurred. However, some researches [122] have argued that the unordered tree model can
generate more accurate results.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:19

HTML
Document

Root Element:

<html>
Element: Element:
<head> <boby>
N) N [)
[I I 1
Element: Element: Element: Element: Element: Element:
<title> <meta> <ht> <a>
" " Attribute: Attribute: " Y Attribute: Attribute: Element: Element:
Hello World! "name" "content” 'Welcome All! ‘ ngre" "href" di> di>

| L l | l |

{"Descrlption"}{'MyHTMLPage" "welcome.png"} ["home.html" } { "My item1" } ["My item2" }

Fig. 8. HTML document tree hierarchy of a sample webpage.

4.3.5 Johnson’s Algorithm. The Johnson’s algorithm [56] was originally proposed as a method
to “find the shortest paths between all the pairs of vertices in a sparse weighted directed graph.”
The same algorithm has been introduced by Johnson and Tanimoto [57] to detect changes to con-
tent. The authors have tested a prototype to manage and deliver the latest tutorial content on the
web to students. The system was designed to anticipate changes to documents. The difference be-
tween documents stored is evaluated and updated accordingly. This algorithm has been used in
a tool named as Walden’s Paths Path Manager [44]. It computes the distance between two docu-
ments based on paragraphs, headings and keywords. Each signature difference is calculated, and
the sum is taken as the total distance. It categorizes the change type, and it is easy to identify which
type of content is mostly changed on a webpage. However, it does not consider the changes that
occur to links. Furthermore, the results produced by this algorithm can be hard for a normal user
to understand without the assistance of a computing device.

4.3.6 Proportional Algorithm. The Proportional algorithm [44] is based on signatures, and gives
a much simple calculation of the distance. It computes a distance that is normalized and symmetric
using each signature (paragraphs, headings, keywords and links). The proportional change of each
signature is used with regards to the total number of changes. The measured distance has prop-
erties such as normalized properties and symmetric properties. These properties help the user of
the algorithm significantly by providing a listing or visualization of various webpage changes.
Having such listings, and visualizations makes it possible for the user to easily analyze changes of
the webpage without necessarily reading and reviewing all the pages in the path. However, there
is a slight performance trade-off when compared to the Johnson’s Algorithm as changes to each
signature are computed individually.

Table 6 summarizes the change-detection algorithms discussed in this subsection, and compares
the methodology/functions, advantages, disadvantages and associated research work. According
to Table 6, it can be observed that there are many change-detection algorithms based on differ-
ence calculation and traversal techniques. Different algorithms detect different changes, such as
changes occurring to text, visual representation and XML structure. The majority of the algorithms
perform at fairly good speeds, and provide faster detection rates along with efficient resource uti-
lization and low computational costs. Algorithms such as level order traversal have alow overhead,
which will in return reduce the network traffic in communication. Algorithms such as the Cosine
algorithm and the Fuzzy Tree Difference algorithm provide different levels of changes so that the

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:20 V. Mallawaarachchi et al.

threshold can be decided upon the specific usage of the algorithms. Algorithms such as the John-
son’s algorithm can be used to categorize the change types so that it is easy to identify which type
of content is mostly changed in a webpage.

However, there are certain shortcomings in each of these algorithms. If the content being com-
pared is very small, then the Shingling algorithm will not be able to generate sufficient shingles.
The Johnson’s algorithm does not identify changes occurring in links. Algorithms such as CX-
DIFF and Vi-DIFF consist of highly expensive computations, and can even lead to overloading of
the servers. Level order traversal algorithms do not provide sufficient information to the user about
changes occurring.

4.4 Frequency of Webpage Changes

Since the 1970s, several studies have been carried out based on statistics, to estimate the change
frequency [15, 78]. Nevertheless, the majority of these studies have been done under the assump-
tion that the history of changes is available for the webpage, which might not be true always in the
area of change detection of webpages. When analyzing CDN systems, it is visible that the complete
change histories will not be available for a webpage being tracked. In several related studies [40,
49, 86], the Poisson model has been introduced as a model that can be used to estimate the rate of
change of a webpage (also known as change frequency). Most of the work that has been carried out
is with an assumption: “changes arrive as a Poisson process, and that the average rate of change
can be estimated under this model.” Brewington and Cybenko [12] have used an exponential prob-
abilistic model to infer the times between changes occurring in individual webpages. The ages of
webpages that have gone through many changes over a time period can be closely modeled using
an exponential distribution. However, it models all the webpages as dynamic, even if the webpages
change rarely and their only changes are their removal from the Web.

According to Olston and Najork [85], the binary freshness model can be used to measure the
freshness in a webpage. This model, which is also known as obsolescence, is a function that is of
the form

fp.t) 0,1} (1)

where f(p,t) denotes the freshness of a particular webpage p over a t time period. It compares
the live copy of a specific webpage p with a cached version of the webpage across a time period
t to check if they are identical (or near-identical). Under this model, if f(p, t) equals to one, then
the webpage p can be called fresh over the time ¢, whereas otherwise it is considered as a stale
webpage that has gone through some change. This model is simple, but effective, and provides
readers with a very good understanding of webpage changes. The first most study regarding the
freshness maximization problem was done by Coffman et al. [28], where the authors have proposed
a Poisson model for webpage changes. A set of random and independent events that occur in a
fixed-rate can be modeled using the Poisson Process. A webpage can undergo changes that cause
the cached copy of the web crawler to go stale. If A(p) is the rate parameter of a Poisson distribution
where p is the webpage, then that specific distribution can be used to denote the occurrence of
changes in that specific webpage. This also suggests that the changes happen independently and
randomly with a mean rate of A(p) changes per unit of time.

However, the binary freshness model lacks the ability to determine whether one page is fresher
than the other, since the model outputs a binary value; fresh or stale. Hence, Cho and Garcia-
Molina [25] have introduced a non-binary freshness model known as the temporal freshness met-
ric, which is

f(p,1t) < age(p, 1) ()
ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:21

in which age(p, t) represents the age of a page p up to time ¢ and age (p,t) € {0,a} where a is
the time duration the copies differed. If a cached-copy of webpage p is indistinguishable from its
live-copy, then age(p, t) = 0. The intuition of this methodology is that “the more time a cached
page stays unsynchronized with its live-copy, the more their content tends to drift away.”

Cho and Garcia-Molina [26] have proposed several frequency estimators for different online
applications that require frequency estimation with different accuracy levels. The authors have
proposed frequency estimators for scenarios, where the existence of a change is known, and the last
date of change is known. Furthermore, the authors have proposed a model to categorize elements
into different classes based on their change frequencies. These aspects can be modeled in CDN
systems to categorize webpages once their change frequencies have been estimated.

Grimes and O’Brien [49] state that for every webpage, the hourly update rate can be represented
by a Poisson distribution together with A = 1/A where A is a parameter and A is the mean time
between changes. The authors have also described a mechanism to identify webpage changes and
a model for the computation of the rate of change of a given webpage.

Work carried out by Meegahapola et al. [71] has proposed a methodology to pre-predict the
update frequency of webpages (the rate at which changes happen), and reschedule the crawling
schedule to make the process of crawling webpages more efficient in search engines and web
crawlers used for change detection. The authors have introduced a change frequency detection
system named Change Frequency Estimator Module (CFEM). It includes two processes. Whenever
a fresh webpage is added, that webpage will be crawled to detect a suitable change frequency, and
it will be recorded in the system. Then these values are sent to a machine learning model [72] that
will predict the time interval between two crawls for a particular webpage. The change values
together with change frequencies for a webpage is sent to the machine learning model, it would
output a time interval called a loop time corresponding to that particular webpage. This value is an
estimation of the average time taken by the webpage between two changes or in other terms, the
refresh rate. It has also been observed by the authors that frequently changing websites obtained
lower loop times in comparison to webpages that do not change often. Table 7 summarizes the
different change frequency detection techniques with their characteristics and limitations.

5 CHANGE NOTIFICATION

CDN systems provide facilities to notify users about information changes or occurrence of events
in a particular webpage of interest. From our studies, we have determined three main characteris-
tics that should be considered when designing a notification system. They are (1) when to notify,
(2) how to notify and (3) what to notify.

When to notify changes is an important aspect to decide on when developing a change notifi-
cation system. Users may want to get notifications as soon as they occur, or some may want to get
periodic notifications as they may not want to have a clutter of notifications. The way notifications
are sent decides how useful the notification system will be. The system should be able to send the
notifications to the user in a way that the user will not be overwhelmed with the notifications.
The content to be notified may depend on the user as they may have different information needs.
Hence, it is wise to allow the user to customize the content.

The change notification process of CDN systems available at present consists of a wide range
of notification methods. A few of the popular methods are web interfaces, browser plugin notifi-
cations, emails, SMS alerts and popup alerts [34].

5.1 Web Interfaces

WebCQ [66] is a CDN system that is among the earliest to become popular back at the beginning
of the 2000s. The notification system of WebCQ runs on the server-side, and hence, it uses periodic

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:22 V. Mallawaarachchi et al.
Table 7. A Summary of Existing Change Frequency Detection Techniques
Method Citation Characteristics Limitation
Poisson distribution | Coffman et al. | Webpage changes occur as a|Sensitive to parameter

1998 [28] Poisson process and changes
determine the mean rate at
which changes occur.

Exponential Brewington | The ages of webpages that |Sensitive to parameter
probabilistic model |and Cybenko |have gone through many |changes.

2000 [12] changes over a time period |Assumes all webpages
are modeled using an are dynamic.
exponential PDF.

Temporal freshness | Cho and Determine the level of Cannot incorporate
metric Garcia-Molina | freshness of a page information about the

2003 [25] type of changes

Binary freshness Olston and Determine whether a page |Cannot determine the
model Najork is fresh or stale (provides a |level of freshness

2010 [85] binary value)

Change Frequency |Meegahapola |Use a machine learning Can result in overfitting
Estimator Module |et al. 2017 [71] | model to determine the time
(CFEM) interval between two crawls
ST

. <

m ‘qv . =’ -

. : R -0
. —— :

(@) (b)

Fig. 9. Dashboard of (a) Visualping [118] and (b) ChangeTower [22].

notifications so that it can run efficiently with a large user base and webpage entries. The interval to
send notifications is defined by the user when registering a webpage to track. WebCQ allows users
to view changes on a web interface, where they can query to find reports detailing the changes or
reports with a summary of changes.

Throughout the past two decades, CDN systems have evolved, by utilizing modern front-end
development frameworks, to provide more appealing and user-friendly interfaces with improved
user experience. These interfaces have been able to convey useful information to the user in
a more efficient and readable manner. Recently introduced change-detection systems, such as
Visualping [118] and ChangeTower [22], provide more advanced features for notifying changes
within the web interfaces (as shown in Figure 9). The majority of the systems provide a dash-
board for the user with summaries of recent changes that have occurred to the webpages they are
tracking.

5.2 Browser Plugins

Distill Web Monitor [34] is a CDN system, which is available as a browser plugin. Figure 10 il-
lustrates the browser plugin of Distill Web Monitor. It allows users to view changes highlighted

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:23
c o Mg;ﬂut SE::’:E www.boe.com/news LRI Y

BEE o s« Add Monitor Updates (on o 5 v @

NEWS

Home ~Video ~Word Asia UK | Business Tech = Science Stories Entortainment4 Ark Monttor ful page HemeRanc s HENDNONIN|

DOWNLOAD THE APP
Fig. 10. Browser plugin of Distill Web Monitor [34].
Table 8. A Summary of the Change Notification Techniques

Change Amount of
Notification information Level of Cost to
Method delivered Payload size accessibility implement
Web interfaces High High Medium Low
Browser plugins High Low Medium Low
Emails Medium Medium Medium Medium
SMS Alerts Low Low High High

on the webpage itself. Furthermore, this system provides various notification options for users
including, emails, browser notifications, SMS, sounds and popup alerts.

5.3 Emails

Email notifications have become popular in all the online services as a means to convey new
updates and news to the users. Similarly, most of the CDN systems provide the facility to get
notified via emails, once changes occur in monitored webpages. Emails generally contain links
that when clicked by the user, will be redirected to a page with further information about the
relevant change.

5.4 SMS Alerts

Certain CDN systems provide the facility to get notifications via Short Message Service (SMS). The
system requests the user to enter a mobile phone number to which the user wants to have the no-
tifications delivered. Google Alerts [45] and Distill Web Monitor [34] are two popular services that
provide this facility for its users. SMS alerts are very useful for users who wish to get notifications
about webpage updates while traveling and when they do not have access to the Internet to log into
the online system. However, the SMS alert feature may require the user to upgrade to their paid
versions. Table 8 compares the different features of the various change notification techniques.

6 CHANGE VISUALIZATION

Visualization of changes is an important aspect of CDN systems. Proper visualization techniques
will allow the users to easily identify the changes of the webpages being tracked. Publicly available
CDN systems visualize changes occurring on webpages in different ways [118, 120]. Most of the
changes are depicted in the original interface itself that is loaded by the CDN system.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:24 V. Mallawaarachchi et al.

en: May 4 at 14:15 and May 3 at 14:15

@) (b)
Fig. 11. (a) Text change visualization in Wachete [120] and (b) visual comparison of changes in Visualp-
ing [118].
O /@vijinimallawaarachchi/responses New; activate monitoring below = =
O /m/signin?redirect=...g&operation=login New; activate monitoring below = =
O /m/signin?redirect=...mp;operation=register New; activate monitoring below = =

[/membership?source=upgrade_membership—nav_full ~ New; activate monitoring below

(<]
w o o o o

O /@vijinimallawaarachchi Vijini Mall achchi — Medium May 8, 1:28 PM 3 days

Fig. 12. Sample change log of Versionista [117].

6.1 HTML Differencing

One popular means of visualizing textual content is by graphically annotating the differences in
the HTML content. This was first introduced as the HtmlIDiff tool [35], which marks up the HTML
text to indicate how it has changed from a previous version. This tool was introduced in the AT&T
Internet Difference Engine (AIDE) [36], which was developed to detect and visualize changes to
webpages. Most of the currently available CDN tools use the HtmlDiff technique or its variants
that highlight the changes in different colors. The most commonly used color convention is that
deleted text is highlighted in red color with strike-through formatting, whereas newly added text
is highlighted in green color. The text that has not changed is not highlighted. This method of
change visualization is more straightforward as the changes have already been highlighted and
are shown to the user. Figure 11(a) shows the visualization used in Wachete [120].

6.2 Visual Comparison

Another interactive method of visualizing changes is by showing the current version and previous
version of a webpage side by side on an interface allowing a user to observe the changes for himself.
Visualping [118] provides this facility for its users, as shown in Figure 11(b). The two versions are
shown side by side, and the cursor can be moved horizontally to slide the visible window to view
and compare a particular area on the webpage in the two versions. This method is more interactive
as the user is involved in identifying the changes that cannot be seen at once. However, certain
users may find this method too tedious and time-consuming as the user himself has to find the
changes by making comparisons between the two versions of a webpage.

6.3 Change Logs

Versionista [117] is a CDN tool, where the user can view the modifications in the form of a log.
Figure 12 illustrates a sample change log from Versionista. However, some users may find this
format hard to read and understand as the changes are not visible immediately.

Table 9 denotes a feature comparison of the various change visualization methods. It can be seen
that different techniques have different levels of information representation, understandability,
ease of identifying, and cost.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:25

Table 9. A Summary of the Change Visualizations Techniques

Change Amount of Ease of

Visualization information Ease of identifying

Technique shown understanding changes Cost
HTML differencing Medium High High Medium
Visual comparison Medium Medium Medium High
Change logs High Low Low Medium

Table 10. Comparison of Features of Publicly Available CDN Systems

Monitor | Monitor | Server- | Client- Fixed

a single | multiple side side interval Browser | SMS
CDN System page pages |detection |detection| checks | Email | plugin | alerts
Google Alerts [45] X X X - X X - Xe
Distill [34] X X - X X X X X4
Visualping [118] X X X X X X X -
FollowThatPage [43] X X X X X X X -
Trackly [113] X X X - X X - -
Versionista [117] X xb X - X X - -
ChangeDetect [20] X X X - X X - -
Wachete [120] X xb X X X X X -
ChangeTower [22] X xb X - X X - -
OnWebChange [87] X X4 X - X X - -
ChangeMon [21] X X X - X X - -
Pagescreen [90] X Xb X - X X - -

“This feature is available in the paid version only.
QOnly a number of limited webpages can be tracked with the free version.
¢SMS alerts provided by third party applications.

7 PUBLICLY AVAILABLE CDN SYSTEMS

Different CDN systems are available at present, and each of them has its own supported set of
features. Table 10 denotes twelve popular CDN systems, and compares their features, such as pages
monitored, detection architecture and notification methods.

Most of the systems support change detection of a single page and multiple pages for a single
user freely. However, systems such as Versionista [117], Wachete [120] and PageScreen [90] offer
a limited number of webpages that can be checked under the trial version. If a user wants to
track more webpages than the given limit, then the user has to upgrade to the paid version where
unlimited tracking is provided.

The majority of the systems use server-side change-detection approaches, whereas a few sys-
tems use client-side change-detection approaches. According to studies, most of the commercial
systems available at present use server-side change detection due to the easy implementation in a
central location, where users can call the functionality as a service via a web interface. There are a
few tools, such as Visualping [118] and Follow that Page [43], where they use both server-side and
client-side change-detection approaches. However, tools such as Distill [34] use client-side change
detection via browser plugins.

It is evident that all the systems support fixed interval checks. This can cause issues, because the
user has no knowledge of how often a particular webpage will get changed, and the user may fail to
observe important updates by selecting arbitrary checking intervals. Hence, dynamic scheduling
mechanisms should be addressed to enhance the efficiency of CDN systems.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:26 V. Mallawaarachchi et al.

Most systems support a wide range of fixed interval checks, such as twice a day, daily, weekly
and monthly. More frequent checks such as hourly checks, three hourly checks and six hourly
checks are provided in the paid versions of many CDN systems. However, the browser plugin of
Distill supports checks varying from every 5 seconds up to 29 days. Such high checking frequencies
are possible as the Distill system runs on the client, where the client may have ample resources.
However, server-based systems may not support such high checking frequencies as the server can
get overloaded with the growing user base and the number of pages to be tracked.

When considering the notification methods, it can be seen that all the tools provide email alerts.
Emails have become popular due to its simplicity, easy implementation and extensive use among
the clients. A few systems provide browser plugin alerts and SMS alerts. However, with the de-
velopment of mobile devices, certain services, such as Watchete and Visualping, have provided
mobile applications that can be installed on smartphones. This has allowed the user to get updates
and manage monitors via his/her smartphone. Some systems, such as ChangeDetect [20] and Page-
Screen, provide free trials for users to try out their features for a limited time. After the trial period
has passed the users must upgrade to continue to get the services. Trackly [113] provides a free
plan where it allows a user to track three webpages. Trackly also provides 30-day free trials for all
its plans and consists of the same features as the paid version. ChangeMon [21] provides a 7-day
free trial where a user is not required to sign up for an account and can create up to 1,000 monitors.

8 DISCUSSION

In the modern world, webpage change detection has become very complicated due to many rea-
sons, such as (1) evolution of technologies used in webpage creation, (2) addition of rich and dy-
namic content to webpages, and (3) privacy concerns and regulations. In this section, we will dis-
cuss some of the trends, concerns and insights as to what modern researchers/developers should
pay attention to when building solutions related to webpage CDN.

8.1 Ethical Aspects and Security Concerns of Web Crawling

Change detection of webpages primarily relies on web crawling. Ethical aspects and security con-
cerns of web crawling are important considerations when building web crawler-based applica-
tions although they are mostly neglected. Research and guidelines in this area are limited, and
work done by Thelwall and Stuart [112] is one of the modern works regarding this topic. After
conducting an extensive analysis regarding applications of web crawlers, they have come up with
four main types of issues that web crawlers may cause to the society or individuals. They are,
namely, (1) denial of service—due to repetitive requests to web servers, failures may occur causing
disturbances to normal users of the website; (2) cost—increasing number of requests may incur
additional costs to the website owner depending on the cost of the web hosting plan that is used;
(3) privacy—even though data in webpages are public, gathering of information in large scale might
lead to privacy violations; (4) copyright—crawlers create copies of webpages/datasets from web-
sites without prior consent, which may directly involve copyright violations. The authors have
further explained how Robots Exclusion Protocol (robots.txt) [62] can be used to overcome the
above issues from the perspectives of website owners and web crawler owners. In doing so, they
have emphasized the limitations of the set of guidelines, and elaborated on alternative techniques
to overcome the limitations.

Even though many commercial search engines and CDN systems have adopted the Robots Ex-
clusion Protocol to various extents, the degree to which each web crawler abides by the guidelines
set by the protocol differs. A study carried out by Sun et al. [110] has come up with a mecha-
nism to quantify the ethicality of web crawlers using a vector space model. While acknowledging
the fact that the unethicality of crawling may differ from webpage to webpage, they have used a

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:27

common set of ethical guidelines set by Eichmann [37] and Thelwall et al. [112] in creating this
mechanism. More research on this avenue would be interesting as a lot of governments, and policy
regulating agencies have shown an increasing interest regarding ethical aspects and data privacy
of online content during the past 5 years. To come up with widely adopted guidelines and regula-
tions regarding web crawling, having such ethicality quantification measurements of web crawlers
would be crucial. Further, regardless of the guidelines set by the Robots Exclusion Protocol that
has been adopted by over 30% of webpages by 2007 [111], many web crawlers do not abide by
the regulations. Because of this, many websites with crucial and private data deploy anti-crawling
techniques, such as (1) IP address ban; (2) captcha; (3) obfuscated JavaScript code; (4) frequent
structural changes; (5) limit the frequency of requests and downloadable data allowances; and
(6) mapping important data like images, which is considered one of the most effective ways.

8.2 Change Detection in Dynamic Webpages and Webpages with Rich Content

Modern webpages developed using technologies such as HTML5 with rich content, such as images
and videos, are constantly changing their elements to provide rich and interactive functionality
to users [98]. Cascading Style Sheets (CSS) is used to manage their layouts, and JavaScript is used
to manage their user interactions. The content and layouts of such webpages have become more
dynamic to adapt to different user actions and devices. Moreover, dynamic webpages can have
temporary information, such as help pop-ups, stored in a set of stacked layers apart from the basic
two-dimensional layout, hence giving the name three-dimensional webpages [119]. These layers
can undergo many changes. Hence, detecting changes in such dynamic webpages has become
challenging.

Currently, a limited amount of research work can be found for change detection in dynamic
webpages within the available literature. However, web tripwires [96], CRAWLJAX [75], Re-
DeCheck [121], and detection of visibility faults caused by dynamic layout changes [79, 98] can be
considered as significant work for crawling and detecting changes in dynamic webpages. These
make use of the client-side code to determine state changes occurred within the browser’s dynam-
ically built DOM tree when user events are triggered. The DOM structure of webpages created
using JavaScript frameworks, such as angular, ember, and react, can change as events are trig-
gered, and relevant DOM elements are rendered. Crawler scripts can determine such changes by
accessing the rendered content via calling the innerHTML property of the elements, as the HTML
content is not readily visible [96]. Since accessing the client-side code is a critical aspect in detect-
ing changes of dynamic webpages, it is worth to explore more efficient methods to perform this
task.

When considering from an industry perspective, not many commercially available CDN systems
support the monitoring of dynamic webpages. A handful of CDN systems, such as Wachete [120],
Visualping [118] and Versionista [117], allow users to monitor dynamic and JavaScript rendered
pages. Moreover, the algorithms used are kept as trade secrets by these companies, and are not
available publicly. However, the monitoring process of highly dynamic JavaScript webpages can
timeout due to large amounts of data that have to be processed. Hence, there is an opportunity
for researchers to contribute for the development of efficient algorithms to determine changes
occurring in highly dynamic webpages.

Modern webpages have rich content, such as images, audio, and video, to enhance the user expe-
rience. Webpages may be changed by changing these rich content. Most of the currently available
CDN systems can detect changes within the HTML content. In the case of images, a change can
be detected if the contents of the tag change. Sometimes the actual image may be changed
but the image has the same file name as before, and hence, such changes are not detected. How-
ever, to the best of our knowledge, currently available systems do not digitally analyze images,

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:28 V. Mallawaarachchi et al.

and detect whether an image is actually changed or not. However, several image change-detection
algorithms, such as image differencing, image ratioing and change vector analysis, can be found
in the research domain of image processing. These algorithms are used for applications such as
aerial analysis of images of forest areas and urban environments [76]. Similar ideas can be utilized
in CDN systems for webpages to detect changes occurring in images. However, if such sophisti-
cated methods are implemented within CDN systems, then they will require more computational
resources to operate efficiently.

8.3 Resource Synchronization

The resource synchronization problem has been identified as an issue with frequently changing
web sources [114]. It is defined as the “need for one or more destination servers to remain syn-
chronized with (some of the) resources made available by a source server.” From a CDN perspec-
tive, we can state this problem as clients wanting to stay up to date with the new content of
frequently changing webpages. Previous work includes the use of Open Archives Initiative Pro-
tocol for Metadata Harvesting (OAI-PMH) [88] to harvest digital resources [115], where new and
updated resources are collected incrementally, but it was not adopted broadly.

ResourceSync is an emerging framework [61, 116] that describes means for both client-pull and
server-push of change notifications. It consists of several modules that allow intended parties to
stay in sync with changing resources. The framework allows source servers to publish up-to-date
lists of resources and changes to the resources. Destination servers can access this published data
and synchronize the resources. This framework can be adapted for large repositories. The frame-
work represents changed resources or differences between the previous and new representations
as a bitstream, allowing to obtain changes to different media types. The use of the ResourceSync
framework in CDN systems can make the synchronizing process of clients more efficient and de-
liver change notifications in a timely manner.

8.4 Linked Data Notifications

With the emergence of User-Generated Content (UGC) proprietorship and anti-scraping tools,
commercial crawlers are not allowed to crawl content, and bots are blocked [80]. Hence, the de-
tails about webpages are unknown before crawling. Despite these challenges, if the changes of
webpages can be made available to web crawlers in a standard manner, web crawlers can easily
access these data to detect changes that have occurred. An emerging idea that can be used by CDN
systems is the Linked Data Notifications (LDN) protocol.

The LDN protocol describes how servers (termed as receivers) can make applications (termed as
senders) push messages to them, and how other applications (termed as consumers) can retrieve
those messages [16]. This protocol allows us to share and reuse notifications across different ap-
plications while paying less attention to how they were created or what their contents are. Noti-
fications are implemented in such a manner that they can run on different technology stacks, and
continuously work together while supporting decentralized communication in the web. The idea
was first brought forward by Capadisli [16], and has been considered as a W3C recommendation.
LDN identifies a notification as “an individual entity with its own Uniform Resource Identifier
(URI),” and hence, they can be retrieved and reused. The protocol stores notifications in a manner
so that they are compatible with the Linked Data Platform (LDP) standard.

The overview of LDN is illustrated in Figure 13. A sender wants to deliver a notification to the
server that is intended to a receiver. The sender selects a target source, finds the location of the tar-
get’s inbox, and sends the notification to that particular inbox. Then the receiver allows consumers
to access the notification in its inbox. Similarly, when considering the perspective of CDN, CDN
systems can make use of the LDN protocol to implement notifications sent to subscribed users.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

Change Detection and Notification of Web Pages: A Survey 15:29

Receiver
e Notification '«
A
Idp: contains
POST
> & Inbox <€
A GET
4 Sender A Consumer
Idp: inbox
HEAD - P HEAD
> O Target <€
GET GET

Fig. 13. Overview of Linked Data Notifications [16].

Since the notifications are reused, the system becomes more efficient, and improves the system
productivity. LDN will become the next trend in CDN systems.

9 CONCLUSION

The history of CDN systems dates to the 1990s when they were introduced to automate the de-
tection process of webpage changes and notify interested users. Since then, various CDN systems
and techniques have been introduced to improve the efficiency of the CDN process. This arti-
cle presented a survey on CDN systems for webpages and various related techniques. We have
reviewed and compared different techniques in the literature involving various aspects of CDN
systems. Among them, techniques used in web crawler scheduling, change detection and change
frequency were identified as significant research areas, where extensive research has been carried
out. The most common change-detection algorithms are based on difference calculation between
tree structures of documents. The process of identifying the frequency of changes occurring on
webpages plays a significant role in optimizing crawler schedules to retrieve updated content.

We have also compared different change notification and change visualization techniques that
are being used by currently available CDN systems. Most of such systems show notifications on
a web interface, and use email notifications as their main method of notifying the user, whereas
some systems provide the facility to get notifications via SMS alerts or browser plugin notifications.
Additionally, a majority of applications use HTML differencing techniques for change visualization
between two variants of a webpage, whereas some systems provide a visual separation among
versions, which allows the user to identify the changes by observing the two versions. Moreover,
we have compared different features of twelve popular CDN systems that are publicly available
at present. According to the comparison results, it is evident that most of the systems support
checks at fixed intervals, but not checks at random intervals. These systems can be improved by
introducing intelligent crawling schedules to optimize the crawling process by crawling webpages
at their estimated change frequency.

Finally, we have discussed new trends such as LDN and issues such as determining changes
in dynamic webpages, privacy concerns and ethical aspects in CDNs. Throughout this survey,
we have identified four important directions of research. The first research direction focuses on
improving the architecture of CDN systems, where computing resources and temporal resources
can be utilized efficiently while overcoming the limitations of traditional server-based and
client-based architectures. The second research direction focuses on improving change-detection
algorithms to track webpage changes quickly with high accuracy. The third research direction

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

15:30 V. Mallawaarachchi et al.

focuses on identifying the change frequency of webpages and designing optimized crawler sched-
ules so that computing resources can be used efficiently by deploying crawlers when required. The
final research direction is improving and developing methods and algorithms to detect changes
in dynamic and JavaScript rendered webpages that can efficiently handle large amounts of data.

REFERENCES

[1] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas. 2009. The web changes everything: Understanding the dynamics of
web content. In Proceedings of the 2nd ACM International Conference on Web Search and Data Mining (WSDM’09).
ACM, New York, NY, 282-291. DOI: https://doi.org/10.1145/1498759.1498837

[2] F. Ahmadi-Abkenari and A. Selamat. 2012. An architecture for a focused trend parallel Web crawler with the appli-
cation of clickstream analysis. Info. Sci. 184, 1 (2012), 266—281. DOI : https://doi.org/10.1016/j.ins.2011.08.022

[3] A. Anjum and A. Anjum. 2012. Aiding web crawlers; projecting web page last modification. In Proceeding sof the
15th International Multitopic Conference (INMIC’12). 245-252. DOI : https://doi.org/10.1109/INMIC.2012.6511443

[4] R. Baeza-Yates, C. Castillo, and F. Saint-Jean. 2004. Web Dynamics, Structure, and Page Quality. Springer, Berlin,
93-109. DOI : https://doi.org/10.1007/978-3-662-10874-1_5

[5] K. Benjamin, G. von Bochmann, M. E. Dincturk, G.-V. Jourdan, and I. V. Onut. 2011. A strategy for efficient crawling
of rich internet applications. In Web Engineering, S. Auer, O. Diaz, and G. A. Papadopoulos (Eds.). Springer, Berlin,
74-89.

[6] D.Bhatt, D. A. Vyas, and S. Pandya. 2015. Focused web crawler. Adv. Comput. Sci. Info. Technol. 2, 11 (Apr. 2015),
1-6.

[7] B. H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (July 1970),
422-426. DOI : https://doi.org/10.1145/362686.362692

[8] P.Boldi, B. Codenotti, M. Santini, and S. Vigna. 2004. UbiCrawler: A scalable fully distributed Web crawler. Softw.:
Pract. Exper. 34, 8 (2004), 711-726. DOI : https://doi.org/10.1002/spe.587 arXiv: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/spe.587

[9] P.Boldi, A. Marino, M. Santini, and S. Vigna. 2018. BUbiNG: Massive crawling for the masses. ACM Trans. Web 12,
2 (June 2018). DOI : https://doi.org/10.1145/3160017

[10] K. Borgolte, C. Kruegel, and G. Vigna. 2014. Relevant change detection: A framework for the precise extraction
of modified and novel web-based content as a filtering technique for analysis engines. In Proceedings of the 23rd
International Conference on World Wide Web (WWW’14). ACM, New York, NY, 595-598. DOI: https://doi.org/10.
1145/2567948.2578039

[11] O. Brandman, J. Cho, H. Garcia-Molina, and N. Shivakumar. 2000. Crawler-friendly web servers. SSGMETRICS Per-
form. Eval. Rev. 28, 2 (Sept. 2000), 9-14. DOI : https://doi.org/10.1145/362883.362894

[12] B.E.Brewington and G. Cybenko. 2000. How dynamic is the Web? Comput. Netw. 33, 1 (2000), 257-276. DOI : https://
doi.org/10.1016/S1389-1286(00)00045- 1

[13] S.Brin and L. Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst.
30, 1 (1998), 107-117. DOI : https://doi.org/10.1016/S0169-7552(98)00110-X

[14] D. Buytaert. 2000. Drupal—Open Source CMS | Drupal.org. Retrieved from https://www.drupal.org/.

[15] G. C. Canavos. 1972. A Bayesian approach to parameter and reliability estimation in the poisson distribution. IEEE
Trans. Reliabil. R-21, 1 (Feb. 1972), 52-56. DOI : https://doi.org/10.1109/TR.1972.5216172

[16] S. Capadisli, A. Guy, C. Lange, S. Auer, A. Sambra, and T. Berners-Lee. 2017. Linked data notifications: A resource-
centric communication protocol. In The Semantic Web, E. Blomgqvist, D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler,
and O. Hartig (Eds.). Springer International Publishing, Cham, 537-553.

[17] C.Castillo, M. Marin, A. Rodriguez, and R. Baeza-Yates. 2004. Scheduling algorithms for Web crawling. In Proceedings
of the WebMedia and LA-Web Conference. 10-17. DOI : https://doi.org/10.1109/WEBMED.2004.1348139

[18] S.Chakrabarti, M. van den Berg, and B. Dom. 1999. Focused crawling: A new approach to topic-specific Web resource
discovery. Comput. Netw. 31, 11 (1999), 1623-1640. DOI : https://doi.org/10.1016/51389-1286(99)00052-3

[19] T.D. Chandra and S. Toueg. 1996. Unreliable failure detectors for reliable distributed systems. 7. ACM 43, 2 (Mar.

1996), 225-267. DOI : https://doi.org/10.1145/226643.226647

ChangeDetect. 2002. ChangeDetect Web Page Monitoring. Retrieved from https://www.changedetect.com/.

ChangeMon. 2015. ChangeMon—Monitor Any Web Page For Changes. Retrieved from https://changemon.com/.

ChangeTower. 2017. ChangeTower—Monitor Website Changes, Get Alerts, Archive Website History. Retrieved from

https://changetower.com/.

[23] J. Cho and H. Garcia-Molina. 2000. The evolution of the web and implications for an incremental crawler. In Pro-
ceedings of the 26th International Conference on Very Large Data Bases (VLDB’00). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 200-209. Retrieved from http://dl.acm.org/citation.cfm?id=645926.671679.

— —_—
NN
N = O
—

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1145/1498759.1498837
https://doi.org/10.1016/j.ins.2011.08.022
https://doi.org/10.1109/INMIC.2012.6511443
https://doi.org/10.1007/978-3-662-10874-1_5
https://doi.org/10.1145/362686.362692
https://doi.org/10.1002/spe.587
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.587
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.587
https://doi.org/10.1145/3160017
https://doi.org/10.1145/2567948.2578039
https://doi.org/10.1145/2567948.2578039
https://doi.org/10.1145/362883.362894
https://doi.org/10.1016/S1389-1286(00)00045-1
https://doi.org/10.1016/S1389-1286(00)00045-1
https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.drupal.org/.
https://doi.org/10.1109/TR.1972.5216172
https://doi.org/10.1109/WEBMED.2004.1348139
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1145/226643.226647
https://www.changedetect.com/
https://changemon.com/
https://changetower.com/
http://dl.acm.org/citation.cfm?id$=$645926.671679

Change Detection and Notification of Web Pages: A Survey 15:31

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]
[47]

[48]
[49]

J. Cho and H. Garcia-Molina. 2000. Synchronizing a database to improve freshness. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD’00). ACM, New York, NY, 117-128. DOI : https://
doi.org/10.1145/342009.335391

J. Cho and H. Garcia-Molina. 2003. Effective page refresh policies for web crawlers. ACM Trans. Database Syst. 28, 4
(Dec. 2003), 390-426. DOI : https://doi.org/10.1145/958942.958945

J. Cho and H. Garcia-Molina. 2003. Estimating frequency of change. ACM Trans. Internet Technol. 3, 3 (Aug. 2003),
256-290. DOI : https://doi.org/10.1145/857166.857170

G. Cobena, S. Abiteboul, and A. Marian. 2002. Detecting changes in XML documents. In Proceedings of the 18th
International Conference on Data Engineering. 41-52. DOI : https://doi.org/10.1109/ICDE.2002.994696

E. G. Coffman Jr.,, Z. Liu, and R. R. Weber. 1998. Optimal robot scheduling for Web search engines. . Schedul. 1, 1
(1998), 15-29. DOT : https://doi.org/10.1002/(SICI)1099- 1425(199806)1:1(15::AID-J0S3)3.0.CO;2-K

D3S. 2015. Shash Tool. Retrieved from http://d3s.mff.cuni.cz/ holub/sw/shash/.

Z. Dalai, S. Dash, P. Dave, L. Francisco-Revilla, R. Furuta, U. Karadkar, and F. Shipma. 2004. Managing distributed
collections: Evaluating Web page changes, movement, and replacement. In Proceedings of the Joint ACM/IEEE Con-
ference on Digital Libraries, 2004. 160-168. DOI : https://doi.org/10.1109/JCDL.2004.240012

P. De Bra and L. Calvi. 1997. Creating adaptive hyperdocuments for and on the web. In Proceedings of the WebNet
Conference (WebNet’97). 149-165.

M. Diligenti, F. Coetzee, S. Lawrence, C. Giles, and M. Gori. 2000. Focused crawling using context graphs. In Pro-
ceedings of the 26th Very Large Data Base Conference (VLDB’00). 527-534.

M. E. Dincturk, S. Choudhary, G. von Bochmann, G.-V. Jourdan, and I. V. Onut. 2012. A statistical approach for
efficient crawling of rich internet applications. In Web Engineering, M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.).
Springer, Berlin, 362-369.

Distill.io. 2013. Monitor Websites for Changes, Get SMS Alerts and Email Alerts | Distill.io. Retrieved from https://
distilLio.

F. Douglis and T. Ball. 1996. Tracking and viewing changes on the web. In Proceedings of the USENIX Annual Technical
Conference (USENIX'96). USENIX Association, Berkley, CA.

F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. 1998. The AT&T internet difference engine: Tracking and viewing
changes on the web. World Wide Web 1, 1 (Mar. 1998), 27-44. DOI : https://doi.org/10.1023/A:1019243126596

D. Eichmann. 1995. Ethical web agents. Comput. Netw. ISDN Syst. 28, 1 (1995), 127-136. DOI : https://doi.org/10.1016/
0169-7552(95)00107-3

J. L. Elsas and S. T. Dumais. 2010. Leveraging temporal dynamics of document content in relevance ranking. In
Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM’10). ACM, New York,
NY, 1-10. DOI: https://doi.org/10.1145/1718487.1718489

J. Exposto, J. Macedo, A. Pina, A. Alves, and J. Rufino. 2008. Efficient partitioning strategies for distributed web
crawling. In Information Networking. Towards Ubiquitous Networking and Services, T. Vazdao, M. M. Freire, and L
Chong (Eds.). Springer, Berlin, 544-553.

D. Fetterly, M. Manasse, M. Najork, and J. Wiener. 2003. A large-scale study of the evolution of web pages. In
Proceedings of the 12th International Conference on World Wide Web (WWW’03). ACM, New York, NY, 669-678.
DOI: https://doi.org/10.1145/775152.775246

R. T. Fielding. 1994. Maintaining distributed hypertext infostructures: Welcome to MOMspider’s Web. Comput. Netw.
ISDN Syst. 27, 2 (1994), 193-204. DOI : https://doi.org/10.1016/0169-7552(94)90133-3

K. Filipowski. 2014. Comparison of scheduling algorithms for domain specific web crawler. In Proceedings of the
European Network Intelligence Conference. 69-74. DOI : https://doi.org/10.1109/ENIC.2014.14

Follow That Page. 2008. Follow That Page—Web Monitor: We Send You an Email When Your Favorite Page has
Changed. Retrieved from https://www.followthatpage.com.

L. Francisco-Revilla, F. Shipman, R. Furuta, U. Karadkar, and A. Arora. 2001. Managing change on the web. In
Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’01). ACM, New York, NY, 67-76.
DOI:https://doi.org/10.1145/379437.379973

Google. 2003. Google Alerts—Monitor the Web for Interesting New Content. Retrieved from https://www.google.
com/alerts.

Google. 2013. Googlebot: Search Console Help. Retrieved from https://support.google.com/webmasters/answer/
182072?hl=en.

Google. 2013. Official Google Blog: A Second Spring of Cleaning.Retrieved from https://googleblog.blogspot.com/
2013/03/a-second-spring-of-cleaning.html.

Google. 2018. Submit URL. Retrieved from https://www.google.com/webmasters/tools/submit-url.

C. Grimes and S. O’Brien. 2008. Microscale evolution of web pages. In Proceedings of the 17th International Conference
on World Wide Web (WWW’08). ACM Press, New York, NY, 1149-1150.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1145/342009.335391
https://doi.org/10.1145/342009.335391
https://doi.org/10.1145/958942.958945
https://doi.org/10.1145/857166.857170
https://doi.org/10.1109/ICDE.2002.994696
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<15::AID-JOS3>3.0.CO;2-K
http://d3s.mff.cuni.cz/ holub/sw/shash/
https://doi.org/10.1109/JCDL.2004.240012
https://distill.io
https://distill.io
https://doi.org/10.1023/A:1019243126596
https://doi.org/10.1016/0169-7552(95)00107-3
https://doi.org/10.1016/0169-7552(95)00107-3
https://doi.org/10.1145/1718487.1718489
https://doi.org/10.1145/775152.775246
https://doi.org/10.1016/0169-7552(94)90133-3
https://doi.org/10.1109/ENIC.2014.14
https://www.followthatpage.com
https://doi.org/10.1145/379437.379973
https://www.google.com/alerts
https://www.google.com/alerts
https://support.google.com/webmasters/answer/182072?hl$=$en
https://support.google.com/webmasters/answer/182072?hl$=$en
https://googleblog.blogspot.com/2013/03/a-second-spring-of-cleaning.html
https://googleblog.blogspot.com/2013/03/a-second-spring-of-cleaning.html
https://www.google.com/webmasters/tools/submit-url

15:32

(50]

[51]

(52]

(53]

(54]

(55]

(67]
(68]

(69]

(70]

(71]

(72]

V. Mallawaarachchi et al.

M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur. 1998. The shark-search algorithm. An
application: Tailored Web site mapping. Comput. Netw. ISDN Syst. 30, 1 (1998), 317-326. DOI: https://doi.org/10.
1016/S0169-7552(98)00038-5

Z. Hmedeh, N. Vouzoukidou, N. Travers, V. Christophides, C. du Mouza, and M. Scholl. 2011. Characterizing web
syndication behavior and content. In Proceedings of the Conference on Web Information System Engineering (WISE’11),
A. Bouguettaya, M. Hauswirth, and L. Liu (Eds.). Springer, Berlin, 29-42.

J. Jacob, A. Sanka, N. Pandrangi, and S. Chakravarthy. 2004. WebVigiL: An Approach to Just-In-Time Informa-
tion Propagation in Large Network-Centric Environments. Springer, Berlin, 301-318. DOI: https://doi.org/10.1007/
978-3-662-10874-1_13

S. Jain and H. Khandagale. 2014. A web page change-detection system for selected zone using tree comparison
technique. Int. J. Comput. Appl. Technol. Res. 3, 4 (Apr. 2014), 254-262.

M. Jamali, H. Sayyadi, B. B. Hariri, and H. Abolhassani. 2006. A method for focused crawling using combination of
link structure and content similarity. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelli-
gence (WI 06). IEEE Computer Society, Washington, DC, 753-756. DOI : https://doi.org/10.1109/W1.2006.19

S. Jayarathna and F. Poursardar. 2016. Change detection and classification of digital collections. In Proceedings of
the IEEE International Conference on Big Data (Big Data’16). 1750-1759. DOI : https://doi.org/10.1109/BigData.2016.
7840790

D. B. Johnson. 1977. Efficient algorithms for shortest paths in sparse networks. 7 ACM 24, 1 (Jan. 1977), 1-13.
DOI:https://doi.org/10.1145/321992.321993

D.B. Johnson and S. L. Tanimoto. 1999. Reusing web documents in tutorials with the current-documents assumption:
Automatic validation of updates. In Proceedings of the EdMedia + Innovate Learning Conference, Betty Collis and Ron
Oliver (Eds.). Association for the Advancement of Computing in Education (AACE), Seattle, WA, 74-79. Retrieved
from https://www.learntechlib.org/p/17401.

M. A. Kausar, V. S. Dhaka, and S. K. Singh. 2013. Web crawler: A review. Int. J. Comput. Appl. 63, 2 (2013), 31-36.
M. Kc, M. Hagenbuchner, and A. C. Tsoi. 2008. A scalable lightweight distributed crawler for crawling with limited
resources. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, Vol. 3. 663-666. DOI : https://doi.org/10.1109/WIIAT.2008.234

J. E. Keogh. 2005. ASP.NET 2.0 Demystified (1st ed.). McGraw Hill Professional, New York.

M. Klein, R. Sanderson, H. Van de Sompel, S. Warner, B. Haslhofer, C. Lagoze, and M. L. Nelson. 2013. A technical
framework for resource synchronization. D-Lib Mag. 19, 1/2 (Jan. 2013).

M. Koster. 1993. Guidelines for Robot Writers. Retrieved from http://www.robotstxt.org/guidelines.html.

M. Kumar and P. Neelima. 2011. Design and implementation of scalable, fully distributed web crawler for a web
search engine. Int. . Comput. Appl. 15, 7 (Feb. 2011), 8-13.

M. Levene and A. Poulovassilis. 2013. Web Dynamics: Adapting to Change in Content, Size, Topology and Use (2013
ed.). Springer Science & Business Media, Berlin. DOI : https://doi.org/10.1007/978-3-662-10874-1

J. Li, K. Furuse, and K. Yamaguchi. 2005. Focused crawling by exploiting anchor text using decision tree. In Proceed-
ings of the of the 14th International Conference on World Wide Web (WWW’05). ACM Press, New York, NY, 1190-1191.
L. Liu, C. Pu, and W. Tang. 2000. WebCQ-detecting and delivering information changes on the web. In Proceedings
of the 9th International Conference on Information and Knowledge Management (CIKM’00). ACM, New York, NY,
512-519. DOI: https://doi.org/10.1145/354756.354860

S. Mali and B. B. Meshram. 2011. Focused web crawler with page change-detection policy. In Proceedings of the 2nd
International Conference and Workshop on Emerging Trends in Technology (ICWET’11). 51-57.

O. McBryan. 1994. GENVL and WWWW: Tools for taming the web. In Proceedings of the 1st International World
Wide Web Conference (WWW’94).

L. Meegahapola, R. Alwis, E. Heshan, V. Mallawaarachchi, D. Meedeniya, and S. Jayarathna. 2017. Adaptive technique
for web page change detection using multi-threaded crawlers. In Proceedings of the 7th International Conference on
Innovative Computing Technology (INTECH’17). 120-125. DOI : https://doi.org/10.1109/INTECH.2017.8102430

L. Meegahapola, R. Alwis, E. Nimalarathna, V. Mallawaarachchi, D. Meedeniya, and S. Jayarathna. 2017. Optimizing
change detection in distributed digital collections: An architectural perspective of change detection. In Proceed-
ings of the 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD’17). IEEE, 277-282. DOI : https://doi.org/10.1109/SNPD.2017.8022733

L. Meegahapola, R. Alwis, E. Nimalarathna, V. Mallawaarachchi, D. Meedeniya, and S. Jayarathna. 2017. Detection
of change frequency in web pages to optimize server-based scheduling. In Proceeding sof the 17th International
Conference on Advances in ICT for Emerging Regions (ICTer’17). IEEE, 165-172. DOI : https://doi.org/10.1109/ICTER.
2017.8257791

L. Meegahapola, V. Mallawaarachchi, R. Alwis, E. Nimalarathna, D. Meedeniya, and S. Jayarathna. 2018. Random
forest classifier-based scheduler optimization for search engine web crawlers. In Proceedings of the 7th International

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1016/S0169-7552(98)00038-5
https://doi.org/10.1016/S0169-7552(98)00038-5
https://doi.org/10.1007/978-3-662-10874-1_13
https://doi.org/10.1007/978-3-662-10874-1_13
https://doi.org/10.1109/WI.2006.19
https://doi.org/10.1109/BigData.2016.7840790
https://doi.org/10.1109/BigData.2016.7840790
https://doi.org/10.1145/321992.321993
https://www.learntechlib.org/p/17401
https://doi.org/10.1109/WIIAT.2008.234
http://www.robotstxt.org/guidelines.html
https://doi.org/10.1007/978-3-662-10874-1
https://doi.org/10.1145/354756.354860
https://doi.org/10.1109/INTECH.2017.8102430
https://doi.org/10.1109/SNPD.2017.8022733
https://doi.org/10.1109/ICTER.2017.8257791
https://doi.org/10.1109/ICTER.2017.8257791

Change Detection and Notification of Web Pages: A Survey 15:33

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]
[81]

[82]
[83]

[84]
[85]

[86]

(87]
[88]
[89]

[90]
[91]

[92]
[93]
[94]

[95]

[96]

[97]

Conference on Software and Computer Applications (ICSCA’18). ACM, New York, NY, 285-289. DOI : https://doi.org/
10.1145/3185089.3185103

L. B. Meegahapola, P. K. D. R. M. Alwis, L. B. E. H. Nimalarathna, V. G. Mallawaarachchi, D. A. Meedeniya, and S.
Jayarathna. 2017. Change-detection optimization in frequently changing web pages. In Proceedings of the Moratuwa
Engineering Research Conference (MERCon’17). IEEE, 111-116. DOI : https://doi.org/10.1109/MERCon.2017.7980466
F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz. 2001. Evaluating topic-driven web crawlers. In Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’01).
ACM, New York, NY, 241-249. DOI : https://doi.org/10.1145/383952.383995

A. Mesbah, A. van Deursen, and S. Lenselink. 2012. Crawling AJAX-based web applications through dynamic anal-
ysis of user interface state changes. ACM Trans. Web 6, 1 (Mar. 2012). DOI : https://doi.org/10.1145/2109205.2109208
S. Minu and A. Shetty. 2015. A comparative study of image change-detection algorithms in MATLAB. Aquatic Pro-
cedia 4 (Mar. 2015), 1366—1373.

S. M. Mirtaheri, D. Zou, G. V. Bochmann, G. Jourdan, and L. V. Onut. 2013. Dist-RIA crawler: A distributed crawler for
rich internet applications. In Proceedings of the 8th International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing. 105-112. DOI: https://doi.org/10.1109/3PGCIC.2013.22

P. Misra and H. Sorenson. 1975. Parameter estimation in Poisson processes (Corresp.). IEEE Trans. Info. Theory 21, 1
(Jan. 1975), 87-90. DOI : https://doi.org/10.1109/TIT.1975.1055324

M. A. Moyeen, G. G. M. N. Alj, P. H. J. Chong, and N. Islam. 2016. An automatic layout faults detection technique
in responsive web pages considering JavaScript defined dynamic layouts. In Proceedings of the 3rd International
Conference on Electrical Engineering and Information Communication Technology (ICEEICT’16). 1-5. DOI : https://doi.
org/10.1109/CEEICT.2016.7873146

Z. Muscovitch. 2012. Who Owns Your Craigslist Advert? Retrieved from http://www.dnattorney.com/056-057-IPM_
October_2012.pdf.

S. Nadaraj. 2016. Distributed content aggregation & content change detection using bloom filters. Int. . Comput. Sci.
Info. Technol. 7, 2 (Mar. 2016), 745-748.

NetMind. 1996. NetMind Mind-it. Retrieved from http://www.netmind.com/.

M. Nottingham and R. Sayre. 2005. RFC 4287—The Atom Syndication Format. Retrieved from https://tools.ietf.org/
html/rfc4287.

M. Oita and P. Senellart. 2011. Deriving dynamics of web pages: A survey. In Proceedings of the Temporal Workshop
on Web Archiving TWAW’11). HAL-Inria, Hyderabad, India. Retrieved from https://hal.inria.fr/inria-00588715.

C. Olston and M. Najork. 2010. Web crawling. Found. Trends Info. Retriev. 4, 3 (2010), 175-246. DOI : https://doi.org/
10.1561/1500000017

C. Olston and S. Pandey. 2008. Recrawl scheduling based on information longevity. In Proceedings of the 17th In-
ternational Conference on World Wide Web (WWW’08). ACM, New York, NY, 437-446. DOI : https://doi.org/10.1145/
1367497.1367557

OnWebChange. 2009. OnWebChange—Track Web Page Changes and Get Notified. Free Sign-up. Retrieved from
https://onwebchange.com/.

Open Archives Initiative. 2017. Open Archives Initiative Protocol for Metadata Harvesting. Retrieved from https://
www.openarchives.org/pmh/.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report 1999-66. Stanford InfoLab. Retrieved from http://ilpubs.stanford.edu:8090/422/.

Pagescreen. 2018. Monitor Website Changes: Automated Alerts and Archives. Retrieved from https://pagescreen.io/.
S. Pandey and C. Olston. 2005. User-centric web crawling. In Proceedings of the 14th International Conference on
World Wide Web (WWW’05). ACM, New York, NY, 401-411. DOI : https://doi.org/10.1145/1060745.1060805

G. Pant and F. Menczer. 2003. Topical crawling for business intelligence. In Research and Advanced Technology for
Digital Libraries, T. Koch and I. T. Selvberg (Eds.). Springer, Berlin, 233-244.

Z. Pehlivan, M. Ben-Saad, and S. Gancarski. 2010. Vi-DIFF: Understanding web pages changes. In Database and
Expert Systems Applications, P. G. Bringas, A. Hameurlain, and G. Quirchmayr (Eds.). Springer, Berlin, 1-15.

V. M. Prieto, M. Alvarez, V. Carneiro, and F. Cacheda. 2015. Distributed and collaborative web change-detection
system. Comput. Sci. Info. Syst. 12, 1 (2015), 91-114.

F. Radlinski, P. N. Bennett, and E. Yilmaz. 2011. Detecting duplicate web documents using clickthrough data. In
Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM’11). ACM, New York,
NY, 147-156. DOI : https://doi.org/10.1145/1935826.1935859

C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. 2008. Detecting in-flight page changes with web tripwires. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation. USENIX Association,
San Francisco, CA, 31-44.

RSS-DEV Working Group. 2000. RDF Site Summary (RSS) 1.0.Retrieved from http://web.resource.org/rss/1.0/spec.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1145/3185089.3185103
https://doi.org/10.1145/3185089.3185103
https://doi.org/10.1109/MERCon.2017.7980466
https://doi.org/10.1145/383952.383995
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1109/3PGCIC.2013.22
https://doi.org/10.1109/TIT.1975.1055324
https://doi.org/10.1109/CEEICT.2016.7873146
https://doi.org/10.1109/CEEICT.2016.7873146
http://www.dnattorney.com/056-057-IPM_October_2012.pdf
http://www.dnattorney.com/056-057-IPM_October_2012.pdf
http://www.netmind.com/
https://tools.ietf.org/html/rfc4287
https://tools.ietf.org/html/rfc4287
https://hal.inria.fr/inria-00588715
https://doi.org/10.1561/1500000017
https://doi.org/10.1561/1500000017
https://doi.org/10.1145/1367497.1367557
https://doi.org/10.1145/1367497.1367557
https://onwebchange.com/
https://www.openarchives.org/pmh/
https://www.openarchives.org/pmh/
http://ilpubs.stanford.edu:8090/422/
https://pagescreen.io/
https://doi.org/10.1145/1060745.1060805
https://doi.org/10.1145/1935826.1935859
http://web.resource.org/rss/1.0/spec

15:34

(98]

[99]

[100]

[101]

[102]
[103]

[112]

[113]
[114]

[122]

[123]

[124]

V. Mallawaarachchi et al.

Y. Ryou and S. Ryu. 2018. Automatic detection of visibility faults by layout changes in HTML5 web pages. In Pro-
ceedings of the IEEE 11th International Conference on Software Testing, Verification and Validation (ICST’18). 182-192.
DOI: https://doi.org/10.1109/ICST.2018.00027

M. B. Saad and Stéphane Gangarski. 2012. Archiving the web using page changes patterns: A case study. Int. J. Dig.
Libr. 13, 1 (Dec. 2012), 33-49. DOI : https://doi.org/10.1007/s00799-012-0094-z

A. S. R. Santos, N. Ziviani, J. Almeida, C. R. Carvalho, E. S. de Moura, and A. S. da Silva. 2013. Learning to sched-
ule webpage updates using genetic programming. In String Processing and Information Retrieval, O. Kurland, M.
Lewenstein, and E. Porat (Eds.). Springer International Publishing, Cham, 271-278.

U. Schonfeld and N. Shivakumar. 2009. Sitemaps: Above and beyond the crawl of duty. In Proceedings of the 18th
International Conference on World Wide Web (WWW’09). ACM, New York, NY, 991-1000. DOI : https://doi.org/10.
1145/1526709.1526842

R. W. Sebesta. 2011. Programming the World Wide Web (4th ed.). Addison-Wesley Publishing Company, Boston, MA.
V. Shkapenyuk and T. Suel. 2002. Design and implementation of a high-performance distributed Web crawler. In
Proceedings of the 18th International Conference on Data Engineering. 357-368. DOI : https://doi.org/10.1109/ICDE.
2002.994750

Shobhna and M. C. Chaudhary. 2013. A survey on web page change-detection system using different approaches.
Int. J. Comput. Sci. Mobile Comput. 2, 6 (June 2013), 294-299.

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. 1999. Analysis of a very large web search engine query log.
SIGIR Forum 33, 1 (Sept. 1999), 6-12. DOI : https://doi.org/10.1145/331403.331405

Sitemaps.org. 2008. sitemaps.org—Home. Retrieved from https://www.sitemaps.org/index.html.

B. E. Smith. 2008. Creating Web Pages For Dummies (9th ed.). John Wiley & Sons Inc, New Jersey.

K. Sproul. 2009. The Dao of SEO (2009 ed.). Lulu.com, Morrisville, North Carolina.

P. Srinivasan, F. Menczer, and G. Pant. 2005. A general evaluation framework for topical crawlers. Info. Retriev. 8, 3
(Jan. 2005), 417-447. DOI : https://doi.org/10.1007/s10791-005-6993-5

Y. Sun, I. G. Councill, and C. L. Giles. 2010. The ethicality of web crawlers. In Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology, Vol. 1. 668-675. DOI : https://doi.org/
10.1109/WI-1AT.2010.316

Y. Sun, Z. Zhuang, and C. L. Giles. 2007. A large-scale study of Robots.Txt. In Proceedings of the 16th International
Conference on World Wide Web (WWW’07). ACM, New York, NY, 1123-1124. DOI : https://doi.org/10.1145/1242572.
1242726

M. Thelwall and D. Stuart. 2006. Web crawling ethics revisited: Cost, privacy, and denial of service. J. Amer. Soc. Info.
Sci. Technol. 57, 13 (2006), 1771-1779. DOI : https://doi.org/10.1002/asi.20388 arXiv: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/asi.20388

Trackly. 2016. Trackly | Website Change Detection. Retrieved from https://trackly.io/.

J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. 2010. Towards dataset dynamics: Change frequency
of linked open data sources. In Proceedings of the 3rd International Workshop on Linked Data on the Web (LDOW’10),
in Conjunction with 19th International World Wide Web Conference WWW’10). CEUR.

H. Van de Sompel, M. L. Nelson, C. Lagoze, and S. Warner. 2004. Resource harvesting within the OAI-PMH frame-
work. D-Lib Mag. 10, 12 (2004).

H. Van de Sompel, R. Sanderson, M. Klein, M. L. Nelson, B. Haslhofer, S. Warner, and C. Lagoze. 2012. A perspective
on resource synchronization. D-Lib Mag. 18, 9/10 (Sep. 2012).

Versionista. 2007. Versionista: Monitor Website Changes. Retrieved from https://versionista.com/.

Visualping. 2017. Visualping: #1 Website Change Detection, Monitoring and Alerts. Retrieved from https://
visualping.io/.

w3computing.com. 2017. Dynamic and Three-Dimensional Web Pages. Retrieved from https://www.w3computing.
com/systemsanalysis/dynamic-three-dimensional-web-pages/.

Wachete. 2014. Wachete—Monitor Web Changes. Retrieved from https://www.wachete.com.

T. A. Walsh, G. M. Kapthammer, and P. McMinn. 2017. ReDeCheck: An automatic layout failure checking tool for
responsively designed web pages. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’17). ACM, New York, NY, 360-363. DOIL: https://doi.org/10.1145/3092703.3098221

Y. Wang, D. J. DeWitt, and J. Cai. 2003. X-Diff: An effective change-detection algorithm for XML documents. In
Proceedings of the 19th International Conference on Data Engineering. 519-530. DOI : https://doi.org/10.1109/ICDE.
2003.1260818

J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. 2002. Optimal crawling strategies for web search
engines. In Proceedings of the 11th International Conference on World Wide Web (WWW’02). ACM, New York, NY,
136-147. DOI : https://doi.org/10.1145/511446.511465

WordPress. 2003. WordPress.com: Create a Free Website or Blog. Retrieved from https://wordpress.com/.

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1109/ICST.2018.00027
https://doi.org/10.1007/s00799-012-0094-z
https://doi.org/10.1145/1526709.1526842
https://doi.org/10.1145/1526709.1526842
https://doi.org/10.1109/ICDE.2002.994750
https://doi.org/10.1109/ICDE.2002.994750
https://doi.org/10.1145/331403.331405
https://www.sitemaps.org/index.html
https://doi.org/10.1007/s10791-005-6993-5
https://doi.org/10.1109/WI-IAT.2010.316
https://doi.org/10.1109/WI-IAT.2010.316
https://doi.org/10.1145/1242572.1242726
https://doi.org/10.1145/1242572.1242726
https://doi.org/10.1002/asi.20388
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20388
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20388
https://trackly.io/
https://versionista.com/
https://visualping.io/
https://visualping.io/
https://www.w3computing.com/systemsanalysis/dynamic-three-dimensional-web-pages/
https://www.w3computing.com/systemsanalysis/dynamic-three-dimensional-web-pages/
https://www.wachete.com
https://doi.org/10.1145/3092703.3098221
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1145/511446.511465
https://wordpress.com/

Change Detection and Notification of Web Pages: A Survey 15:35

[125] D.Yadav, A. K. Sharma, and J. P. Gupta. 2007. Change detection in web pages. In Proceedings of the 10th International
Conference on Information Technology (ICIT’07). 265-270. DOI : https://doi.org/10.1109/ICIT.2007.37

[126] B.W. Yohanes, Handoko, and H. K. Wardana. 2011. Focused crawler optimization using genetic algorithm. TELKOM-
NIKA 9, 3 (Dec. 2011), 403-410.

[127] S. Zheng. 2011. Genetic and ant algorithms-based focused crawler design. In Proceedings of the 2nd International
Conference on Innovations in Bio-inspired Computing and Applications. 374-378. DOI : https://doi.org/10.1109/IBICA.
2011.98

[128] R. Zilberman. 2013. Check4Change. Retrieved from https://check4change.com.

Received December 2018; revised June 2019; accepted October 2019

ACM Computing Surveys, Vol. 53, No. 1, Article 15. Publication date: February 2020.

RIGHTSE LI MN iy

https://doi.org/10.1109/ICIT.2007.37
https://doi.org/10.1109/IBICA.2011.98
https://doi.org/10.1109/IBICA.2011.98
https://check4change.com

