Least Squares - Quadratic Example

Thomas J. Kennedy

Contents:

The previous discussion focused on linear approximation with Least Squares. However, we are not limited to lines.

1 The Data

Let us use the same three points from the previous discussion

x f(x)
0 0
1 1
2 4

We want to a polynomial of degree 2 (quadratic function) that approximates this (supposedly) unknown function. We want a function in the form

\[ \begin{align} \hat{\varphi} & = \sum_{i=0}^{2} c_i x^i \\ & = c_0 + c_1 x + c_2 x^2 \\ \end{align} \]

1.1 The Set Up

The X matrix is defined by the taking each constant in our approximation function and plugging in each point. For our selected points

x f(x)
0 0
1 1
2 4

and selected approximation function

\[ \hat{\varphi} = c_0 (1) + c_1 x + c_2 x^2 \]

the matrix $X$ will be defined as

$$ X = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ \end{array}\right] $$

  1. The first column is defined by taking each $x$ value and plugging it into $y=1$.
  2. The second column is defined by taking each $x$ value and plugging it into $y=x$. 23 The third column is defined by taking each $x$ value and plugging it into $y=x^2$.

For the $Y$ matrix, we need only copy each $y$.

$$ Y = \left[\begin{array}{r} 0 \\ 1 \\ 4 \\ \end{array}\right] $$

$X^T$ is the transpose of $X$.

$$ \left[\begin{array}{rrr} 1 & 1 & 1\\ 0 & 1 & 2\\ 0 & 1 & 4\\ \end{array}\right] $$

1.2 Constructing XTX|XTY

Once the matrices are defined, $X^{T}X$ and $X^{T}Y$ must be computed. The two matrix multiplications are left as an exercise to the reader (i.e., you).

$$ X^{T}X = \left[\begin{array}{rrr} 3 & 3 & 5\\ 3 & 5 & 9\\ 5 & 9 & 17\\ \end{array}\right] $$

$$ X^{T}Y = \left[\begin{array}{r} 5\\ 9\\ 17\\ \end{array}\right] $$

With both matrices computed, we can construct the $X^TX|X^TY$ augmented matrix. This will, in turn, allow us to compute $c_0$, $c_1$, and $c_2$.

$$ [X^{T}X|X^{T}Y] = \left[\begin{array}{rrr|r} 3 & 3 & 5 & 5\\ 3 & 5 & 9 & 9\\ 5 & 9 & 17 & 17\\ \end{array}\right] $$

1.3 Solving XTX|XTY

The system, $[X^TX|X^TY]$ can be solved using Gaussian Elimination. We will start with $[X^TX|X^TY]$.

$$ \left[\begin{array}{rrr|r} 3 & 3 & 5 & 5\\ 3 & 5 & 9 & 9\\ 5 & 9 & 17 & 17\\ \end{array}\right] $$

Our first step will be to perform two subtraction operations:

$$ \left[\begin{array}{rrr|r} 3 & 3 & 5 & 5\\ 0 & 2 & 4 & 4\\ 2 & 6 & 12 & 12\\ \end{array}\right] $$

The next two operations are then: $r_1 = \frac{1}{2}r_1$ and $r_2 = \frac{1}{2}r_2$

$$ \left[\begin{array}{rrr|r} 3 & 3 & 5 & 5\\ 0 & 1 & 2 & 2\\ 1 & 3 & 6 & 6\\ \end{array}\right] $$

Next, $r_0 = r_0 - r_2$

$$ \left[\begin{array}{rrr|r} 2 & 0 & -1 & -1\\ 0 & 1 & 2 & 2\\ 1 & 3 & 6 & 6\\ \end{array}\right] $$

Next, $r_2 = r_2 - 3r_1$

$$ \left[\begin{array}{rrr|r} 2 & 0 & -1 & -1\\ 0 & 1 & 2 & 2\\ 1 & 0 & 0 & 0\\ \end{array}\right] $$

That allows us to swap $r_0$ and $r_2$.

$$ \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 2 & 2\\ 2 & 0 & -1 & -1\\ \end{array}\right] $$

then subtract $r_0$ from $r_2$ ($r_2 = r_2 - r_0$).

$$ \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 2 & 2\\ 0 & 0 & -1 & -1\\ \end{array}\right] $$

and scale $r_2$ by $-1$.

$$ \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 2 & 2\\ 0 & 0 & 1 & 1\\ \end{array}\right] $$

That leaves one last step (i.e., $r_1 = r_1 - 2r_2$).

$$ \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ \end{array}\right] $$

1.4 Final Result

Coefficients

$$c_0 = 0$$ $$c_1 = 0$$ $$c_2 = 1$$

Approximation Function (phi hat)

\[\begin{align} \hat{\varphi} &= 0 * x^0 + 0 * x^1 + 1 * x^2\\ & = x^2 \end{align} \]