CS 281 Test II



July 23, 1999



1. Find the powerset of each of the following sets: [9]



(a) {1}
(b) {$\emptyset$ , {$\emptyset$ }}
(c) $\emptyset$



2. Find the following Cartesian products: [9]



(a) { $ \emptyset , \{ \emptyset \} \} \times \{ \emptyset \}$
(b) { $ \emptyset \} \times \{ 1,2 \} \times \{ 3,4 \} $
(c) $\emptyset \times \{ \{ \emptyset \}, \emptyset \}$



3. Indicate which of the following are true and which are false. [15]



(a) $\emptyset \in \{ x \}$
(b) $\{x \} \subseteq \{\{x \}\}$
(c) $\{ x \} \in \{\{x \}\}$
(d) { $x\} \in \{ x\}$
(e) $\emptyset \subseteq \{ x \}$



4. Find the smallest four elements of the set S defined recursively as follows: [8]



Basis Clause: $ 1 \in S$
Inductive Clause: If $x \in S$, then $3x + 1 \in S$.
Extremal clause: Nothing is in S unless it is obtained from the above two clauses.



5. Recursively define each of the following sets:



(a) The set of non-negative integers that produce remainder 1 when divided by 5. [10]
(b) { $3^{n} - 1 \mid n$ is a natural number.} [12]



6. Prove the following statements on sets A and B.



(a) $A \cap B \subseteq A \cup B$ [10]
(b) If $(A - B) = \emptyset$, then $ A \subseteq B$. [13]

7. Which rules of inference are used to establish the conclusion of the following argument ? [14]



Premises:
"All lions are fierce."
"Some lions do climb trees."



Conclusion:
"There are fierce creatures that climb trees."



Give your answer using L(x), C(x) and F(x) to denote "x is a lion", "x climbs trees" and "x is fierce", respectively, and assuming the universe is the set of all creatures. Using these symbols, the statements given above can be expressed as follows:



$\forall x [L(x) \rightarrow F(x) ]$
$\exists x [L(x) \wedge \neg C(x) ]$
---------------------
$\exists x [F(x) \wedge \neg C(x) ]$




You may use the following table.



Logical Equivalences and Implications



1. $P \Leftrightarrow (P \vee P)$ 2. $P \Leftrightarrow (P \wedge P)$
3. $(P \vee Q) \Leftrightarrow (Q \vee P)$ 4. $(P \wedge Q) \Leftrightarrow (Q \wedge P)$
5. $[(P \vee Q) \vee R] \Leftrightarrow [P \vee (Q \vee R)]$ 6. $[(P \wedge Q) \wedge R] \Leftrightarrow [P \wedge (Q \wedge R)]$
7. $\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$ 8. $\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$
9. $[P \wedge (Q \vee R)] \Leftrightarrow [(P \wedge Q \vee (P \wedge R)]$ 10. $[P \vee (Q \wedge R)] \Leftrightarrow [(P \vee Q) \wedge (P \vee R)]$
11. $(P \vee T) \Leftrightarrow T $ 12. $(P \wedge T) \Leftrightarrow P $
13. $(P \vee F) \Leftrightarrow P $ 14. $(P \wedge F) \Leftrightarrow F $
15. $(P \vee \neg P) \Leftrightarrow T $ 16. $(P \wedge \neg P) \Leftrightarrow F $
17. $P \Leftrightarrow \neg (\neg P )$ 18. $(P \rightarrow Q) \Leftrightarrow (\neg P \vee Q)$
19. $(P \leftrightarrow Q) \Leftrightarrow [(P \rightarrow Q) \wedge (Q \rightarrow P)] $ 20. $[(P \wedge Q) \rightarrow R] \Leftrightarrow [P \rightarrow (Q \rightarrow R)]$
21. $[(P \rightarrow Q) \wedge (P \rightarrow \neg Q)] \Leftrightarrow \neg P $ 22. $(P \rightarrow Q) \Leftrightarrow (\neg Q \rightarrow \neg P)$
1. $P \Rightarrow (P \vee Q)$ 2. $(P \wedge Q) \Rightarrow P$
3. $[P \wedge (P \rightarrow Q)] \Rightarrow Q$ 4. $[(P \rightarrow Q) \wedge \neg Q] \Rightarrow \neg P$
5. $[\neg P \wedge (P \vee Q)] \Rightarrow Q$ 6. $[(P \rightarrow Q) \wedge (Q \rightarrow R)] \Rightarrow (P \rightarrow R)$
7. $(P \rightarrow Q) \Rightarrow [(Q \rightarrow R) \rightarrow (P \rightarrow R)]$ 8. $[(P \rightarrow Q) \wedge (R \rightarrow S)] \Rightarrow [(P \wedge R) \rightarrow (Q \wedge S)]$
9. $[(P \leftrightarrow Q) \wedge (Q \leftrightarrow R)] \Rightarrow (P \leftrightarrow R)$ 10. $[(P \rightarrow Q) \wedge (R \rightarrow S)] \Rightarrow [(P \vee R) \rightarrow (Q \vee S)]$)



Additional Inference Rule: Conjunction



P
Q
------------------
P $\wedge$ Q



 

S. Toida
1999-07-27