5 (a) Let L be an arbitrary language over the alphabet $\{a, b\}$. Define L^* and L^+ recursively. [5 points]

L^*

- **Basis Clause**: $\lambda \in L^*$
- **Inductive Clause**: if $x \in L^*$ and $y \in L$ for any strings x, y, then $xy \in L^*$
- **Extremal Clause**: As usual

L^+

- **Basis Clause**: $\lambda \in L^+$
- **Inductive Clause**: if $x \in L^+$ and $y \in L$ for any strings x, y, then $xy \in L^+$
- **Extremal Clause**: As usual

(b) Using your definition of L^* and L^+ of (a), prove by general induction (a.k.a. structural induction) that L^+ is a subset of L^*. [15 points]

Basis Step: To prove $x \in L \Rightarrow x \in L^+$.

Proof: Since $x \in L$, by inductive clause of definition of L^*, for any $y \in L$, $xy \in L^*$.

Inductive Step: To prove that if $x \in L^+$ and $x \in L^+$, then for any $y \in L$, $xy \in L^+$.

Proof: Since $x \in L^+$, by inductive clause of definition of L^*, for any $y \in L$, $xy \in L^*$.
