1. Answer the questions below for the language L defined recursively as follows:

Basis Clause: $a \in L$.
Inductive Clause: For any string x, if $x \in L$, then xa, xab and $xba \in L$.
Extremal Clause: Nothing is in L unless it is obtained by the above two clauses.

Questions:
(a) Obtain all the strings of L of length 5. [4]

 $aaaaa$ $aaraa$ $caafa$
 $aabar$ $aafab$ $qafba$
 $qraar$ $afab$ $afaba$

(b) Describe L in English. The simpler the better. [8]

 L is the set of strings that start with a, are of odd length and have no substring bbb (i.e., every b is either preceded or followed immediately by a).

(c) Find a regular expression for L. [8]

 $a (aa + ab + ba)^*$
2. Let S and T be languages over \{a, b\}.

(a) Give a recursive definition of $(S \cap T)^*$ following the definition of Kleene star *. [8]

Base case: $A \in (S \cap T)^*$

Inductive case: For all $w \in (S \cap T)^*$ and for all $x \in S \cap T$

$wx \in (S \cap T)^*$

External case: As usual.
(b) Prove by General Induction (Structural Induction) that
\((S \cap T)^* \subseteq S^* \cap T^* \). [10]

B.S. \(A \subseteq S^* \cap T^* \)?

Since \(a \in S^* \cap T^* \) by the def. of \(S^* \cap T^* \),
\(a \in S^* \cap T^* \).

I.S. \(\forall x \in (S \cap T)^* \) \(\forall x \in S^* \cap T^* \).

\(\forall x \in (S \cap T)^* \) \(x \in S \cap T \).

\(\forall x \in (S \cap T)^* \) \(x \in S^* \cap T^* \).

\(\forall x \in (S \cap T)^* \) \(x \in S^* \cap T^* \) by the def. of \(S^* \cap T^* \).

\(\forall x \in S^* \cap T^* \).
3 (a) Construct an NFA-Λ for $a(ab+ba)^*$ following Part 1 of Kleene Theorem faithfully. Do not simplify your answer. [8]
(b) Convert the NFA-Λ of (a) to an NFA with no Λ-transitions that accepts the same language.[8]

<table>
<thead>
<tr>
<th>State</th>
<th>Symbols</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 7, 9, 5, 6, 12</td>
<td>ϕ</td>
</tr>
<tr>
<td>2</td>
<td>1, 7, 9, 5</td>
<td>8, 10</td>
</tr>
<tr>
<td>3</td>
<td>1, 7, 9, 5</td>
<td>8, 10</td>
</tr>
<tr>
<td>4</td>
<td>5, 7, 9, 5</td>
<td>8, 10</td>
</tr>
<tr>
<td>5</td>
<td>3, 7, 9, 5</td>
<td>ϕ</td>
</tr>
<tr>
<td>6</td>
<td>ϕ</td>
<td>8, 10</td>
</tr>
<tr>
<td>7</td>
<td>ϕ</td>
<td>8, 10</td>
</tr>
<tr>
<td>8</td>
<td>3, 4, 5, 6, 12</td>
<td>ϕ</td>
</tr>
<tr>
<td>9</td>
<td>ϕ</td>
<td>3, 4, 5, 6, 11</td>
</tr>
<tr>
<td>10</td>
<td>3, 4, 5, 6, 12</td>
<td>ϕ</td>
</tr>
<tr>
<td>11</td>
<td>5, 7, 9, 5</td>
<td>8, 10</td>
</tr>
<tr>
<td>12</td>
<td>5, 7, 9, 5</td>
<td>8, 10</td>
</tr>
</tbody>
</table>
4. Simplify the following regular expressions:

(a) \(a(a^* + a) + a^* \). [8]

\[a^* \]

(b) \((a + (b + ba)^* + baa)^* \). [8]

\[(a + b)^* \]

5. Let \(S \) and \(T \) be sets of states of an NFA-\(A \). **Prove or disprove** that if \(\Lambda(S) \subseteq \Lambda(T) \), then \(S \subseteq T \). [10]

Let \(S = \{ q, r \} \) and \(\delta(q, A) = \{ q, r \} \).

Then \(\Lambda(S) = \{ q, r \} \) and \(\Lambda(T) = \{ q, r \} \).

Hence \(\Lambda(S) \subseteq \Lambda(T) \) but \(S \not\subseteq T \).
6. Which of the following statements are true and which are false? [20]

(a) For an NFA-Λ, $\delta^*(q, \Lambda) = \{q\}$.

\[\mathbb{F} \]

(b) $(xy)^r = x^r y^r$ for strings x and y, where x^r denotes the reversal of x.

\[\mathbb{F} \]

(c) For an NFA, $\delta^*(q, xa) = \delta(\delta^*(q, x), a)$, where x is a string and a is a symbol.

\[\mathbb{F} \]

\[\bigcup_{p \in \delta^*(q, x)} \delta(p, a) \]

(d) A language is regular if and only if it is accepted by some DFA.

\[\mathbb{T} \]

(e) $(a + b)^*a(a + b)^*a(a + b)^*$ is a regular expression corresponding to the language of strings with exactly two a's.

\[\text{at least two} \]

\[\mathbb{F} \]

(f) $(a + ab)^*$ corresponds to the language of the strings over $\{a, b\}$ that have no substring bb.

\[\text{Can not start with b in addition,} \]

\[\text{"ba" has no bb but not in the language.} \]

\[\mathbb{F} \]

(g) $aaababa$ is a string in the language corresponding to $(a + ab)^*$.

\[\mathbb{T} \]

(h) For a set of states S of an NFA-Λ, $\Lambda(\Lambda(S)) = \Lambda(S)$.

\[\mathbb{T} \]

(i) For a language L, $(L^*)^+ = (L^+)^*$.

\[L^* \subseteq (L^+)^* \subseteq L^*. \quad (L^*)^+ = L^* L^* L^* L^* \cdots = L^* \]

\[\mathbb{T} \]

(j) A string w is accepted by an NFA if and only if $\delta^*(q_0, w) \subseteq A$, where q_0 is its initial state and A is its set of accepting states.

\[\mathbb{F} \]

\[\delta^*(q_0, w) \cap A \neq \phi. \]