
Interest	Points	and	Features	



Finding	Correspondence

Matching	points,	patches,	edges,	or	regions

≈
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Interest	points

• Note:	“interest	points” =	“keypoints”,	also
sometimes	called	“features”
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Applications		
• Keypoints are	used	for:

– Image	alignment
– 3D	reconstruction
– Motion	tracking
– Robot	navigation
– Indexing	and	database	retrieval
– Object	recognition
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Interest	points
• Suppose	you	have	to	click	on
some	point,		go	away	and
come	back	after	I	deform
the	image,	and	click	on	the
same	points	again.
– Which	points	would	you
choose?

original

deformed
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Overview	of	Keypoint	Matching

Af Bf

A1

A2 A3

Tffd BA <),(

1.	Find	a	set	of			
distinctive	key-
points	

3. Extract	and
normalize	the
region	content

2. Define	a	region
around	each
keypoint

4. Compute	a	local
descriptor	from	the
normalized	region

5. Match	local
descriptors
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Goals	for	Keypoints

Detect	points	that	are	repeatable and	distinctive
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Key	trade-offs

More Repeatable More Points

A1

A2 A3

Detection of interest points

More Distinctive More Flexible

Description of patches

Robust to occlusion
Works with less texture

Minimize wrong matches Robust to expected variations
Maximize correct matches

Robust detection
Precise localization
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Invariant	Local	Features
• Image	content	is	transformed	into	local	feature	coordinates
that	are	invariant	to	translation,	rotation,	scale,	and	other
imaging	parameters

Features Descriptors
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Choosing	interest	points

Where	would	you	tell	your	friend	to	meet	you?
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Choosing	interest	points

Where	would	you	tell	your	friend	to	meet	you?
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Many	Existing	Detectors	Available

Hessian	&	Harris [Beaudet ‘78],	[Harris	‘88]
Laplacian,	DoG [Lindeberg ‘98],	[Lowe	1999]
Harris-/Hessian-Laplace		[Mikolajczyk &	Schmid ‘01]
Harris-/Hessian-Affine					[Mikolajczyk &	Schmid ‘04]
EBR	and	IBR [Tuytelaars &	Van	Gool ‘04]	
MSER [Matas ‘02]
Salient	Regions [Kadir &	Brady	‘01]	
Others…
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• What	points	would	you	choose?
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Corner	Detection:	Basic	Idea
• We	should	easily	recognize	the	point	by	looking	through

a	small	window
• Shifting	a	window	in	any direction should	give	a	large

change in	intensity

“edge”:
no	change	along	
the	edge	direction

“corner”:
significant	change	
in	all	directions

“flat” region:
no	change	in	
all	directions

Source: A. Efros 14



Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)

w(x, y)
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E(u, v) =
X

x,y

w(w, y)[I(x+ u, y + v)� I(x, y)]2

Change in appearance of window w(x,y) 
for the shift [u,v]:



Corner Detection: Mathematics

We	want	to	find	out	how	this	function	behaves	for	small	shifts

E(u, v)
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Change in appearance of window w(x,y) 
for the shift [u,v]:

E(u, v) =
X

x,y

w(w, y)[I(x+ u, y + v)� I(x, y)]2



Taylor series approx to shifted image
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Corner Detection: Mathematics
The quadratic approximation simplifies to

where M is a second moment matrix computed from image 
derivatives:

M
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E(u, v) = [u v]M
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2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:

Corners as Distinctive Interest Points
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Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

l1, l2 – eigenvalues of M

direction of 
the slowest 
change

direction of the 
fastest change

(lmax)-1/2

(lmin)-1/2

Ellipse E(u,v) = const

Iso-intensity contour of E(u,v)
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E(u, v) = [u v]M


u
v
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Statistics	of	x	and	y	derivatives
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Covariance	matrix:	ellipse	containing	data	
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Selecting Good Features

l1 and		l2 are	large
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Selecting Good Features

large l1,	small	l2
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Selecting Good Features

small l1,	small	l2
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Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all
directions

l1 and l2 are small;
E is almost constant
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues of M:
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Harris Detector: Mathematics

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)

This expression 
does not requires 
computing the 
eigenvalues.
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R = det(M)� k(trace(M))2

det(M) = �1�2

trace(M) = �1 + �2



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

α: constant (0.04 to 0.06)
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R = det(M)� k(trace(M))2



Interest	operator	values
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Harris corner detector

1) ComputeM	matrix	for	each	image	window	to
get	their	cornerness scores.

2) Find	points	whose	surrounding	window	gave
large	corner	response	(f	>	threshold)

3) Take	the	points	of	local	maxima,	i.e.,	perform
non-maximum	suppression

C.Harris	and	M.Stephens.	“A	Combined	Corner	and	Edge	Detector.”	Proceedings 
of	the	4th	Alvey	Vision	Conference:	pages	147—151,	1988.
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Harris Detector: Steps
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Harris Detector: Steps
Compute corner response R

34



Harris Detector: Steps
Find points with large corner response: R>threshold
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Harris Detector: Steps
Take only the points of local maxima of R
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Harris Detector: Steps
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Invariance and covariance
• We	want	corner	locations	to	be	invariant to	photometric	transformations

and	covariant to	geometric	transformations
– Invariance: image	is	transformed	and	corner	locations	do	not	change
– Covariance:	if	we	have	two	transformed	versions	of	the	same	image,

features	should	be	detected	in	corresponding	locations
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Affine intensity change

• Only derivatives are used =>
invariance to intensity shift I ® I + b

• Intensity scaling: I ® a I

R

x (image coordinate)

threshold

R

x (image coordinate)

I ® a I + b

Partially invariant to affine intensity change
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Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
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Image rotation

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
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Scaling

All points will 
be classified 
as edges

Corner

Corner location is not covariant to scaling!
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Automatic	Scale	Selection

How	to	find corresponding patch sizes?
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f(I(x,�)) = f(I 0(x0
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0))



Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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f(I(x,�)) f(I 0(x0
,�
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Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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Automatic	Scale	Selection
• Function	responses	for	increasing	scale	(scale	signature)
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Difference-of-Gaussian	(DoG)

- =
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Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.  IJCV 2004

scale
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• SIFT	(Lowe)2
Find	local	maximum	of:
– Difference	of	Gaussians	in	space

and	scale

scale

x

y

¬ DoG ®

¬
D
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 ®
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DoG – Efficient	Computation
• Computation	in	Gaussian	scale	pyramid

s

Original	image
4
1

2=

Sampling	with
step	s4 =2

s

s

s
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Find	local	maxima	in	position-scale	space	
of	Difference-of-Gaussian

s

s2

s3

s4

s5

Þ List	of
(x,	y,	s)
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Results:	Difference-of-Gaussian
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Orientation	Normalization

• Compute	orientation	histogram
• Select	dominant	orientation
• Normalize:	rotate	to	fixed	orientation

0 2p

[Lowe,	SIFT,	1999]
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Image	representations

• Templates
– Intensity,	gradients,	etc.

• Histograms
– Color,	texture,	SIFT	descriptors,	etc.
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Space Shuttle 
Cargo Bay

Image	Representations:	Histograms

Global	histogram
• Represent	distribution	of	features

– Color,	texture,	depth,	…

Images from Dave Kauchak 57



What	kind	of	things	do	we	compute	
histograms	of?

• Color

• Texture	(filter	banks	or	HOG	over	regions)
L*a*b* color space HSV color space 
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Histograms	of	oriented	gradients

SIFT	– Lowe	IJCV	2004

What	kind	of	things	do	we	compute	
histograms	of?
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SIFT	vector	formation
• Computed	on	rotated	and	scaled	version	of	window
according	to	computed	orientation	&	scale
– resample	the	window

• Based	on	gradients	weighted	by	a	Gaussian	of
variance	half	the	window	(for	smooth	falloff)
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• 4x4	array	of	gradient	orientation	histogram	weighted
by	magnitude

• 8	orientations	x	4x4	array	=	128	dimensions
• Motivation:		some	sensitivity	to	spatial	layout,	but	not
too	much.

showing only 2x2 here but is 4x4

SIFT	vector	formation

61



• Gaussian	weight
• Trilinear	interpolation

– a	given	gradient	contributes	to	8	bins:
4	in	space	times	2	in	orientation

Ensure	Smoothness
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• 128-dim	vector	normalized	to	1
• Threshold	gradient	magnitudes	to	avoid	excessive
influence	of	high	gradients
– after	normalization,	clamp	gradients	>0.2
– renormalize

Reduce	Effect	of	Illumination
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Local	Descriptors

• Most	features	can	be	thought	of	as	templates,
histograms	(counts),	or	combinations

• The	ideal	descriptor	should	be
– Robust
– Distinctive
– Compact
– Efficient

• Most	available	descriptors	focus	on
edge/gradient	information
– Capture	texture	information
– Color	rarely	used
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Things	to	remember

• Keypoint	detection:	repeatable
and	distinctive
– Corners,	blobs,	stable	regions
– Harris,	DoG

• Descriptors:	robust	and	selective
– spatial	histograms	of	orientation
– SIFT
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