Interest Points and Features

Finding Correspondence

Matching points, patches, edges, or regions

Interest points

 Note: "interest points" = "keypoints", also sometimes called "features"

Applications

- Keypoints are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

Interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Overview of Keypoint Matching

 $d(f_A, f_B) < T$

- Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Goals for Keypoints

Detect points that are *repeatable* and *distinctive*

Key trade-offs

Detection of interest points

More Repeatable

Robust detection Precise localization

More Points

Robust to occlusion Works with less texture

Description of patches

More Distinctive Minimize wrong matches More Flexible

Robust to expected variations Maximize correct matches 8

Invariant Local Features

• Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

Where would you tell your friend to meet you?

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Affine EBR and IBR **MSER** Salient Regions Others...

[Beaudet '78], [Harris '88] [Lindeberg '98], [Lowe 1999] Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01] [Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01]

• What points would you choose?

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(w,y) [I(x+u,y+v) - I(x,y)]^2$$

E(u, v)

Corner Detection: Mathematics

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(w,y) [I(x+u,y+v) - I(x,y)]^2$$

We want to find out how this function behaves for small shifts

Taylor series approx to shifted image

$$E(u,v) \approx \sum_{x,y} w(x,y) [I(x,y) + uI_x + vI_y - I(x,y)]^2$$

= $\sum_{x,y} w(x,y) [uI_x + vI_y]^2$
= $\sum_{x,y} w(x,y) (u \ v) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$

x,*y*

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
$$M = \begin{bmatrix} \sum_{x} I_x I_x & \sum_{x} I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Corners as Distinctive Interest Points

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:
$$I_x = \frac{\partial I}{\partial x}$$
 $I_y = \frac{\partial I}{\partial y}$ $I_x I_y = \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$

Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) = [u \ v] M \left[egin{array}{c} u \ v \end{array}
ight] \qquad \lambda_1, \lambda_2$$
 – eigenvalues of $oldsymbol{M}$

Statistics of x and y derivatives

Covariance matrix: ellipse containing data

Selecting Good Features

 λ_1 and λ_2 are large

Selecting Good Features

large λ_1 , small λ_2

Selecting Good Features

small λ_1 , small λ_2

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Harris Detector: Mathematics

Measure of corner response:

$$R = det(M) - k(trace(M))^2$$

This expression does not requires computing the eigenvalues.

$$det(M) = \lambda_1 \lambda_2$$

$$trace(M) = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04 - 0.06)

Corner response function

$$R = det(M) - k(trace(M))^2$$

 α : constant (0.04 to 0.06)

Interest operator values

Harris corner detector

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f* > threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

· · ·

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

 $\blacksquare \qquad I \rightarrow a \ I + b$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

x (image coordinate)

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

How to find corresponding patch sizes?

• Function responses for increasing scale (scale signature)

 $f(I'(x',\sigma'))$

Difference-of-Gaussian (DoG)

Scale Invariant Detectors

- Harris-Laplacian¹ Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

SIFT (Lowe)²
 Find local maximum of: Difference of Gaussians in space and scale
 Scale
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y
 y

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

X

DoG – Efficient Computation

Computation in Gaussian scale pyramid

Find local maxima in position-scale space of Difference-of-Gaussian

Results: Difference-of-Gaussian

Orientation Normalization

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation

Image representations

• Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms

Global histogram

- Represent distribution of features
 - Color, texture, depth, ...

What kind of things do we compute histograms of?

L*a*b* color space

HSV color space

Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

Histograms of oriented gradients

SIFT – Lowe IJCV 2004

SIFT vector formation

Computed on rotated and scaled version of window according to computed orientation & scale

resample the window

• Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)

SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

Ensure Smoothness

- Gaussian weight
- Trilinear interpolation

– a given gradient contributes to 8 bins:

4 in space times 2 in orientation

Reduce Effect of Illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize

Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

