Object Detection

• Many slides are by Ross Girshick and Derek Hoiem

Image classification

- K classes
- Task: assign correct class label to the whole image

Digit classification (MNIST)

Object recognition (Caltech-101)

Classification vs. Detection

Problem formulation

{ airplane, bird, motorbike, person, sofa }

Input

Desired output

Evaluating a Detector

Test image (previously unseen)

First Detection

'person' detector predictions

Second Detection

'person' detector predictions

Third Detection

'person' detector predictions

Compare to Groundtruth

'person' detector predictions
ground truth 'person' boxes

Sort by Confidence

duplicate)

Evaluation Metric

✓ +X

$$recall@t = \frac{\#true\ positives@t}{\#ground\ truth\ objects}$$

Evaluation Metric

Pedestrians

Histograms of Oriented Gradients for Human Detection, Dalal and Triggs, CVPR 2005

AP ~77%

More sophisticated methods: AP ~90%

- (a) average gradient image over training examples
- (b) each "pixel" shows max positive SVM weight in the block centered on that pixel
- (c) same as (b) for negative SVM weights
- (d) test image
- (e) its R-HOG descriptor
- (f) R-HOG descriptor weighted by positive SVM weights
- (g) R-HOG descriptor weighted by negative SVM weights

Why did it work?

Average gradient image

Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...? PASCAL Visual Object Categories (VOC) dataset

Generic categories

• Why doesn't this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...? PASCAL Visual Object Categories (VOC) dataset

Quiz time

Warm up

This is an average image of which object class?

Warm up

pedestrian

A little harder

?

A little harder

?

Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table

A little harder

bicycle (PASCAL)

A little harder, yet

?

A little harder, yet

? Hint: white blob on a green background

A little harder, yet

sheep (PASCAL)

Impossible?

?

Impossible?

dog (PASCAL)

Impossible?

dog (PASCAL) Why does the mean look like this? There's no alignment between the examples! How do we combat this?

Challenges in modeling the object class

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges in modeling the object class

True Detections

Confused with Similar Object

Misc. Background

Confused with Dissimilar Objects

General Process of Object Recognition

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

- 2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

3. Hybrid template/parts model

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

General Process of Object Recognition

- 1. Sliding window
 - Test patch at each location and scale

- 1. Sliding window
 - Test patch at each location and scale

Note – Template did not change size

2. Voting from patches/keypoints

ISM model by Leibe et al.

3. Region-based proposal

ISIS 94079 Predictor, rank 7

50 100 150 200 250 300 350 400 450

Endres Hoiem 2010

General Process of Object Recognition

General Process of Object Recognition

Rescore each proposed object based on whole set

Resolving detection scores

1. Non-max suppression

Resolving detection scores

1. Non-max suppression

"Overlap" score is below some threshold

Resolving detection scores

2. Context/reasoning

0 meters

(g) Car Detections: Local (h) Ped Detections: Local

Hoiem et al. 2006

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled? What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Example: Region-CNN (R-CNN)

What you need to know

- Object detection:
 - Learn an object model
 - Generate hypotheses
 - Score hypotheses
 - Resolve detections
- Evaluation metric:
 - Precision-recall curve
 - Average Precision (AP)
- Sliding window approach
- Non-maximum suppression

State-of-the-art Face detection demo

(Courtesy **Boris Babenko**)