Object Detection

• Many slides are by Ross Girshick and Derek Hoiem
Image classification

• K classes
• Task: assign correct class label to the whole image

Digit classification (MNIST) Object recognition (Caltech-101)
Classification vs. Detection

✅ Dog

Dog

Dog
Problem formulation

\{ airplane, bird, motorbike, person, sofa \}
Evaluating a Detector

Test image (previously unseen)
First Detection

☐ ‘person’ detector predictions
Second Detection

☐ ‘person’ detector predictions
Third Detection

- 'person' detector predictions
Compare to Groundtruth

☐ ‘person’ detector predictions
☐ ground truth ‘person’ boxes
Sort by Confidence

true positive (high overlap)

false positive (no overlap, low overlap, or duplicate)
Evaluation Metric

\[
\text{precision}@t = \frac{\#\text{true positives}@t}{\#\text{true positives}@t + \#\text{false positives}@t} \\
\text{recall}@t = \frac{\#\text{true positives}@t}{\#\text{ground truth objects}}
\]

0.9 ... 0.8 ... 0.6 ... 0.5 ... 0.2 ... 0.1

✓ X ✓ ✓ ✓ X ✓ X

t
Evaluation Metric

Average Precision (AP)

0% is worst
100% is best

mean AP over classes (mAP)
Pedestrians

Histograms of Oriented Gradients for Human Detection, Dalal and Triggs, CVPR 2005

AP ~77%
More sophisticated methods: AP ~90%

(a) average gradient image over training examples
(b) each “pixel” shows max positive SVM weight in the block centered on that pixel
(c) same as (b) for negative SVM weights
(d) test image
(e) its R-HOG descriptor
(f) R-HOG descriptor weighted by positive SVM weights
(g) R-HOG descriptor weighted by negative SVM weights
Why did it work?

Average gradient image
Generic categories

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?

PASCAL Visual Object Categories (VOC) dataset
Generic categories

• Why doesn’t this work (as well)?

Can we detect people, chairs, horses, cars, dogs, buses, bottles, sheep ...?

PASCAL Visual Object Categories (VOC) dataset
Quiz time
Warm up

This is an average image of which object class?
Warm up

pedestrian
A little harder
A little harder

?

Hint: airplane, bicycle, bus, car, cat, chair, cow, dog, dining table
A little harder

bicycle (PASCAL)
A little harder, yet
A little harder, yet

? Hint: white blob on a green background
A little harder, yet

sheep (PASCAL)
Impossible?
Impossible?

dog (PASCAL)
Impossible?

dog (PASCAL)

Why does the mean look like this?
There’s no alignment between the examples!
How do we combat this?
Challenges in modeling the object class

- Illumination
- Object pose
- Clutter
- Occlusions
- Intra-class appearance
- Viewpoint

Slide from K. Grauman, B. Leibe
Challenges in modeling the object class

- True Detections
- Bad Localization
- Confused with Similar Object
- Misc. Background
- Confused with Dissimilar Objects
General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

What are the object parameters?
Specifying an object model

1. Statistical Template in Bounding Box
 - Object is some \((x, y, w, h)\) in image
 - Features defined wrt bounding box coordinates

Images from Felzenszwalb
Specifying an object model

2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable
Specifying an object model

3. Hybrid template/parts model

Detections

Template Visualization

- root filters
 - coarse resolution
- part filters
 - finer resolution
- deformation models

Felzenszwalb et al. 2008
Specifying an object model

4. 3D-ish model

- Object is collection of 3D planar patches under affine transformation
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Propose an alignment of the model to the image
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale
Generating hypotheses

1. Sliding window
 - Test patch at each location and scale

Note – Template did not change size
Generating hypotheses

2. Voting from patches/keypoints

Interest Points Matched Codebook Entries Probabilistic Voting

3D Voting Space (continuous)

ISM model by Leibe et al.
Generating hypotheses

3. Region-based proposal
General Process of Object Recognition

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Typical types of features:
- gradient based, e.g., HOG, SIFT
- CNN features

Many classifiers: Adaboost, SVM, NN
General Process of Object Recognition

1. Specify Object Model
2. Generate Hypotheses
3. Score Hypotheses
4. Resolve Detections

Rescore each proposed object based on whole set
Resolving detection scores

1. Non-max suppression

Score = 0.8
Score = 0.1

Score = 0.8
Resolving detection scores

1. Non-max suppression

“Overlap” score is below some threshold
Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local
(h) Ped Detections: Local

Hoiem et al. 2006
Design challenges

• How to efficiently search for likely objects
 – Even simple models require searching hundreds of thousands of positions and scales

• Feature design and scoring
 – How should appearance be modeled? What features correspond to the object?

• How to deal with different viewpoints?
 – Often train different models for a few different viewpoints

• Implementation details
 – Window size
 – Aspect ratio
 – Translation/scale step size
 – Non-maxima suppression
Example: Dalal-Triggs pedestrian detector

1. Extract fixed-sized (64x128 pixel) window at each position and scale
2. Compute HOG (histogram of gradient) features within each window
3. Score the window with a linear SVM classifier
4. Perform non-maxima suppression to remove overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
Example: Region-CNN (R-CNN)

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

aeroplane? no.

person? yes.

tvmonitor? no.
What you need to know

• Object detection:
 – Learn an object model
 – Generate hypotheses
 – Score hypotheses
 – Resolve detections

• Evaluation metric:
 – Precision-recall curve
 – Average Precision (AP)

• Sliding window approach
• Non-maximum suppression
State-of-the-art Face detection demo

(Courtesy Boris Babenko)