Image Processing and Filters

The content of most slides are from Dimitris Samaras and Minh Haoi
(Stony Brook University)
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Images as functions




What is a digital image?

* Digital images:
— Sample the 2D space on a regular grid
— Quantize each sample

* For samples being A apart:
fli, j1 = Quantize{ fli A, j A) }

* Image: matrix of integer values
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* Color images: one 3-dimensional vector for each i,




Image Noise

* Images are corrupted by “noise” mostly during
acquisition

* Signal Processing techniques can be used to
model and remove this noise
* I[mage Restoration: removal of noise

— Additive Noise
— Salt & Pepper Noise



Additive Noise

* In the additive noise model the signal is corrupted with
random fluctuations j(l ]) _ ](i ]) +n(i ])

N

Image source: http://www.iac.cnr.it/~vitulano/suvehpweb/SUVEHP.htm



Salt and Pepper Noise

e Salt and pepper noise can model errors introduced by the
acquisition process.
i(i. ) = { I(2,7) with probability r
’ 0 or 255 with probability 1 — r




Linear Filters

* General process:

— Form new image whose pixels are a weighted sum
of original pixel values, using the same set of
weights at each point.

* Examples:
— Average of pixels in a neighborhood
— Gaussian smoothing: weighted averaging
— Derivative



Properties of Linear Filters

* Linear:
— Output is a linear function of the input

e Shift-invariant:

— Output is a shift-invariant function of the input (i.e. shift
the input image two pixels to the left, the output is shifted
two pixels to the left)



Image Filtering

* Noise reduction
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Image Filtering

e Structure Extraction
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Gaussian Noise

J\J a f /\

Ide_al Image Noise process Gaussian i.i.d. (“white" ) noise:
fz,y)= flz,y) + n(z,y) n(z,y) ~ N(p, o)

11



Removing noise

* Basic assumption

— Noise process is independent, identically
distributed

— Image has a more regular underlying structure

* By considering larger neighborhoods we can
separate the signal from the noise
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Moving Average in 2D

Flz,y]

Glx,y]
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D

Flz,y]

Glx,y]
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Correlation Filtering

e Say the averaging window 5|ze IS 2k+1 X 2k+1:

1
Glin ) = 12 Z_MZ Fli+u,j + ]

* Different weights depending on neighboring pixel’s
relative position:

ko k
Gli,j1= > > Hlu,v]F[i+ u,j+ ]

u=—-kv=-—%k

* Correlation filtering:

G=HQQF
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Correlation Filtering

ko k
Gli,jl= > > Hluv]F[i+ u,j+ ]

u=—kv=-%k

Filtering an image
— Replace each pixel by a

weighted combination of
its neighbors.

— The filter “kernel” or “mask”
is the prescription for the
weights in the linear
combination.

(0.0)

(N.N)
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Convolution

* Represent these e Result is:

weights as an image H

5 5 Gij — Z Hqui—u,i—fU

* His usually called the w,v

kernel e Notice the order of indices
* Operation is called — it’s a result of the derivation

convolution expressing any shift-invariant

— it’s associative linear operator as a

convolution.
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Convolution

* Convolution:
— Flip the filter in both dimensions (bottom to top, right to left)

— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v|F[i —u,j — v]

u=—kv=-—%k

14 €l (0,0

G=HxF H

e Convolution of continuous signals

(N.N)

g(z,y) = /_O:O /_O:O h(uw,v)f(x —u,y — v)dudv
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Some facts about Convolution

* Alinear operation
— X*(@Y + bZ) = a(X*Y) + b(X*2Z)
* An associative operation
— X*¥(Y*Z) = (X*Y)*Z
* Convolution in the spatial or time domain

corresponds to multiplication in the frequency
domain
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Computation

* Convolution is the most important method to
analyze digital signals

* Convolution is a fairly expensive operation
requiring a large number of computations on
typical images.

* Many computer architectures provide
specialized instructions for these kinds of
operations.
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Common Kernels

* Two convolution kernels that are commonly
used for noise reduction are

— The mean kernel
— The Gaussian Kernel
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Mean Filtering

* Smoothing by averaging

1 1 1
9 v 9
1 1 1
9 9 9
1 1 1
v v 9

* Entries must add up to one. Why?
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Example: Smoothing by Averaging




Smoothing with a Gaussian

* Smoothing with an
average actually doesn’t
compare at all well with
a defocussed lens

— Most obvious difference
is that a single point of
light viewed in a * A Gaussian gives a good
defocussed lens looks model of a fuzzy blob
like a fuzzy blob; but the
averaging process would
give a little square.
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An |sotropic Gaussian

* The picture shows a smoothing
kernel proportional to

$2+y2
exp | — 5.3

(which is a reasonable model of a
circularly symmetric fuzzy blob)
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Smoothing with a Gaussian




Differentiation and convolution

* Recall * We could approximate this as
— — 11111 —
Oxr  e—0 € 0x Ax
* Now this is linear and shift * Itis obviously a convolution;
invariant, so must be the it’s not a very good way to do

result of a convolution. things, as we shall see

31



A Noise Model

e Simplest noise model

— independent stationary
additive Gaussian noise

— the noise value at each
pixel is given by an
independent draw from the
same normal probability
distribution

Issues

this model allows noise values that
could be greater than maximum
camera output or less than zero

for small standard deviations, this
isn’t too much of a problem -it’s a
fairly good model

independence may not be justified
(e.g. damage to lens)

may not be stationary (e.g. thermal
gradients in the CCD)
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sigma=1
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sigma=16
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Finite differences and noise

* Finite difference filters ¢ What is to be done?

respond strongly to noise — intuitively, most pixels in
— obvious reason: image images look quite a lot like
noise results in pixels that their neighbors
look very different from — this is true even at an edge;
their neighbors along the edge they’re similar,
* Generally, the larger the across the edge they’re not
noise the stronger the — suggests that smoothing the

image should help, by forcing
pixels different to their
neighbors (=noise pixels?) to
look more like neighbors

response
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Finite differences responding to noise

Increasing NOIse ------=---===-=mmmmmmmmmmm- >
(This is zero mean additive Gaussian noise)




The response of a linear filter to noise

* Consider stationary independent additive Gaussian noise with zero
mean (non-zero mean can be easily dealt with)
 What would be the mean and variance of the noise after filtering?

* Mean: e Variance:
— Output is a weighted sum of — variance of a sum of random
inputs variables is sum of their variances
— It's a weighted sum of zero — variance of constant times random
mean normal random variables variable is constant”2 times
— Must be zero variance

— thenif sis noise variance and
kernel is K, variance of response is

2 2
S E K,
\’LL,’U J
) 4

could be small
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Filter responses are correlated

e Qver scales similar to the scale of the filter
* Filtered noise is sometimes useful

— looks like some natural textures, can be used to
simulate fire, etc.
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Smoothing reduces noise

* Generally expect pixels to
“be like” their neighbors
— surfaces turn slowly
— relatively few reflectance
changes
* Generally expect noise
processes to be
independent from pixel to
pixel

Implies that smoothing
suppresses noise, for appropriate
noise models

Scale

the parameter in the symmetric
Gaussian

as this parameter goes up, more
pixels are involved in the average

and the image gets more blurred

and noise is more effectively
suppressed (noise variance gets
smaller)
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Effects of Smoothing

o=1 pixel

0=2 pixels

Each row shows
smoothing with
Gaussians of
different width
Each column
shows different
realizations of an
image of
Gaussian noise.
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Separable filters

 Some 2D image filters can actually be
implemented as two 1D filters - one in the
horizontal direction followed by another in the
vertical direction.

* This can significantly lower the computational
complexity of the operation
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Gaussian Filtering

e Separable filter
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Gaussian Filtering (I1)
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Gaussian Filtering (1)

 Sampling theorem
* To keep the energy in 98.76% area ¢ > 0.8
* Repeated averaging
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Example

e 60=1.0,6=2.0,0=4.0
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Sharpening

Input = Coarse + Fine

Output = Coarse + Fine

Slide content: Andrew Adams (http://goo.gl/6GR56Q)

49



Sharpening

* Any Filter which removes fine details can be
used to sharpen

1. Coarse = Remove Fine Details from Input
2. Fine = Input - Coarse
3. Output = Input + Fine x 0.5

Slide content: Andrew Adams (http://goo.gl/6GR56Q)
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Linear Sharpening Filters

* Let G be a Gaussian kernel
1. Coarse =G * Input
2. Fine =Input - Coarse
3. Output = Input + Fine x 0.5

* Recall convolution: G*(a+b) = G*a + G*b

e OQutput = (1.51 - 0.5G)*Input

Slide content: Andrew Adams (http://goo.gl/6GR56Q)
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Sharpening Filter
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Sharpening Filter

before
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Application: High Frequency Emphasis

A

High Frequency Emphasis
+
Histogram Equalization

Origal
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Non-Linear Filters: Median Filter

— Replace each pixel by the median of its neighbors.

— Comparison with mean:
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Median Filtering

* Median filtering is a non-linear operation that
is particularly effective at removing salt and
pepper noise.
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Median Filter

Salt and Median
PEPPEr filtered
noise
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Plots of a row of the image
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Median vs. Gaussian Filtering
/x/

Gaussian

Median
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3x3 Median Filter
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Median value: 124
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Example
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What you need to know

* Noise model

e Linear filter
— Correlation
— Convolution

e Gaussian filter
— Separability

* Smoothing

e Sharpening

* Non-linear filter
— Median filter



Readings and References

e Section 3.1-3.5 of Szeliski’s book
* Denoising:
http://web.stanford.edu/class/cs448f/lectures

/2.1/Denoising.pdf

e Sharpening:
http://web.stanford.edu/class/cs448f/lectures
/2.1/Sharpening.pdf
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