Image Processing and Filters

The content of most slides are from Dimitris Samaras and Minh Haoi (Stony Brook University)

Images as functions

What is a digital image?

• Digital images:

7

- Sample the 2D space on a regular grid
- Quantize each sample
- For samples being Δ apart:

 $f[i, j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$

• Image: matrix of integer values

•	\longrightarrow							
r	62	79	23	119	120	105	4	0
Ļ	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

• Color images: one 3-dimensional vector for each i,j

Image Noise

- Images are corrupted by "noise" mostly during acquisition
- Signal Processing techniques can be used to model and remove this noise
- Image Restoration: removal of noise
 - Additive Noise
 - Salt & Pepper Noise

Additive Noise

• In the additive noise model the signal is corrupted with random fluctuations $\hat{I}(i,j) = I(i,j) + n(i,j)$

Image source: http://www.iac.cnr.it/~vitulano/suvehpweb/SUVEHP.htm

Salt and Pepper Noise

• Salt and pepper noise can model errors introduced by the acquisition process.

 $\hat{I}(i,j) = \begin{cases} I(i,j) & \text{with probability } r \\ 0 \text{ or } 255 & \text{with probability } 1-r \end{cases}$

Linear Filters

- General process:
 - Form new image whose pixels are a weighted sum of original pixel values, using the same set of weights at each point.
- Examples:
 - Average of pixels in a neighborhood
 - Gaussian smoothing: weighted averaging
 - Derivative

Properties of Linear Filters

- Linear:
 - Output is a linear function of the input
- Shift-invariant:
 - Output is a shift-invariant function of the input (i.e. shift the input image two pixels to the left, the output is shifted two pixels to the left)

Image Filtering

Noise reduction

Image Filtering

• Structure Extraction

Gaussian Noise

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu, \sigma)$

Removing noise

- Basic assumption
 - Noise process is independent, identically distributed
 - Image has a more regular underlying structure

• By considering larger neighborhoods we can separate the signal from the noise

F[x, y]

G[x, y]

F[x, y]

G[x, y]

F[x, y]

G[x, y]

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Correlation Filtering

• Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

• Different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

• Correlation filtering:

$$G = H \otimes F$$

Correlation Filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

- Filtering an image
 - Replace each pixel by a weighted combination of its neighbors.
 - The filter "kernel" or "mask" is the prescription for the weights in the linear combination.

Convolution

- Represent these weights as an image H
- H is usually called the kernel
- Operation is called convolution
 - it's associative

• Result is:

$$G_{ij} = \sum_{u,v} H_{uv} F_{i-u,i-v}$$

- Notice the order of indices
 - it's a result of the derivation expressing any shift-invariant linear operator as a convolution.

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$
$$G = H * F$$

2

• Convolution of continuous signals

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Some facts about Convolution

• A linear operation

 $-X^{*}(aY + bZ) = a(X^{*}Y) + b(X^{*}Z)$

• An associative operation

 $-X^{*}(Y^{*}Z) = (X^{*}Y)^{*}Z$

 Convolution in the spatial or time domain corresponds to multiplication in the frequency domain

Computation

- Convolution is the most important method to analyze digital signals
- Convolution is a fairly expensive operation requiring a large number of computations on typical images.
- Many computer architectures provide specialized instructions for these kinds of operations.

Common Kernels

- Two convolution kernels that are commonly used for noise reduction are
 - The mean kernel
 - The Gaussian Kernel

Mean Filtering

• Smoothing by averaging

<u>1</u> 9	<u>1</u> 9	<u>1</u> 9
$\frac{1}{9}$	<u>1</u> 9	<u>1</u> 9
$\frac{1}{9}$	<u>1</u> 9	<u>1</u> 9

• Entries must add up to one. Why?

Example: Smoothing by Averaging

Smoothing with a Gaussian

- Smoothing with an average actually doesn't compare at all well with a defocussed lens
 - Most obvious difference is that a single point of light viewed in a defocussed lens looks like a fuzzy blob; but the averaging process would give a little square.

• A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian

• The picture shows a smoothing kernel proportional to

$$\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Differentiation and convolution

Recall

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

• Now this is linear and shift invariant, so must be the result of a convolution.

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

 It is obviously a convolution; it's not a very good way to do things, as we shall see

A Noise Model

- Simplest noise model
 - independent stationary additive Gaussian noise
 - the noise value at each pixel is given by an independent draw from the same normal probability distribution

- Issues
 - this model allows noise values that could be greater than maximum camera output or less than zero
 - for small standard deviations, this isn't too much of a problem - it's a fairly good model
 - independence may not be justified (e.g. damage to lens)
 - may not be stationary (e.g. thermal gradients in the CCD)

sigma=1

sigma=16

Finite differences and noise

- Finite difference filters respond strongly to noise
 - obvious reason: image noise results in pixels that look very different from their neighbors
- Generally, the larger the noise the stronger the response

- What is to be done?
 - intuitively, most pixels in images look quite a lot like their neighbors
 - this is true even at an edge;
 along the edge they're similar,
 across the edge they're not
 - suggests that smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Finite differences responding to noise

Increasing noise -----> (This is zero mean additive Gaussian noise)

The response of a linear filter to noise

- Consider stationary independent additive Gaussian noise with zero mean (non-zero mean can be easily dealt with)
- What would be the mean and variance of the noise after filtering?
- Mean:
 - Output is a weighted sum of inputs
 - It's a weighted sum of zero mean normal random variables
 - Must be zero

- Variance:
 - variance of a sum of random
 variables is sum of their variances
 - variance of constant times random variable is constant² times variance
 - then if s is noise variance and kernel is K, variance of response is

$$s^2 \sum_{u,v} K_{uv}^2$$

could be small

Filter responses are correlated

- Over scales similar to the scale of the filter
- Filtered noise is sometimes useful
 - looks like some natural textures, can be used to simulate fire, etc.

Smoothing reduces noise

- Generally expect pixels to "be like" their neighbors
 - surfaces turn slowly
 - relatively few reflectance changes
- Generally expect noise processes to be independent from pixel to pixel

- Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric Gaussian
 - as this parameter goes up, more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed (noise variance gets smaller)

Effects of Smoothing

- Each row shows smoothing with Gaussians of different width
- Each column shows different realizations of an image of Gaussian noise.

Separable filters

- Some 2D image filters can actually be implemented as two 1D filters - one in the horizontal direction followed by another in the vertical direction.
- This can significantly lower the computational complexity of the operation

Gaussian Filtering

• Separable filter

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \qquad G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Gaussian Filtering (II)

• σ =1

1					
10.7	1.3	3.2	3.8	3.2	1.3
1.0.7					

	1	
1	1	5

2	4	5	4	2
4	9	12	9	4
5	12	15	12	5
4	9	12	9	4
2	4	5	4	2

Gaussian Filtering (III)

- Sampling theorem
- To keep the energy in 98.76% area σ > 0.8
- Repeated averaging

• $\sigma = 1.0, \sigma = 2.0, \sigma = 4.0$

Sharpening

Input = Coarse + Fine Output = Coarse + Fine

Slide content: Andrew Adams (http://goo.gl/6GR56Q)

Sharpening

- Any Filter which removes fine details can be used to sharpen
 - 1. Coarse = Remove Fine Details from Input
 - 2. Fine = Input Coarse
 - 3. Output = Input + Fine x 0.5

Linear Sharpening Filters

- Let G be a Gaussian kernel
 - 1. Coarse = G * Input
 - 2. Fine = Input Coarse
 - 3. Output = Input + Fine x 0.5
- Recall convolution: G*(a+b) = G*a + G*b
- Output = (1.5I 0.5G)*Input

Sharpening Filter

Original

Sharpening Filter

before

after

Application: High Frequency Emphasis

Original

High Frequency Emphasis + Histogram Equalization

Non-Linear Filters: Median Filter

Replace each pixel by the median of its neighbors.

Median Filtering

 Median filtering is a non-linear operation that is particularly effective at removing salt and pepper noise.

Median Filter

Salt and pepper noise

Plots of a row of the image

Median vs. Gaussian Filtering

Gaussian

Median

3x3 Median Filter

123	125	126	130	140	
 122	124	126	127	135	
 118	120	150	125	134	
 119	115	119	123	133	
 111	116	110	120	130	

Neighbourhood values:

Median value: 124

Example

What you need to know

- Noise model
- Linear filter
 - Correlation
 - Convolution
- Gaussian filter
 - Separability
- Smoothing
- Sharpening
- Non-linear filter
 - Median filter

Readings and References

- Section 3.1-3.5 of Szeliski's book
- Denoising: <u>http://web.stanford.edu/class/cs448f/lectures</u> /2.1/Denoising.pdf
- Sharpening: <u>http://web.stanford.edu/class/cs448f/lectures</u> /2.1/Sharpening.pdf