
Image	Processing	and	Filters

The	content	of	most	slides	are	from	Dimitris	Samaras and Minh Haoi 
(Stony Brook University)
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Images	as	functions
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What	is	a	digital	image?
• Digital	images:
– Sample	the	2D	space	on	a	regular	grid
– Quantize	each	sample

• For	samples	being	D apart:
f[i,	j]	=	Quantize{	f(i D,	j D)	}

• Image:	matrix	of	integer	values

• Color	images:	one	3-dimensional	vector	for	each	i,j
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Image	Noise

• Images	are	corrupted	by	“noise”	mostly	during
acquisition

• Signal	Processing	techniques	can	be	used	to
model	and	remove	this	noise

• Image	Restoration:	removal	of	noise
– Additive	Noise
– Salt	&	Pepper	Noise
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Additive	Noise
• In	the	additive	noise	model	the	signal	is	corrupted	with

random	fluctuations !( , ) ( , ) ( , )I i j I i j n i j= +
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Image	source:	http://www.iac.cnr.it/~vitulano/suvehpweb/SUVEHP.htm



Salt	and	Pepper	Noise
• Salt	and	pepper	noise	can	model	errors	introduced	by	the

acquisition	process.	
ˆI(i, j) =

⇢
I(i, j) with probability r
0 or 255 with probability 1� r
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• General	process:
– Form	new	image	whose	pixels	are	a	weighted	sum
of	original	pixel	values,	using	the	same	set	of
weights	at	each	point.

• Examples:
– Average	of	pixels	in	a	neighborhood
– Gaussian	smoothing:	weighted	averaging
– Derivative

7

Linear	Filters



• Linear:
– Output	is	a	linear	function	of	the	input

• Shift-invariant:
– Output	is	a	shift-invariant	function	of	the	input	(i.e.	shift
the	input	image	two	pixels	to	the	left,	the	output	is	shifted
two	pixels	to	the	left)
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Properties	of	Linear	Filters



Image	Filtering
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• Noise	reduction



Image	Filtering
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• Structure	Extraction



Gaussian	Noise
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Removing	noise

• Basic	assumption
– Noise	process	is	independent,	identically
distributed

– Image	has	a	more	regular	underlying	structure

• By	considering	larger	neighborhoods	we	can
separate	the	signal	from	the	noise
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Moving	Average	in	2D



Moving	Average	in	2D
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Moving	Average	in	2D
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Moving	Average	in	2D

0 10 20 30
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

16



Moving	Average	in	2D
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Moving	Average	in	2D
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Correlation	Filtering

• Say	the	averaging	window	size	is	2k+1	x	2k+1:

• Different	weights	depending	on		neighboring	pixel’s
relative	position:

• Correlation	filtering:
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Correlation	Filtering

• Filtering	an	image
– Replace	each	pixel	by	a

weighted	combination	of
its	neighbors.

– The	filter	“kernel”	or	“mask”
is	the	prescription	for	the
weights	in	the linear
combination.

F

(0,0)

(N,N)

H
4

1 2

3

20



Convolution

• Represent	these
weights	as	an	image	H

• H	is	usually	called	the
kernel

• Operation	is	called
convolution
– it’s	associative

• Result	is:

• Notice	the	order	of	indices
– it’s	a	result	of	the	derivation
expressing	any	shift-invariant
linear	operator	as	a
convolution.
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Convolution
• Convolution:

– Flip	the	filter	in	both	dimensions	(bottom	to	top,	right	to	left)
– Then	apply	cross-correlation

• Convolution of continuous signals
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Some	facts	about	Convolution

• A	linear	operation
– X*(aY +	bZ)	=	a(X*Y)	+	b(X*Z)

• An	associative	operation
– X*(Y*Z)	=	(X*Y)*Z

• Convolution	in	the	spatial	or	time	domain
corresponds	to	multiplication	in	the	frequency
domain

23



Computation

• Convolution	is	the	most	important	method	to
analyze	digital	signals

• Convolution	is	a	fairly	expensive	operation
requiring	a	large	number	of	computations	on
typical	images.

• Many	computer	architectures	provide
specialized	instructions	for	these	kinds	of
operations.
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Common	Kernels

• Two	convolution	kernels	that	are	commonly
used	for	noise	reduction	are
– The	mean	kernel
– The	Gaussian	Kernel
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Mean	Filtering

• Smoothing	by	averaging

• Entries	must	add	up	to	one.	Why?
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Example:	Smoothing	by	Averaging
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Smoothing	with	a	Gaussian

• Smoothing	with	an
average	actually	doesn’t
compare	at	all	well	with
a	defocussed lens
– Most	obvious	difference
is	that	a	single	point	of
light	viewed	in	a
defocussed lens	looks
like	a	fuzzy	blob;	but	the
averaging	process	would
give	a	little	square.

• A	Gaussian	gives	a	good
model	of	a	fuzzy	blob

28



• The	picture	shows	a	smoothing
kernel	proportional	to

(which	is	a	reasonable	model	of	a	
circularly	symmetric	fuzzy	blob)

An	Isotropic	Gaussian
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Smoothing	with	a	Gaussian
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Differentiation	and	convolution

• Recall

• Now	this	is	linear	and	shift
invariant,	so	must	be	the
result	of	a	convolution.

• We	could	approximate	this	as

• It	is	obviously	a	convolution;
it’s	not	a	very	good	way	to	do
things,	as	we	shall	see
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A	Noise	Model

• Simplest	noise	model
– independent	stationary

additive	Gaussian	noise
– the	noise	value	at	each

pixel	is	given	by	an
independent	draw	from	the
same	normal	probability
distribution

• Issues
– this	model	allows	noise	values	that

could	be	greater	than	maximum
camera	output	or	less	than	zero

– for	small	standard	deviations,	this
isn’t	too	much	of	a	problem	- it’s	a
fairly	good	model

– independence	may	not	be	justified
(e.g.	damage	to	lens)

– may	not	be	stationary	(e.g.	thermal
gradients	in	the	CCD)
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sigma=1
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sigma=16
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Finite	differences	and	noise
• Finite	difference	filters
respond	strongly	to	noise
– obvious	reason:	image
noise	results	in	pixels	that
look	very	different	from
their	neighbors

• Generally,	the	larger	the
noise	the	stronger	the
response

• What	is	to	be	done?
– intuitively,	most	pixels	in
images	look	quite	a	lot	like
their	neighbors

– this	is	true	even	at	an	edge;
along	the	edge	they’re	similar,
across	the	edge	they’re	not

– suggests	that	smoothing	the
image	should	help,	by	forcing
pixels	different	to	their
neighbors	(=noise	pixels?)	to
look	more	like	neighbors
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Finite	differences	responding	to	noise

Increasing	noise	----------------------------->
(This	is	zero	mean	additive	Gaussian	noise)
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The	response	of	a	linear	filter	to	noise

• Mean:
– Output	is	a	weighted	sum	of

inputs
– It’s	a	weighted	sum	of	zero

mean	normal	random	variables
– Must	be	zero

• Variance:
– variance	of	a	sum	of	random

variables	is	sum	of	their	variances
– variance	of	constant	times	random

variable	is	constant^2	times
variance

– then	if	s	is	noise	variance	and
kernel	is	K,	variance	of	response	is
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• Consider	stationary	independent	additive	Gaussian	noise	with	zero
mean	(non-zero	mean	can	be	easily	dealt	with)
• What	would	be	the	mean	and	variance	of	the	noise	after	filtering?

s2
X

u,v

K2
uv

could	be	small



Filter	responses	are	correlated

• Over	scales	similar	to	the	scale	of	the	filter
• Filtered	noise	is	sometimes	useful
– looks	like	some	natural	textures,	can	be	used	to
simulate	fire,	etc.
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Smoothing	reduces	noise

• Generally	expect	pixels	to
“be	like”	their	neighbors
– surfaces	turn	slowly
– relatively	few	reflectance

changes

• Generally	expect	noise
processes	to	be
independent	from	pixel	to
pixel

• Implies	that	smoothing
suppresses	noise,	for	appropriate
noise	models

• Scale
– the	parameter	in	the	symmetric

Gaussian
– as	this	parameter	goes	up,	more

pixels	are	involved	in	the	average
– and	the	image	gets	more	blurred
– and	noise	is	more	effectively

suppressed	(noise	variance	gets
smaller)
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Effects	of	Smoothing
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• Each	row	shows
smoothing	with
Gaussians	of
different	width

• Each	column
shows	different
realizations	of	an
image	of
Gaussian	noise.



Separable	filters

• Some	2D	image	filters	can	actually	be
implemented	as	two	1D	filters	- one	in	the
horizontal	direction	followed	by	another	in	the
vertical	direction.

• This	can	significantly	lower	the	computational
complexity	of	the	operation
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Gaussian	Filtering

• Separable	filter
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Gaussian	Filtering	(II)

• s =1
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Gaussian	Filtering	(III)

• Sampling	theorem
• To	keep	the	energy	in	98.76%	area	s >	0.8
• Repeated	averaging
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Example

• s =1.0, s =2.0, s =4.0
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Sharpening
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Input					=	Coarse	+	Fine

Output		=	Coarse	+	Fine

Slide	content:	Andrew	Adams	(http://goo.gl/6GR56Q)



Sharpening

• Any	Filter	which	removes	fine	details	can	be
used	to	sharpen
1. Coarse	=	Remove	Fine	Details	from	Input
2. Fine	=	Input	- Coarse
3. Output	=	Input	+	Fine	x	0.5
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Slide	content:	Andrew	Adams	(http://goo.gl/6GR56Q)



Linear	Sharpening	Filters

• Let	G	be	a	Gaussian	kernel
1. Coarse	=	G	*	Input
2. Fine	=	Input	- Coarse
3. Output	=	Input	+	Fine	x	0.5
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• Recall	convolution:	G*(a+b)	=	G*a	+	G*b

• Output	=	(1.5I	– 0.5G)*Input

Slide	content:	Andrew	Adams	(http://goo.gl/6GR56Q)



Sharpening	Filter
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Original

=



Sharpening	Filter
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Application:	High	Frequency	Emphasis

Original High	Frequency	Emphasis	
+

Histogram	Equalization
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Non-Linear	Filters:	Median	Filter
– Replace	each	pixel	by	the	median	of	its	neighbors.

– Comparison	with	mean:
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Median	Filtering

• Median	filtering	is	a	non-linear operation	that
is	particularly	effective	at	removing	salt	and
pepper	noise.
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Median	Filter
Salt	and	
pepper	
noise

Median	
filtered

Plots	of	a	row	of	the	image
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Median	vs.	Gaussian	Filtering
3x3 5x5 7x7

Gaussian

Median
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3x3	Median	Filter
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Example
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What	you	need	to	know

• Noise	model
• Linear	filter
– Correlation
– Convolution

• Gaussian	filter
– Separability

• Smoothing
• Sharpening
• Non-linear	filter
– Median	filter
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Readings	and	References

• Section	3.1-3.5	of	Szeliski’s book
• Denoising:
http://web.stanford.edu/class/cs448f/lectures
/2.1/Denoising.pdf

• Sharpening:
http://web.stanford.edu/class/cs448f/lectures
/2.1/Sharpening.pdf
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