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Primal	Sketch
• Early	vision:	invariants,	moments,	pattern	recognition
• David	Marr,	late’70s
– Inspiration	from	biological	vision
– Image	representation	in	terms	of	`sketch’

• Sketch	components
– Edges
– Ridges
– Blobs
– Junctions
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Feature	Extraction

• Features:	local	meaningful	detectable
– Points
– Edges

• Step	edges
• Line	edges

– Contours
• Closed	contours	are	boundaries

– Regions
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Goals	for	low-level	image	representation

• Compact

• Generic:	same	for	all	tasks,	objects,	images	considered

• Sufficient:	no	need	to	look	back	into	the	image
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Purpose

• Extract	compact,	generic,	representation	of	image	that	carries
sufficient	information	for	higher-level	processing	tasks

• Essentially	what	area	V1	does	in	our	visual	cortex.
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Filters	are	templates
• Applying	a	filter	at	some
point	can	be	seen	as
taking	a	dot-product
between	the	image	and
some	vector

• Filtering	the	image	is	a	set
of	dot	products

• Insight
– filters	look	like	the	effects
they	are	intended	to	find

– filters	find	effects	they
look	like
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Normalized	correlation

• Think	of	filters	of	a	dot
product
– now	measure	the
angle

– i.e normalized
correlation	output	is
filter	output,	divided
by	root	sum	of	squares
of	values	over	which
filter	lies

• Tricks:
– ensure	that	filter	has	a	zero

response	to	a	constant	region
(helps	reduce	response	to
irrelevant	background)

– subtract	image	average	when
computing	the	normalizing
constant	(i.e.	subtract	the	image
mean	in	the	neighborhood)

– absolute	value	deals	with	contrast
reversal
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Positive	responses

Zero	mean	image,	-1:1	scale Zero	mean	image,	-max:max scale
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Input	image	and	filter



Positive	responses

Zero	mean	image,	-1:1	scale Zero	mean	image,	-max:max scale
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Input	image	and	filter



Edge	detection

• Goal:		Identify	sudden	changes
(discontinuities)	in	an	image
– Intuitively,	most	semantic	and	shape

information	from	the	image	can	be
encoded	in	the	edges

– More	compact	than	pixels

• Ideal:	artist’s	line	drawing	(but	artist
is	also	using	object-level	knowledge)

Source:	D.	Lowe 11



Edges	and	Gradients

• Edges	are	caused	by	a	variety	of	factors

depth	discontinuity

surface	color	discontinuity

illumination	discontinuity

surface	normal	discontinuity

Source: Steve Seitz
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• General	strategy	for	edge	detection
– determine	image	gradient
– now	mark	points	where	gradient	magnitude	is	particularly	large	wrt

neighbors	(ideally,	curves	of	such	points).



Characterizing	edges

• An	edge	is	a	place	of	rapid	change	in	the	image	intensity	function

image
intensity	function

(along	horizontal	scanline) first	derivative

edges	correspond	to
extrema	of	derivative
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Effects	of	noise
• Consider	a	single	row	or	column	of	the	image
– Plotting	intensity	as	a	function	of	position	gives	a	signal

Where	is	the	edge? Source:	S.	Seitz
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Effects	of	noise

• Finite	difference	filters	respond	strongly	to	noise
– Image	noise	results	in	pixels	that	look	very	different	from	their	neighbors
– Generally,	the	larger	the	noise	the	stronger	the	response

• What	is	to	be	done?
– Smoothing	the	image	should	help,	by	forcing	pixels	different	to	their

neighbors	(=noise	pixels?)	to	look	more	like	neighbors

Source: D. Forsyth15



• Convolve	the	1-D	signal	with	a	Gaussian	kernel		to	give	s(x).
• Compute	derivate	of	resulting	smoothed	signal	to	give	s’(x).
• Find	maxima/minima	of	s’(x)	and	threshold
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Slide: R. Cipolla, S. Seitz

1D	Edge	Detection



1D	Edge	Detection
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• Note	that

Slide: R. Cipolla, S. Seitz



1D	Edge	Detection

• Looking	for	maxima/minima	of	s’(x)	is	same	as	zero-crossings	of
s’’(x),	so	easier	to	convolve	with	Laplacian	of	Gaussian,	gσ’’(x):

Slide: R. Cipolla, S. Seitz
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Multi-scale	1D	edge	detection

• As	σ increases,	the	smoothing	increases	and	only	the	central
edge	survives.
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Multi-scale	Edge	Detection

• Degree	of	smoothing	controls	the	scale	at	which	we
analyze	the	image

• Image	of	a	dish	cloth:

• Fine	scales	are	sensitive	to	noise
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Derivatives	of	a	2D	function

• Recall	for	2D	function	f(x,y):

• Now	this	is	linear	and	shift
invariant,	so	must	be	the
result	of	a	convolution.

• We	could	approximate	this	as

• It	is	obviously	a	convolution

21

@f

@x

= lim
✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x

⇡ f(xn+1, y)� f(xn, y)

�x

-1 1



Finite	difference	filters

• Other	approximations	of	derivative	filters	exist:

Source: K. Grauman
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Finite	differences:	example

• Which	one	is	the	gradient	in	the	x-direction	(resp.	y-direction)?
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2D	Gaussian	Filter
• Use	2D	Gaussian	kernel	to	smooth	image

• Now	use	2D	convolution	operation
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Blur	with	Gaussian	filters

• σ controls	the	blurring	on	an	image:
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Derivative	of	Gaussian	filter

• Is	this	filter	separable?

* [1 -1] =
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Derivative	of	Gaussian	filter

• Which	one	finds	horizontal/vertical	edges?

x-direction y-direction
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2D	Edge	Detection	- Canny

• Now	find	gradient	of	the	smoothed	image	S(x,y)	at	every	pixel:
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2D	Edge	Detection	- Canny
• Apply	non-maximal	suppression.	Edge	elements	or	edgels are

placed	at	locations	where	| ∇	S|	is	greater	than	local	values	of
|∇S|	in	the	directions	+/- ∇	S

• Then	threshold

• In	Matlab,	Canny	edge	detector	is	implemented	in	“edge”.
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Image	gradient

Source: Steve Seitz30

• The	gradient	of	an	image

• The	gradient	points	in	the	direction	of	most	rapid	increase	in	intensity

• The	gradient	direction	is	given	by:

• The	edge	strength:



Smoothed	derivative	removes	noise,	but	blurs	edge.	
Also	finds	edges	at	different	“scales”.

1	pixel 3	pixels 7	pixels

Tradeoff:	smoothing	and	localization

Source:	D.	Forsyth
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• The	gradient	magnitude	is	large	along	a	thick	“trail”	or
“ridge,”	so	how	do	we	identify	the	actual	edge	points?

• How	do	we	link	the	edge	points	to	form	curves?

Implementation	issues

Source:	D.	Forsyth
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Designing	an	edge	detector
• Criteria	for	an	“optimal”	edge	detector:

– Good	detection:	the	optimal	detector	must	minimize	the	probability	of
false	positives	(detecting	spurious	edges	caused	by	noise),	as	well	as	that
of	false	negatives	(missing	real	edges)

– Good	localization:	the	edges	detected	must	be	as	close	as	possible	to	the
true	edges

– Single	response:	the	detector	must	return	one	point	only	for	each	true
edge	point;	that	is,	minimize	the	number	of	local	maxima	around	the
true	edge

Source:	L.	Fei-Fei
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Designing	an	edge	detector
• Criteria	for	an	“optimal”	edge	detector:

– Good	detection:	the	optimal	detector	must	minimize	the	probability	of
false	positives	(detecting	spurious	edges	caused	by	noise),	as	well	as	that
of	false	negatives	(missing	real	edges)

– Good	localization:	the	edges	detected	must	be	as	close	as	possible	to	the
true	edges

– Single	response:	the	detector	must	return	one	point	only	for	each	true
edge	point;	that	is,	minimize	the	number	of	local	maxima	around	the
true	edge

Source:	L.	Fei-Fei
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Canny	edge	detector
• This	is	probably	the	most	widely	used	edge	detector	in	computer

vision
• Theoretical	model:	step-edges	corrupted	by	additive	Gaussian

noise
• Requirements

– Good	localization
– Few	false	positives

• Canny:	optimization	problem
– Numerical	optimization	(the	product	of	signal-to-noise	ratio	and

localization)	w.r.t filter	shape
– Derivative	of	Gaussian	approximates	optimal	operator	z

J. Canny,	A	Computational	Approach	To	Edge	Detection,	IEEE	Trans.	Pattern
Analysis	and	Machine	Intelligence,	8:679-714,	1986.
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Canny	edge	detector

1. Filter	image	with	derivative	of	Gaussian
2. Find	magnitude	and	orientation	of	gradient
3. Non-maximum	suppression:

– Thin	multi-pixel	wide	“ridges”	down	to	single	pixel	width

4. Linking	and	thresholding	(hysteresis):
– Define	two	thresholds:	low	and	high
– Use	the	high	threshold	to	start	edge	curves	and	the	low	threshold	to

continue	them

5. MATLAB:	edge(image,	‘canny’)

Source: D. Lowe, L. Fei-Fei
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Example

original	image	(Lena)
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Example
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Norm	of	gradient



Example
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Thresholding



Example

Thinning
(non-maximum	suppression)

40



Non-maximum	suppression

At	q,	we	have	a	
maximum	if	the	
value	is	larger	than	
those	at	both	p	and	
at	r.	Interpolate	to	
get	these	values.

Source: D. Forsyth 41



Assume	the	marked	point	is	an	
edge	point.		Then	we	construct	
the	tangent	to	the	edge	curve	
(which	is	normal	to	the	
gradient	at	that	point)	and	use	
this	to	predict	the	next	points	
(here	either	r	or	s).	

Edge	linking

Source: D. Forsyth 42



Hysteresis	thresholding
• Check	that	maximum	value	of	gradient	value	is
sufficiently	large
– Drop-outs?	Use	hysteresis
– Use	a	high	threshold	to	start	edge	curves	and	a	low	threshold	to

continue	them.

Source: S. Seitz43



Example

Khigh	=	=	.5

Klow =	=	.2

Hysteresis	thresholding
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Example

original	image

high	threshold
(strong	edges)

low	threshold
(weak	edges)

hysteresis	threshold

Source:	L.	Fei-Fei 45



Effect	of	s (Gaussian	kernel	spread/size)

Canny	with	 Canny	with	original	

The	choice	of	s depends	on	desired	behavior
• large	s detects	large	scale	edges
• small	s detects	fine	features

Source:	S.	Seitz
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Notice

• Something	nasty	is	happening	at	corners
• Scale	affects	contrast
• Edges	aren’t	bounding	contours
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fine	scale
high	
threshold
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coarse	
scale,
high	
threshold
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coarse
scale
low
threshold
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Review:	Edge	=	local	extreme
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• Note	that

Slide: R. Cipolla, S. Seitz



Review:	Laplacian	operator

• Looking	for	maxima/minima	of	s’(x)	is	same	as	zero-crossings	of
s’’(x),	so	easier	to	convolve	with	Laplacian	of	Gaussian,	gσ’’(x):

Slide: R. Cipolla, S. Seitz
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Laplacian	Operator
• Laplacian	operator

• Apply	Laplacian	operator	on	an	image:
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• In	Matlab:	fspecial(‘Laplacian’,	alpha)
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Laplacian	of	Gaussian
• Apply	Laplacian	operator	on	a	Gaussian-blurred	image	is
equivalent	to	convolving	with	Laplacian	of	Gaussian:
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sigma=2

sigma=4

contrast=1 contrast=4
LOG	zero	crossings
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Orientation	representations

• The	gradient	magnitude	is
affected	by	illumination
changes
– but	it’s	direction	isn’t

• We	can	describe	image
patches	by	the	swing	of	the
gradient	orientation

• Important	types:
– constant	window

• small	gradient	mags
– edge	window

• few	large	gradient	mags	in	one
direction

– flow	window
• many	large	gradient	mags	in	one
direction

– corner	window
• large	gradient	mags	that	swing
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Disclaimer

• No	edge	detection	scheme	is	going	to	work	perfectly	in	all	cases.
This	is	due	to	the	fact	that	our	notion	of	what	constitutes	a
salient	edge	in	the	image	is	actually	somewhat	subtle.
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Edge	detection	is	just	the	beginning…

• Berkeley	segmentation	database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human	segmentation gradient	magnitude
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Lecture	summary

• Edge	detection
• Convolution	with	Gaussian	derivative
• Laplacian	of	Gaussian	(LOG)
• Canny	edge	detector
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Some	references

• Read:	Szeliski 4.1-4.3
• Some	good	explanation	of	Laplacian	operator

– https://www.youtube.com/watch?v=EW08rD-GFh0
– https://www.youtube.com/watch?v=XbCvGRjjzgg
– https://www.youtube.com/watch?v=AlXVrAOls-8
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