Video Rental Project Report

 --- Wei Ding

This project is chosen, done and reported by Wei Ding individually. It is not a team project.

1 Description of project

This project is about a video rental application program running in Multi client/server environment with the support of DCOM. The project has two parts: one part is DCOM executable server which implement an interface and keeps the video rental data information, the other part is a GUI MFC application for the user to do the video rental business. The main purpose of this project is to explore the DCOM core technologies and implement them with a specific application.

 2 Significant problems to be solved in this project

· Understand DCOM technology. Explore the DCOM architecture and working mechanism. Design an application with DCOM—Video Rental.

· Object sharing problem. The Server COM object keeps the video rental data information. All clients need to check the common data in the server. So the DCOM object in the server is shared with all clients.

· Data marshaling. Data transfer between clients and the server.

· Single Thread Apartment. Multiple clients access the DCOM object and call the functions concurrently within STA model.

· DCOM interface design. Interface design with automation support.

· Functions design. Design and implement functions for the video rental application.

3 technical approach of solving these problems

3.1 Understanding DCOM technology. Explore the DCOM architecture and working mechanism. Design an application with DCOM—Video Rental.

3.1.1 Basic concept of COM

The Component Object Model is an object-based programming model designed to promote software interoperability; that is, to allow two or more applications or “components” to easily cooperate with one another.

COM supports distributed objects. It allows application developers to split a single application into a number of different component objects, each of which can run on a different computer.

An COM object must implement an interface and that object must be instantiated. When a client accesses to an object, it gets a pointer of object interface and then accesses the functions in the interface.

 [image: image4.bmp]
[image: image2.wmf]pointer

Interface Function Table

Interface Pointer

Pointer to Function1

Function1(...)

{

...

}

Pointer to Function2

Pointer to Function3

...

Function2(...)

{

...

}

Function3(...)

{

...

}

...

Figure 3.1.1: An interface pointer is a pointer to a pointer to an array of pointers
to the functions in the interface.

3.1.2The COM Client/Server Model

The client is any piece of code that somehow obtains a pointer through which it can access the services of an object and then invokes those services when necessary. The server is some piece of code that implements the object and structures in such a way that the COM Library can match that implementation to a class identifier, or CLSID. The COM Library uses the CLSID to provide “implementation locator” services to clients. A client need only tell COM the CLSID it wants and the type of server—in-process, local, or remote—that it allows COM to load or launch. COM, in turn, locates the implementation of that class and establishes a connection between it and the client. This relationship between client, COM, and server is illustrated in Figure follows:

[image: image3.wmf]

Client

Application

COM

Server

Object

(1) “Create

Object”

(2) Locate

implementation

(3) Get object

interface iointer,

return to Client

(4) Call interface

members

Figure 3.1.2: Clients locate and access objects through implementation locator
services in COM. COM then connects the client to the object in a server.

3.1.3 Video Rental application structure design
In my project, I built the server with ATL, chose the option server type as executable EXE, and added COM object in apartment model. The COM class called Ctryserver, which implements an interface Itryserver. The Ctryserver has a data member VideoList which keeps the information of video rental. When a client accesses the server, it calls CoCreateInstance(CLSID_tryserver, NULL, CLSCTX_SERVER, IID_Itryserver, (void**)&ptr) to get the interface pointer first and then calls the functions to do rental business.

The figure below illustrate the project design idea

[image: image1.wmf]Object

IUnknown

Other

Interfaces

Figure 3.13 Client/DCOM sever

3.2 Object sharing. Object sharing. The Server COM object keeps the video rental data information. All clients need to check the common data in the server. So the DCOM object in the server is shared with all clients.

The typical COM object creates a new class object for each client, but in my project, all clients need to access the same one COM object.

To solve this problem, I use singleton technology; that is, the executable COM server creates only one instance of the COM class and offers that object to all clients. The simplest way to implement a singleton object is to return the same instance from every call to theICalssFactory::CreatInstance method, as shown here:

HRESULT CFactory::CreateInstance(IUnknown *pUnknownOuter, REFIID riid, void **ppv)

{

if(pUnknownOuter != NULL)

return CLASS_E_NOAGGREGATION;

CInsideDCOM *pInsideDCOM = new CInsideDCOM;

cout << "Component: CFactory::CreateInstance() " << pInsideDCOM << endl;

if(pInsideDCOM == NULL)

return E_OUTOFMEMORY;

HRESULT hr = pInsideDCOM->QueryInterface(riid, ppv);

pInsideDCOM->Release();

return hr;

}

In ATL there is a macro which can create a singleton class object for you and easy to use.

Just add “DECLARE_CLASSFACTORY_SINGLETON(Ctryserver)” into your COM class.

3.3 Data marshaling. Data transfer between clients and the server.

Clients call the functions and transfer parameters to or from functions. How to transfer those data structures, such as a CString is a problem needed to solve in my project. I studied The Interface Definition Language. The base types supported are these:

boolean, byte, char, double, float, handle_t, hyper, int, long, short, small, wchat_t.

So there is no simple way to transfer CString object using these base types if you don’t want to write the specific marshaling code.

Microsoft wrote the Automation Marshaler for IDispatch interface offered us an easy way to solve the above problem. The Automation Marshaler (oleaut32.dll) can be used not only for IDispatch- based interfaces but also for any interface that restricts itself to Automation-compatible types. VARIANT is a giant union of all Automation-compatible types. I use it to transfer CString object.

Type cast from CString to VARIANT use: COleVariant(Title).Detach() (Title is a CString object).

Type cast from VARIANT to CString use: VARIANT var =Title.bstrVal.

3.4. Single_Threaded Apartment Model

 The basic unit of thread safety in COM is called an apartment. Two types of apartment are defined: single threaded apartment and multithreaded apartment. STA model notifies an object of methods calls by posting messages to a window message queue. Here is the message handle part code in STA model.

MSG msg;

 while (GetMessage(&msg, 0, 0, 0))

DispatchMessage(&msg);

 _Module.RevokeClassObjects();

 Sleep(dwPause); //wait for any threads to finish

 }

This message queuing architecture solves the problem of multiple clients making concurrent calls to an object running in an STA. Since all the calls are submitted as window messages posted to the message queue, the calls will be serialized automatically. The object will receive method calls when the message loop retrieves and dispatches the messages in the queue. Since COM serializes the calls in this manner, the object’s methods don’t need to provide synchronization.
My project uses STA to implement Server/multi-client model.

 Figure 3.4 the inner workings of the STA model
3.4 DCOM interface design. Interface design with automation support.

 The interface is generated automatically with ATL. It is derived from IDispatch interface with Automation Marshaler supports.

[

object,

uuid(05567F4D-0FE1-11D4-A75D-978749D69131),

dual,

helpstring("Itryserver Interface"),

pointer_default(unique)

]

interface Itryserver : IDispatch

{
[id(1), helpstring(“method 1”] HRESULT Function1....

[id(2), helpstring(“method 2”] HRESULT Function1....

[id(3), helpstring(“method 3”] HRESULT Function1....

;

;

}

3.6 Functions design. Design and implement functions for the video rental application

 In my project, for doing video rental business, I implement several functions such as video search function, rent function, return function and so on. Each function has [in] or [out] parameters for passing data information between clients and the server.

To solve the video ID unique verify problem, I design a function to generate the video ID uniquely.

4 discussions of lessons learned

· After I learned MFC from lessons and did several assignments, I feel comfortable to write application with MFC architecture now. Especially for some useful MFC object such as CObjectList, I use it frequently in my assignments and the project.

· I learned myself about DCOM more than what I learned from lessons in order to implement my project. But lessons I learned in the class gave me a clear basic introduction about COM, which makes me easily to learn deep into the core tech of DCOM independently.

· I learned how to build server COM with ATL from lessons and did two assignments to get some training. The concepts and skills I got from lessons contribute to my term project eventually.

· Automation component is an important concept of COM. The lessons covered a lot of things about this topic, such as the interface IDispatch introduction, accessing COM component from VB, EXEL, WSH. All these useful concepts help me understand the spirit of COM and the advantages to design OO applications with COM.
· DLL Surrogate and Executable Component
The working mechanism of DLL is an important concept. At the beginning of my project designing, I ignored this concept and tried to share the object in the server DLL component with clients. I failed. After studying the working mechanism of DLL component and executable component, I understood that a DLL runs in the process address space of its caller. Every client with a DLL in its own address space can not share it with others. Actually to share objects in a DLL component, you need to use a DLL surrogate. DCOM provides a default DLL surrogate (dllhost.exe) that protects in-process component and provides fault isolation and the ability to service multiple clients simultaneously. To activate an in-process component in the context of a DLL surrogate, you need to configure the registry, specifies the name of desired surrogate.

These settings can be made in the component’s self–registration code. Clients need to instantiate a in-process object in a surrogate with the addition of AppID and Dllsurrogate information.

As for executable components, also called out-of –process components, they can run in the same machine (or a different machine) as the client process but not in the same address space or run. This mechanism makes the object sharing possible.

The figure below illustrates this mechanism

4 Future works to take this project forward

· Add Persistent Storage

In my project the server DCOM object keeps a video list. When there is no any client accessing the server, the server DCOM object will die with all the information gone. So to add the storage ability in the DCOM server is very reasonable. If I had enough time to continue, I will add this ability into my project. I studied the persistent storage concept. Concluding it as follows:

IPersistStorage interface is derived from IPersist. This interface has several functions, which control how to save and load objects to and from a component. If a COM component implements this interface, a container program can “contact” the object to a compound file by passing the file’s IStorage pointer as a parameter to Save and Load member functions of the IpersistStorage interface. Such objects are called to be persistent. The figure below illustrate the process of calling IPersistStorage::Save

Figure4.0 the process of calling IPersistStorage::Save

· Add connectable object

COM supports connectable objects, a technology developed to enable an object to ”talk back” to its client. By using this technology, my project server DCOM not only can receive data from clients but also can sent messages back to clients.

 To implement this, the server DCOM needs to implement an interface called IConnectionPoint. The methods of the IConnectionPoint interface are used to establish and release connections between a client and a connection object. For example, IConnectionPoint::Advise is called by a client to provide an object with a pointer to its sink, meanwhile return a unique number called cookie that identifies the relationship established. The client retains this number for later use.

If there is more than one connectable object in the server DCOM, the interface IConnectionPointContainer interface is used to help to retrieve every connection point.

Client side defines an IOutGoing interface that will be implemented by the sink and called by the connectable object. In IOutGoing interface, the method IOutGoing:: GotMessage notifies the sink that something has happened in the connectable object.

Figure4.1 a pointer to the client’s sink obtained via the IConnectionPoint interface.

· Code special Marshaling to transfer more complex types such as structures.

If I have enough time to continue my project, I will implement Video structure type transfer between the server and clients. I read the book Inside the DCOM about Standard and Customer Marshaling technology, studied the mechanism of pointer marshaling, standard marshaling and customer marshaling. To implement transfer structures I need code myself proxy and stub marshaling. This issue is very interesting to me.

6 Instructions on how to use this project

· Open server2.dws, compile and run for registration.

If it can not compile for you in your compiler system and give you the error message like ”MFC can not include “window.h””, just comment out the error line. I am sorry for that I have no other good method to solve this problem.

· Open videoclient.dws, compile and run.

The button “Verify” is used to verify your every operation. Don’t forget to click the “verify” button if it is visible after you choose the menu and finish one video rental operation.

Sub-storage

Client

Root storage

Client

DCOM Server

IServer

client.exe

Object saves its data in the storage passed as a Save parameter

client.exe

COM object

IPersistStorage

IUnknown

Application calls save

Application

IStorage

IStorage

Application calls Create Storage to obtain a sub-storage

comp.dll

comp.exe

Address space

Address space

Address space

Client

Local or remote component

In- process component

Sink

Proxcy

IConnectionPoint

RPC

Conectable

Object

IConnectionPoint

Client

IConnctionPointContainer

IOutGoing

I

Client

Stub

Object

Message Queue

IRpcChanneIBuffer

while(GetMessage(...))

 DispatchMessage(...);

_1017992839.doc
[image: image1.bmp]

Client

Application

COM

Server

Object

(1) “Create

Object”

(2) Locate

implementation

(3) Get object

interface iointer,

return to Client

(4) Call interface

members

