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Abstract 

A new approach of iterative Monte Carlo algorithms for the well-known inverse matrix problem is presented and studied. 
The algorithms are based on a special techniques of iteration parameter choice, which allows to control the convergence of 
the algorithm for any column (row) of the matrix using different relaxation parameters. The choice of these parameters is 
controlled by a posteriori criteria for every Monte Carlo iteration. The presented Monte Carlo algorithms are implemented 
on a SUN Sparkstation. Numerical tests are performed for matrices of moderate in order to show how work the algorithms. 
The algorithms under consideration are well parallelized. @ 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

In this work we deal with Monte Carlo algorithms for approximate evaluation o f  the inverse 
matrix A -1 (A is a square matrix). 

Consider the following system o f  linear equations: 

Au = b, (1) 

where 
[a. lm ~mxm ~mxl .  

A = [ l.lJi,j= I E , b, u E  

The inverse matrix problem is equivalent to solve m-times the problem (1), i.e., 

A C i  = I/, j :  1 . . . .  ,m,  
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where 

:: _= . . . .  , 0 )  T 

/ 

and 

C~ =- (cl/ ,  c2 / , . . . ,  Cm/) v 

is the j th column of the inverse matrix C - - A  -~. 
It is also known that Monte Carlo numerical methods give statistical estimates for the solution 

of a given problem using a certain random variable whose mathematical expectation is the desired 
solution. These methods are used when not very accurate solution is needed (in the real-life compu- 
tations the required accuracy is about 1-5%). The problem of approximate evaluation of the inverse 
matrices is very useful when one is interested in finding special preconditioning matrices used to 
accelerate the convergence of basic iterative methods (see [11]). 

There are several basic advantages of these algorithms. It is well known that Monte Carlo algo- 
rithms are parallel algorithms. They have high parallel efficiency when parallel computers are used 
[5, 6, 13]. Monte Carlo algorithms are also very efficient when the problem under consideration 
is too large or too intricate for other treatment. One of the most important advantages of these 
algorithms is that they can be used for evaluating only one component of  the solution or some 
linear form of the solution. It is of  great practical interest, since the most important problems in the 
applied sciences are formulated as problems of  evaluating linear or nonlinear forms of the solution. 
In this case it is not necessary to perform the all computational work which is needed for obtaining 
the complete solution. In general, there are two classes of Monte Carlo numerical algorithms - -  
direct algorithms and iterative algorithms. The direct algorithms obtain the approximate solution of 
a problem in a finite number of steps, and contain only a stochastic error. 

Iterative Monte Carlo algorithms approximate some deterministic iterative method for a given 
initial problem. In this case there are two errors - -  systematic (a truncation error) and stochastic 
(a probable error). The systematic error depends on the number of iterations of the used iterative 
method (Section 1), while the stochastic error depends on the probabilistic nature of the Monte Carlo 
method (Section 3). 

It is well known [4, 17] that iterative Monte Carlo methods are preferable for solving large sparse 
systems (such as those arising from approximations of partial differential equations). Such methods 
are good for diagonally dominant systems in which the rate of the convergence is high. 

Consider the linear algebraic system (1). Define an iteration of order  i as a function of  the 
following form 

u~k+l) -_ F~(A ,b ,u~) ,u l k  1) . . . . .  u~-i+l~),  

where u Ik) is the m-component vector obtained from the kth iteration. It is desired that 

u Ik) ---+ u -- A - I b  as k ---+ oc. 

The method is called s ta t ionary  if Fk ---- F for all k, that is, Fh is independent of k. The iterative 
process is called l inear if Fk is a linear function of u ~k~ . . . . .  u~k i+~). In this paper we study s ta t ionary  
l inear i terat ive  M o n t e  Carlo  algorithms. 
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Consider the Jacobi overrelaxation iterative 
l m with the matrix L = { ij}i;=~, such that 

L = I - D A ,  

where D is a diagonal matrix D = diag(d~ . . . . .  din) and 

7 7C(0,1] ,  i =  1, ,m. d i  z - -  , , ,  

aii 

Now, system (1) can be presented in the following form: 

u = Lu + f ,  

where 

method with relaxation parameter 7. We shall deal 

(2) 

f = Db. 

Let us suppose that the matrix A is diagonally dominant. In fact, this condition is too strong 
and the presented algorithms work for more general matrices, as it will be shown in Section 4. 
Obviously, if A is a diagonally dominant matrix, then the elements of  the matrix L must satisfy the 
following condition: 

II<jl < 1, i~- 1 . . . .  ,m. (3) 
j- : l  

Consider the f irst-order stationary linear iterative process for the system (2), 

u { ~ ) = L u  { k - l ) + f ,  k =  1,2 . . . . .  (4) 

In fact, (4) defines a Neumann  series 

u I ~ ) = f + L f + . . . + L ~ - ~ . f + L k u  C°l, k > O. 

From (2) and (4) one can get the value of  the truncation error. If u {°1 = f then 

u (kj - u = L k ( f  -- u). 

It is well known that property (3) is a sufficient condition for convergence of  the Neumann series, 
i . e . ,  

u = l i m  u (k). 

It is clear that every iterative algorithm uses a finite number of  iterations k. In our algorithms we 
compute the iterations u ~q), 1 <~ q <~ k using Monte Carlo approach with an additional statistical 
error. In practice, the truncation parameter k is not a priori given parameter. It is obtained from the 
condition that the difference between the stochastic approximation of  two successive approximations 
is smaller than a given sufficiently small parameter ¢. 

An important parameter of  the algorithmic efficiency is the computat ional  complexi ty  or the t ime 
of  the algorithm. We consider some theoretical estimates of  the complexity of  our algorithms. We 
also give some numerical results, showing the computat ional  complexity.  Here we present results 
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for the computational complexity of  other deterministic or stochastic algorithms. One can find some 
important estimates in the work of  John Halton [9]. It is convenient to present the problem of 
estimating the inverse matrix as a problem of  solving the following system of  linear systems of  
equations, of the general form 

AU =8,  (5) 

where the (m x m) matrix A and the (m x m) matrix B are known, while the (m x m) matrix U is 
the unknown quantity to be determined. 

The inverse matrix problem consists in computing the unknown matrix U in the case when B = I. 
There are many classical numerical methods for solving an (m x m x m) system (5) of  linear algebraic 
equations. The direct methods, such as the Gaussian and Gauss-Jordan elimination, take time 

TD,RECT(m) = O(rn3), 

while the iterative methods, such as the Jacobi, Gaus~Seidel, and various relaxation techniques, 
take time 

TirER(m,k) = O(m3k) 

if there are k iterations. The direct methods are also well parallelizable, but they need a large 
number of  processors p. It is known that Csanky procedure produces the inverse of  a square matrix 
in O(log 2 m) steps [3], but needs an excessive number of  processors p = m 4. Note, that the last 
result is obtained under a very unrealistic condition if one is interested in matrices of  large size. 
In fact, following the principle of  decomposition of  the algorithm [10], one can get the following 
estimation of  the time of  the direct methods (depending of  p): 

TD,,~cT(p,m)= o (m---p log 2 m) . 

It is known that the Monte Carlo techniques [9] take time 

TMc(m,k,n) = O(m2kn)  

(or less), if there are, on average, n samples, involving random walks of  average length k, to 
determine the components of  U. In comparison with iterative methods, we have n replacing m. 
Thus, so long as n < m, this is far more efficient that the classical methods. The presented estimates 
show that Monte Carlo algorithms are preferable when one need to have a coarse estimation of  the 
inverse matrix. The problem is very important when one is interested in finding factorized sparse 
approximate inverse preconditioners (see, for example [1 1]). I f a  system of p processors is available, 
then the Monte Carlo techniques take time 

Clearly, the rate of  convergence (respectively, the average length k of  the Markov chain) depends 
on the spectral radius of  the matrix. As long as the spectral radius is smaller, the algorithms under 
consideration are far more efficient (since k can be a small number for obtaining a good accuracy). 
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The algorithms considered in this paper have the same rate of  complexity as the algorithm de- 
scribed by Halton in [9], but they are more efficient, because different relaxation parameters and 
stop criteria are used. 

2. Discrete Markov processes 

Here we consider the problem of  evaluating the linear form V(u) of  the solution u of  the system 
(2): 

V(u) =- (v, u) = ~ viui, (6) 
i=1 

where v E ~m is given vector. 
We shall construct a random variable X[v], which mathematical expectation is equal to the linear 

form (6), i.e., 

EX[v] = V(u). 

using discrete Markov processes with a finite set of  states. 
Then the computational problem becomes one of  calculating repeated realizations of  X[v] and of  

combining them into an appropriate statistical estimator of  V(u). Note that the nature of  the every 
realization of  X[v] is a Markov process. We will consider only discrete Markov  processes with a 
finite set o f  states, the so-called finite discrete Markov  chains. 

Definition 2.1. A finite discrete Markov chain S is defined as a finite set of  s t a t e s  {SI,S2,...,Sm}. At 
each of  a discrete sequence of  times t = 0, 1 . . . .  , k,. . .  the chain S is in one of  the following states 
sl,,,& . . . . . .  sty,..., which satisfies the Markov property 

P(s,,, = ctqlst,,_,,st,, ~,...,sto) = P(st,, = ~qlst,,_, ), q = O, 1 . . . . .  (Zq E { S I , . . .  ,Sin}. 

Any state s~ is associated with a set of  conditional probabilities Pi/, such that p i / i s  the probability 
that the system, which at the tth time, is in the state si, will be in the state s/ at the (t + 1 )th time, 
i.e., 

P(s , , , ,  = s~ls,, = s , )  = p s / .  

Thus, Pi/ is the probability of  the transition si =~ s/. The set of  all conditional probabilities Pc/ 
defines a transition probability matrix P = {pi/}~"~=~ which completely determines the probabilities 
of  the given chain S. 

Definition 2.2. The state is called absorbing if the chain terminates in this state with probability 
one. 

In the general case, iterative Monte Carlo algorithms can be defined as terminated Markov  chains: 

Sk = s,0 -+ s,, ~ st 2 -+ " "  ~ sty, (7) 
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where st,,, (q = 1 . . . . .  k) is one of the absorbing states. This determines the value of some function 
F(S)  = X[v], which depends on the sequence (7). The function F(S)  is a random variable. After 
the value of  F(S)  has been calculated, the system is restarted to its initial state st,, and the transitions 
are begun anew. A number of n independent runs are made through the Markov chain starting from 
the state st,, to any of the absorbing states. The average 

1 ~-~F(S) (8) 
n 

T 

is taken over all actual sequences of  transitions (7). The value in (8) approximates E{F(S)} ,  which 
is the required linear form of the solution. 

We also will be interested in computational complexity. 

Definition 2.3. The computational complexity is defined by 

nE(k )to, 

where E(k) is the mathematical expectation of the number of transitions in the sequence (7) and to 
is the mean time needed for realization of one transition. 

In fact, the definition of the computational complexity is used for obtaining theoretical estimates, 
because one can only estimate the mathematical expectation of the number of transitions k. In 
practice for every realization of  a given Monte Carlo algorithm one has a determined number of 
moves in all realizations of the Markov chain which we denote by R: 

R = ~ k i ,  (9) 
i=l 

where ki is the number of moves of the ith realization of  the Markov chain. 

3. lterative Monte Carlo method 

Consider the Markov chain 

S = So ~ st --~ Sz ---+ " "  ---+ sk ~ " "  (10) 

with m states { 1,2 . . . .  , m}. Let 

P(So = i) = P i ,  P(sq = jlsq_l = i) : p~j, 

where pj (initial probability) is the probability that the chain starts in state i and Pij is the transition 
probability for the random process to go to state j after being in state i. Probabilities pii define a 
transition matrix P = {Pij}~=t. Clearly, Pi and P~i must be nonnegative and 

~ pi = l, ~ pij = l, for any i =  l ,2 m. ..... 
i - I  j - I  
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Define the weight function Wq, for Markov chain (10) with m states, using recursion formula 

l sq  _ IS,¢ 
W 0 = l ,  W q = W q _ , - - ,  q = l , 2  . . . . .  

P s q  I ,~',/ 

where the sequence of  states So, Si,s2 . . . .  is a given trajectory with initial probability p,,, and transition 
probabilities p,,, ,.,.. 

In fact, 

Wq= l~,,.~,l~,~...1,.,_,,., (11) 

P ....... P~,,.: ... p,<,.,,, 

Define the following random variable: 

X[v] v 
P,s~, q=O 

(12) 

The following statement holds. 

Theorem 3.1. Let u be a solution o f  the system (2) and the elements l~j o f  the matrix L satisfy 
the property (3). Then the mathematical expectation o f  the random variable X[v] is equal to the 
linear form V(u) defined by (6), i.e., 

Ex[v] = (v, u). 

Proof.  The proof is similar to the proof o f  J. Spanier and E.M. Gelbard (see [16]). In fact, for a 
given sequence of  states :~0 -~ at ---, ' "  ~ :¢q ---, "-- we consider the Markov chain, defined by (10). 

Then we have 

P{so = s 0 , . ' ' ,  Sq = :~q } = p~,, p ..... . . -  p:,,_, ~,,, 

where 

~ iC{1 ,2  . . . . .  m}, i =  1,2 . . . . .  q. 

Using ( i l )  one can obtain 

E - -  q . l . ~  i z - . . . p~,~_ p~ 
L 

~(~=1 zq=l  z~,/_ i =1 :q/=l 

= ~ v~.(Lqf)~,, = (v, Lqf) .  
~ l )  = 1 
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Therefore 

q=0 k p'o W q f  s" 

(3Q 

= ~ ( v ,  L U f )  = (v, u). 
q=0 

This completes the proof. [] 

Obviously, if u Ik) is the kth iterative solution of (4) with u/°) = f then the mathematical expec- 
tation of  the random variable 

k 

Vso Z mqf.,. (13) 
x~[~] = ps~ q=0 

is equal to the linear form V(u (k)) = (v,u~k)), i.e., 

EXk[v] = (v, uIk)). 

The parameter k is chosen from the following condition of truncation of the Markov chain: 

IWql < ~. (14) 

As an approximate value of  the linear form (6) we get the following average of the random 
variable X[v]: 

/7 

~.[v]  = _1 y~.{x[v]}~, 
n 7-/, 

where {X[v]}, is the ith independent realization of  the random variable (12). The probable error is 
defined as a value r, (see, for example, [8, 15]) for which the following condition 

' p{ l~.  E X H I > r . } .  P{IX. - EX[v]] < r .}  ~ ~ ~ 

is fulfilled. 
It is easy to show (following [15]) that for algorithms under consideration 

r. .~ 0.6745 Vv/V~X[v]/n, 

where 

VarX = E ( X  2) - (EX) 2. 

A good choice of the initial probability vector p = {p~}m namely 

m 
P ' -  Ez=, Ivjl 
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and the transition probability matrix P = {pij}~'j=~, namely 

Ilij[ i =  1,2 . . . . .  m 
m 

leads to the so-called Monte Carlo almost optimal (MAO) algorithm (see the definition of the MAO 
algorithm in [12]). 

Remark 1. It is clear that if we choose the special case of linear form V(u) according to vector 
v = !J,, = (0 . . . . .  0, 1 ~ , 0  . . . . .  0) T, (where the one is in the "j0" place) than we get "j0" component 

.jo 

of the solution. 

Remark 2. Both errors, truncation and probable, arise when the random variable (12) is replaced 
by random variable (13). As an approximate value of the linear form (6) we get the mean value of 
the random variable (13). 

4. Iterative Monte Carlo Algorithms 

In our iterative Monte Carlo algorithms we use the following norms of  vectors u E Em and matrices 
A ~ ~m×m [2]: 

II u 112-- luil 2 (the Euclidean norm), (15) 
\ i = 1  

II u 112-- max luil (the maximum norm), (16) 
I 

II A I1 -- (the Frobenius norm) (17) 
\ i = 1  

The first algorithm is auxiliary and evaluates every component of the solution u of the linear 
algebraic system (1). 

Algorithm 4.1 
1. Input initial data: the matrix A, the vector b, the constant c, the relaxation parameter Y E (0, 1] 

and the integer n. 
2. Preliminary calculations (preprocessing): 

2.1. Compute the matrix L: 

1 - 7 when i = j 
l m ~ . ,  

{ i/}i4=, - 7 ~  when i ¢ j ;  
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2.2. Compute the vector f :  

bi 
f i : 7 - - ,  i :  1 . . . .  ,m; 

aii 

2.3. Compute the vector lsum: 

Isum(i) : ~ [l(i[ for 
] 1 

i :  1 ,2 , . . . ,m;  

3. For i0 :-- 1 to m do step 3.1 and step 3.2. 
3.1. Perform one trajectory: 

3.1.1. Set initial values X := 0, W :-- 1; 
3.1.2. Calculate X := X + W fi,,; 
3.1.3. Generate an unijormly distributed random number ~ E (0, 1 ); 
3.1.4. Set j := 1; 
3.1.5. If  (~ < ~ - :1  pi,,k) then 

3.1.5.1. Calculate W := W x sign(li)/) x lsum(io); 
3.1.5.2. Calculate X := X + W f j  (one move in trajectory); 
3.1.5.3. If  Iwl < c then go to step 3.1.6; 
3.1.5.4. Update the index io := j and go to step 3.1.3; 
3.1.5.5. Update j : = j +  1 and go to step 3.1.5. 

3.1.6. End of  the trajectory. 
3.2. Calculate the mean value based on n independent trajectories: 

3.2.1. Do n times step 3.1; 
3.2.2. Calculate X ,  and ui,, := X, .  

4. End o f  the Algorithm 4.1. 

Algorithm 4.1 describes the evaluation of  every component of  the solution u of  the problem (I),  
which is, in fact, a linear algebraic system. Algorithm 4.1 is considered separately, since it (or some 
of  its steps) will be used in next algorithms. 

For finding the corresponding j th component of  the solution the following linear form is used: 

V ( u )  = (v ,u ) ,  

where v -- !i = (0 ,0 , . . . ,  1 ,0 . . . .  ,0). 
J 

The second algorithm computes the approximation C to the inverse matrix C -- A ~. The algorithm 
is based on special techniques of  relaxation parameter choice. The choice of  the relaxation parameter 
7 can be controlled by a posteriori criteria for each column of the residual matrix E = A C - I. Each 
column of the matrix C is computed independently using Algorithm 4.1. 

Algorithm 4.2 
I. Input initial data: the matrix A, the constant s, the parameter eucl_norm (a su.~ciently large 

given value), the integers n and l, and the set o f  the relaxation parameters {Tt, 72 . . . . .  7l}, where 
TIE(0,1], i - -  1 . . . . .  l. 
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2. For j0 : - -  1 to m do 
Calculate the elements o f  the joth column-vector  of the approximate  matr ix  C"  
2.1. For (k := 1) to l do 

2.1.1. Apply the Algori thm 4.1 ./'or z, n, , '=Th, and the right-hand side vector f =  li, , = 

(0,. ,0, 1,~,0, 0)' to obtain the column vector ~(k) ~(k) ^fk ~,. . . . . .  ' i,, = ~- I . h ~ ' ' ' ' ' C m i , ,  ) 

2.1.2. Compute the Euclidean norm o f  the residual column vector EIk) j ~  • 

rl E k)112---- _ " ] 0  . .  

\ i  = ] \ J  1 

2.1.3. If (11E ¢k' 112 < eucl2norm then 
^ ( k l  

dj  := C j  ; 
e.c/ orm :--II e 112 

3. End o f  the Algori thm 4.2. 

Algorithm 4.2 is based on Algorithm 4.1 finding different column-vectors of the matrix C = 
(C1 . . . . .  Cm) by using corresponding values of  the relaxation parameter 7 = 7p, P = 1,2 . . . . .  l. 
The values of 7p are chosen such that to minimize the Euclidean norm of the following column- 
vectors: 

E j = A C / - ! i ,  j =  1,2 . . . . .  m, 

w h e r e l i = ( 0  . . . . .  0, 1 ,0 . . . .  ,0) ' .  

J 

The use of  the criterion of  minimization of the Euclidean norm (15) of the column-vector Ej 
over the set 7 permits to find better approximation of the residual matrix E = (El . . . . .  Em) and hence 
improves the approximation of the inverse matrix C column by column. 

The evaluation of different columns can be realized in parallel and independently. 
The basic idea of  the above presented algorithm uses a deterministic approach, which is indepen- 

dent of  the statistical nature of the algorithm. 
The third algorithm essential require the Monte Carlo approach and there is not deterministic 

analogy. 

Algorithm 4.3 
1. Input initial data: the matr ix  A, the integers n and I, the sets o f  parameters  {el . . . . .  Cm}, 

{;',,72 . . . . .  71},(7jE(0, 1],i = 1 . . . . .  l) and the sufficiently large values {max_norm, . . . . .  max_ 
normm }. 

2. For k : =  1 t o l  do 
2.1. Apply step 2 of Algorithm 4.1 for 7 := 7k; 
2.2. For i0 :-- 1 tom do 
2.3. For j0 := 1 tom do 
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2.3.1. Apply step 3.1 and step 3.2 of  the Algorithm 4.1 for  n,7 = 7k, e := e/o and the 
right-hand side vector b = Ijo := (0, . . . ,  0, 1 , 0 , . . . , 0 )  to compute the approximate 

Jo 

inverse matrix ~k)  (̂k) m = {Ciojo}iojo= 1 • 
2.4. For i0 :=  1 to  m do 

2.4.1. Calculate the maximum norm o f  the residual row-vector E},k): 

~ ^(k) (~ioil " II ) II~= max I cioyayi- , 
iE { 1,2,...,m} j= l  

2.4.2. If (11 E ,9 I1~ < max_norm/,,) then 

~ ( k ) .  
C/0 : =  i0 ' 

max-normio :=11 I1 . 

3. End o f  Algorithm 4.3. 

The difference between the last two algorithms is that the Algorithm 4.3 cannot be applied in 
traditional (non-stochastic) iterative methods. The traditional methods allow to evaluate the columns 
of the inverse matrix in parallel, but they do not allow to obtain their elements independently of 
each other. The advantage of  the Monte Carlo algorithms consists in possibilities to evaluate every 
element of the inverse matrix in an independent way. This property allows to apply different iteration 
approaches for finding the matrix C using a priori information for the rows of  the given matrix A 
(for example, the ratio of  the sum of  the moduli of  the non-diagonal entries to the value of the 
diagonal element). 

One has to mention that the computational complexity of Algorithm 4.3 also depends on "how 
ill-conditioned" is a given row of  the matrix A. The given row A~ of the matrix A is "ill-conditioned", 
when the property 

i--1 

lai/I < S .  La l + la L 
j=l j=i+l 

of strictly diagonally dominant matrices is not satisfied (but all the eigenvalues lie inside of  the 
unit circle). 

Algorithm 4.3 presented above is very convenient for such matrices since it chooses the value of  
the relaxation parameter 7 for every row of the matrix A. As a measure of the ill-conditioning of  a 
given row we use the following parameter: 

' - '  

b~ : ~_, la/jl + laijl - la .I .  
j= l  j = i + l  

(18) 

The possibility to treat matrices which are not strictly diagonally dominant increases the set 
of  the problems treated using Monte Carlo algorithms. For finding different row-vectors of the 
approximation of  the inverse matrix C = (CI . . . . .  Cm) T different number of moves (iterations) can 
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be used. The number of  moves are controlled by parameters c~ (i = 1 . . . . .  m) from the inequality 
(14). Obviously, it is not the best way to define the absorbing states of  the random trajectory. It is 
so, because for different rows of  the matrix A the convergence of  the corresponding iterative process 
(and, thus, the truncation error) may be different. When b~ > 0 is larger, then the convergence is low, 
and thus the difference between two iteration (controlled by c) has to be smaller. The procedure, 
used a different c we call f i n e  s t o p  c r i t e r ion .  If the rate of  convergence is higher it is possible to 
use a higher value for the parameter c and to cut the random trajectory earlier than in the case 
of  lower convergence. This allows to keep the parameter R (9) witch determine the computational 
complexity on the same level. For an a posteriori criterion we use the minimization of the maximum 
norm (16) of  the following row-vectors: 

E i : C,A - Ii, i = 1 . . . . .  m,  

where I i = (0 . . . . .  0 , 1 ~ ,  0 . . . . .  0). 

i 
The use of  the criterion of  minimization of  the maximum norm of the row-vectors Ei improves 

the characteristic of  the residual matrix E = (Ej  . . . . .  Era)T: 

E = CA - I, (19) 

and hence leads to better approximation of  the matrix C row by row. 
One can also control the number of  moves in the Markov chain (that is the number of  iterations) 

such that to have a good balance between the stochastic and systematic error (i.e., the truncation 
error). The problem of  balancing of  both - -  systematic and stochastic errors is very important when 
Monte Carlo algorithms are used. It is clear that in order to obtain good results the stochastic error 
(the probable error) rn must be approximately equal to the systematic one rk, that is 

rn = O(r~ ). 

The problem of balancing the errors is closely connected with the problem of obtaining an optimal 
ratio between the number of  realizations n of  the random variable and the mean value E ( k )  of the 
number of  steps in each random trajectory. The balancing allows to increase the accuracy of  the 
algorithm for a fixed computational complexity, because in this case one can control the parameter 
R, defined in (9), by choosing different lengths of  the realizations of  the Markov chain. In practice, 
we choose the absorbing state of  the random trajectory using the inequality (14). 

5. Discussion of the numerical results 

As an example we consider matrices arising after application of  the mixed finite element method 
for the following boundary value problem 

- d i v ( A ~ V _ _ p ) ( x )  = f ( x )  in (2 
(20) 

p =  0 on ~ ,  

where Q is a rectangular subdomain of  ~2 and A t ( x )  is a diagonal matrix which elements satisfy 
the requirements a i ( x )  >~ a0 > 0, i = 1,2. 
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We set 

u_- (u l ,u2 )=A(x )~Tp ,  o~i(x)=ai(x) -I, i =  1,2. 

Let us consider the spaces V and W defined by 

V = H__(div; (2) = {v_ E L2(Q)  2 • divv_ C L2(~)}, 
w = L2(~)  

provided with the norms 

II_~ll~- I1_~11-~.,:~ = (ll_~llg,~ + Ildivvllg,~) 1/2 

and 

I lw l lw- - I lw l lL -~  = Ilwll0,~, 

respectively. 
Then the mixed variational formulation of  the problem (20) is given by characterizing the pair 

(u, p),  as the solution of  

a(u,v) + b(v_,p) = O, VvEV__, 
(21) 

b(u, w) = - ( f ,  w), Vw E W, 

where 

a(u,_v) = (~lUl,Vl) + (72U2, V2), b(u,w) = (divu, w) 

and (-, .) denotes the inner product in Lz(Q). 
The mixed finite element approximation of  problem (21 ) with rectangular Raviart-Thomas elements 

leads to the following linear algebraic system [1], [14]: 

Ku = A2 B2 = 0 , (22) 
B, B; o - f  

where Ai are m x m matrices, Bi are m x ml matrices (mr ~ m), u iEN  m and p, f c  Nm,, i = 1,2. 
If  A[-l(i = 1,2) is obtained then the system (22) becomes 

Bp = f ,  

where 

B = B~A~IBI + B~A~IB2. 

Thus we reduce the (2m + ml )-dimensional linear algebraic system to two m-dimensional systems 
and one m~-dimensional system. 

The matrices A = At, i = 1,2, obtained from the lowest-order mixed finite element approximation 
on rectangular grid are strictly diagonally dominant. For the above-mentioned matrices the Algorithm 
4.2 is applied. Numerical examples for a matrix A E ~16×16, for different values of  the relaxation 
parameter y are presented. 
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Table 1 

Connec t ion  be tween  e and ?. Here m = 16,  n = 24 

C o l u m n  Eucl idean norm M a x i m u m  norm 

n u m b e r  

c =0 .05  0.01 0.005 0.001 0.05 0.01 0.005 0.001 

1 1 0.9 0.6 0.2 0.5 0.1 1 1 

2 0.4 0.8 0.9 0.8 0.5 0.9 0.6 1 

3 1 0.8 0.8 0.9 0.5 I 0.3 0.1 

4 0.5 1 0.7 0.7 0.3 0.3 I 0.9 

5 0.9 0.5 0.9 0.9 1 I 0.9 0.8 

6 0.8 0.1 0.6 0.6 1 0.8 0.9 0.8 

7 0.5 0.1 0.9 0.9 0.8 0.4 0.9 I 

8 0.5 0.1 0.6 0.9 0.8 0.8 0.3 1 

9 0.5 0.1 0.6 0.6 0.6 1 1 0.2 

10 0.5 0.1 0.6 0.3 0.6 I 0.4 0.5 

11 0.5 0.1 0.6 0.3 0.5 0.1 I 0.5 

12 0.5 0.1 0.6 0.3 0.7 0.8 I 0.8 

13 0.5 0.1 0.6 0.3 1 1 0.4 0.9 

14 0.5 1 0.6 0.3 0.9 0.9 0.4 l 

15 1 0.1 0.8 0.9 1 1 1 0.4 

16 0.9 0.3 0.6 0.1 1 1 0.9 0.6 

The values 7i = i/lO(i = 1 . . . . .  10) of the parameter 7 for different columns of the matrix ~" are 
shown in Table 1. 

In general, matrices arising after the mixed finite element approximation are not strictly diagonally 
dominant, but the eigenvalues of the first order mixed finite element discretization lie in the unit 
circle. As a basic test example for applying Algorithm 4.3 a matrix A C ~7×7, which rows have a 
typical properties of these matrices, is used. In this case parameters bi (18) are 

(bl,b2, b3, b4, b5,b6,b7) = ( - 1 4 , - 1 0 , - 6 , 6 , - 6 , - 1 0 , - 1 4 ) .  

The size of the matrix is relatively small, because we just want to demonstrate how Algorithm 4.3 
works. Here we also have to mention that the computational complexity of the algorithm practically 
does not depend on the size of the matrix. In fact [7], the computational complexity of our algorithms 
depends linearly on the mean value of  the number of nonzero entries per row. This is very important, 
because it means that very large sparse matrices could be treated efficiently using the algorithms 
under consideration. 

During the numerical tests we compute the Frobenius norm (17) of the residual matrix. 
Some of the numerical results are shown in Figs. 1 - 8 and Table 2. In all figures the value of 

the Frobenius norm of  the residual matrix E is denoted by F.N., the number of realizations of the 
random variable (i.e., the number of random trajectories) is denoted by n and the value ~: is the 
parameter used in the stop-criterion (14). 

Fig. 1 presents the values of  the residual matrix (19) in both cases under consideration - -  coarse 
stop criterion ("o") and fine stop criterion ("+") .  The first set of connected points corresponds to 
values of  the first row of the residual matrix, the second set - -  to the second row of the same 
matrix, etc. When the coarse stop criterion is used e = 0.0001. When the fine stop criterion is 
used, different values c~ . . . . .  E 7 of e are applied such that the computational complexity is smaller 
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Fig. 1. Non-balanced case. 

0.08 

0.06 

0.04 

0.02 

-0.02 

-0.04 

-0.06 

n = 1000 
l l i i 

F.N. 0.07305 coarse s. c. -v~ 
F.N. 0.05654 fine s. c. -~--- 

f ~ ,.~ 

¥,, 

I I I I I 

5 10 15 20 25 
I I I I 

30 35 40 45 50 

Fig. 2. Balanced case. 
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Fig,  3. N o n c o n t r o l l e d  b a l a n c e .  
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Fig.  4. C o n t r o l l e d  b a l a n c e d .  
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Fig. 5. Coarse stop-criterion, n 400, ~; = O.0001, F.N. 0.13932. 
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Fig. 6. Use o f  different fine stop-criterion, n = 400, ~;'s 0.01, 0.0005, 0.00001, 0.000001, 0.0001, 0.0005, 0.01, F.N. 
0.10107. 

than in comparison with the case if  the coarse stop criterion (see, also Table 2). The values of  the 
Frobenius norm for both cases when the number o f  realizations n is equal to 400 are also given. For 
such number o f  realizations the stochastic error is relatively large in comparison with the systematic 
one. So, the results on Fig. 1 correspond to the non-balanced case. 

Similar results when n = 1000 and e = 0.001 (for the coarse stop criterion) are presented in Fig. 
2. One can see that 
• e is 10 times larger than in the previous case, but the Frobenius norm is about twice as small, 

because the number of  realizations is larger. 
The results presented in Figs. 1 and 2 show the statistical convergence of  the algorithm, i.e., the 

error decreases when n increases (even in the case when the parameter e increases). 
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Fig. 7. Control led ba lanc ing  - -  coarse stop criterion, n = 1000, c = 0.001, F.N. 0.07305.  
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Fig. 8. Control led ba lanc ing  - -  fine stop criterion, n = 1000, o 's  = 0.05, 0.002, 0 .002 ,0 .000001,0 .0003 ,  0.002, 0.05, F.N. 

0.05654.  

Table  2 

Computa t iona l  complex i ty  

7 Nonba lanced  case Balanced  case 

0.2 

0.4 

0.6 

0.8 

1 

Average  value  

Coarse  s.c. Fine s.c. Coarse  s.c. Fine s.c. 

Rc/Rf Rf /Rf Rc/Rf Rf / Rf 

.0806 

.0903 

.0832 

.0910 

.0862 

.0848 

1.0368 

1.0351 
1.0348 

1.0360 

1.0342 

1.0358 
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These results show how important it is to have a good balancing between the stochastic and 
systematic error. The computational effort for the cases presented in Figs. 1 and 2 is approximately 
equal, but the results in the case of  Fig. 2, when we have a good balancing are almost twice as 
good. 

Let us discuss the result presented in Figs. 3 and 4. Here instead of  elements of  the residual 
matrix E, the maximum norm of the every its row ]] EJ I1~, J = 1 , . . . ,m (16) are shown. If the 
computational complexity for a constant c is denoted by Rc and the computational complexity when 
different values of  c = ci, i = 1 . . . .  ,7, is denoted by Rr we consider the case when 

RC 
- - ~ > 1 .  
Rf 

The results presented in Figs. 3 and 4 show that apart from the less computational complexity 
Rf of  the fine stop criterion algorithm it gives better results than the coarse stop criterion algorithm 
with complexity Rc (see Table 2). This fact is observed in both cases - -  balanced (Fig 3) and 
nonbalanced (Fig. 4). 
• the variations of  the estimations are smaller when the balancing is better; 
• the Frobenius norm is smaller, when the control "row per row" is realized. 

Figs. 5 and 6 present test results for the modulus of  every element of  the residual matrix (19) 
when the coarse stop criterion and fine stop criterion, respectively, are used in the non-balanced 
case. The indices of  the rows and columns of  the matrix are shown on axes X and Y, respectively. 

One can see, that 
• the Frobenius norm of the estimate in the case of  fine stop criterion is about 1.4 times smaller 

than the corresponding value for the coarse stop criterion, and 
• the variances of  the estimate of  the case of  fine stop criterion are smaller. 

Figs. 7 and 8 show results similar to those of  Figs. 5 and 6 in the balanced case. One can make 
the same conclusion as in the nonbalanced case, but here 
• the Frobenius norm is almost twice as small. 

6. Conclusion 

Iterative Monte Carlo algorithms are presented and studied. These algorithms can be used for 
solving inverse matrix problems. 

The following conclusion can be drawn: 
• Every element of  the inverse matrix A-t can be evaluated independently from the other elements 

(this illustrates the inherent parallelism of  the algorithms under consideration), 
• Parallel computations of  every column of  the inverse matrix A-  1 with different iterative procedures 

can be realized, 
• It is possible to improve the algorithm using error estimate criterion "column by column", as well 

as "row by row". 
• The balancing of  errors (both, systematic and stochastic) allows to increase the accuracy of  the 

solution if the computational effort is fixed or to reduce the computational complexity if the error 
is fixed. 
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The  studied a lgor i thm is easi ly p rog ra m m a b l e  and paral lel izable and can be efficiently implemented  

on M I M D - m a c h i n e s .  
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