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Abstract

In complex systems with many degrees of freedom such as spin glass and biomolecular systems, conventional simulations in canonical
ensemble suffer from the quasi-ergodicity problem. A simulation in generalized ensemble performs a random walk in potential energy
space and overcomes this difficulty. From only one simulation run, one can obtain canonical ensemble averages of physical quantities
as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review the
generalized ensemble algorithms. Three well-known methods, nhamely, multicanonical algorithm (MUCA), simulated tempering (ST), and
replica-exchange method (REM), are described first. Both Monte Carlo (MC) and molecular dynamics (MD) versions of the algorithms
are given. We then present five new generalized-ensemble algorithms which are extensions of the above methods.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction energy in a single simulation run, one can obtain not only the
global-minimum-energy state but also canonical-ensemble
Since the pioneering work of Metropolis et fl] half a averages as functions of temperature by the single-histogram
century ago, computer simulations have been indispensablg9] and/or multiple-histogran{10,11] reweighting tech-
means of research in many fields of physical science. In niques (an extension of the multiple-histogram method is
the field of molecular science, for instance, a number of also referred to as weighted histogram analysis method
powerful simulation algorithms have been developed (for (WHAM) [11]). Besides generalized-ensemble algorithms,
reviews see, e.g., Ref—4]). which are usually based on local updates, methods based
Canonical fixed temperature simulations of complex on non-local updates such as cluster algorithms and their
systems such as spin glasses and biopolymers are greatlgeneralizations have also been widely ufEti-14] In this
hampered by the multiple-minima problem, or the quasi- article, we focus our discussion on generalized-ensemble
ergodicity problem. Because simulations at low temper- algorithms.
atures tend to get trapped in one of huge number of One of the most well-known generalized-ensemble meth-
local-minimum-energy states, it is very difficult to obtain ods is perhapsnulticanonical algorithm (MUCA) [15,16]
accurate canonical distributions at low temperatures by con-(for a review see, e.g., Refl7]). (The method is also
ventional Monte Carlo (MC) and molecular dynamics (MD) referred to asentropic sampling [18], adaptive umbrella
methods. One way to overcome this multiple-minima prob- sampling [19] of the potential energy [20], random walk
lem is to perform a simulation in generalized ensemble algorithm [21,22], anddensity of states Monte Carlo [23].
where each state is weighted by an artificial, non-Boltzmann MUCA can also be considered as a sophisticated, ideal re-
probability weight factor so that a random walk in potential alization of a class of algorithms callesnbrella sampling
energy space may be realized (for reviews see, e.g., Refs[24]. Also closely related methods ateansition matrix
[5-8]). The random walk allows the simulation to escape methods reviewed in Refs[8,25].) MUCA and its general-
from any energy barrier and to sample much wider configu- izations have been applied to spin systems (see, e.g., Refs.
rational space than by conventional methods. Monitoring the [26—30). MUCA was also introduced to the molecular sim-
ulation field[31]. Since then MUCA and its generalizations
E-mail address: okamotoy@ims.ac.jp (Y. Okamoto). have been extensively used in many applications in protein
URL: http://konf2.ims.ac.jp. and related systenf82—60] Molecular dynamics version of
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MUCA has also been develop§8B,41,20](see also Refs.  example is theeplica-exchange multicanonical algorithm
[38,61] for Langevin dynamics version). MUCA has been (REMUCA)[83,88] In REMUCA, a short replica-exchange
extended so that flat distributions in other parameters insteadsimulation is performed, and the multicanonical weight fac-
of potential energy may be obtaingd7,28,37,42,44,59] tor is determined by the multiple-histogram reweighting
Moreover, multidimensional (or multicomponent) exten- technique$10,11] Another example of such a combination

sions of MUCA can be found in Ref§37,42,43,60] is the replica-exchange simulated tempering (REST) [84].
While a simulation in multicanonical ensemble performs In REST, a short replica-exchange simulation is performed,

a free 1D random walk in potential energy space, thaitin and the simulated tempering weight factor is determined by

ulated tempering (ST) [62,63] (the method is also referred  the multiple-histogram reweighting techniqyé®,11]

to as themethod of expanded ensemble [62]) performs a free We have introduced two further extensions of REM,

random walk in temperature space (for a review, see, e.g.,which we refer to asmulticanonical replica-exchange
Ref. [64]). This random walk, in turn, induces a random method (MUCAREM) [83,88](see also Ref$107,108) and
walk in potential energy space and allows the simulation to simulated tempering replica-exchange method (STREM)
escape from states of energy local minima. ST has also beerf109]. In MUCAREM, a replica-exchange simulation
applied to protein folding probler$5,39,40,66] is performed with a small number of replicas each in
The generalized-ensemble algorithm is powerful, but in multicanonical-ensemble of different energy ranges. In
the above two methods the probability weight factors are not STREM, on the other hand, a replica-exchange simulation
a priori known and have to be determined by iterations of is performed with a small number of replicas in “simulated
short trial simulations. This process can be non-trivial and tempering” ensemble of diffierent temperature ranges.
very tedius for complex systems with many degreees of free-  Finally, one is naturally led to a multidimensional (or,
dom. Therefore, there have been attempts to accelerate thenultivariable) extension of REM, which we refer to rmal-
convergence of the iterative process for MUCA weight fac- tidimensional replica-exhcange method (MREM) [82] (see
tor determinatiorj20,26,37,67-69{see also Ref§17,70). also Refs[93,106,110,113] Special realizations of MREM
In thereplica-exchange method (REM) [71-73] the diffi- arereplica-exchange free energy perturbation (REFEP)[82]
culty of weight factor determination is greatly alleviated. (A and replica-exchange umbrella sampling (REUS)[82] and
closely related method was independently developed in Ref.they are particularly useful in free energy calculations.
[74]. Similar methods in which the same equations are used In this article, we describe the eight generalized-ensemble
but emphasis is laid on optimizations have been developedalgorithms mentioned above. Namely, we first review three
[75,76] REM is also referred to aswultiple Markov chain familiar methods: MUCA, ST, and REM. We then present
method [77] andparallel tempering [64]. Details of literature the five new algorithms: REMUCA, REST, MUCAREM,
about REM and related algorithms can be found in recent STREM, and MREM (and REFEP and REUS).
reviews[6,78].) In this method, a number of non-interacting
copies (or replicas) of the original system at different tem-
peratures are simulated independently and simultaneously2. Generalized-ensemble algorithms
by the conventional MC or MD method. Every few steps,
pairs of replicas are exchanged with a specified transition 2.1. Multicanonical algorithm and simulated tempering
probability. The weight factor is just the product of Boltz-
mann factors, and so it is essentially known. Let us consider a system of atoms of massr, (k =
REM has already been used in many applications in pro- 1, ..., N) with their coordinate vectors and momentum vec-
tein systemg79,80,66,81-91]Other molecular simulation  tors denoted by = {g;, coogqyyandp = {pg, ..., pyl,
fields have also been studied by this method in various respectively. The Hamiltonia#(g, p) of the system is the
ensembleg§92-97] Moreover, REM was applied to clus-  sum of the kinetic energi(p) and the potential enerdy(q):
ter studies in quantum chemistry figl@8]. The details of
molecular dynamics algorithm have been worked out for (4- P) = K(p) + E(q). (1)
REM in Ref.[80] (see also Ref$79,95). Thisledto awide  \yhere
application of replica-exchange molecular dynamics method N o
in the protein folding problenfo9-106] K(p) = Zi 2
However, REM also has a computational difficulty: As the 2my
number of degrees of freedom of the system increases, the
required number of replicas also greatly increases, whereas In the canonical ensemble at temperatir@ach state
only a single replica is simulated in MUCA or ST. This de- x = (g, p) with the HamiltonianH(q, p) is weighted by the
mands a lot of computer power for complex systems. Our Boltzmann factor:
solution to 'this problem is: Use REM for the ngght factor We(x; T) = exp(—BH(q, p)), 3)
determinations of MUCA or ST, which is much simpler than
previous iterative methods of weight determinations, and where the inverse temperatugeis defined byg = 1/kgT
then perform a long MUCA or ST production run. The first (kg is the Boltzmann constant). The average kinetic energy

k=1
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at temperaturd is then given by more widely than the conventional canonical MC or MD
N o 3 methods.
Py The definition inEq. (9) implies that the multicanoni-
K = — ) ==NkgT. 4
(Kpnr <];2mk> ke @) cal weight factor is inversely proportional to the density of

states, and we can write it as follows:
Because the coordinatgsand momenta are decoupled
in Eq. (1) we can suppress the kinetic energy part and can Winu(E) = expl—foEmu(E: To)] = n(E)’
write the Boltzmann factor as

(10)

where we have chosen an arbitrary reference temperature,

Wg(x; T) = Wg(E; T) = exp(—BE). (5) To = 1/kgBo, and the multicanonical potential energy” is
_ S _ defined by
The cgnonlcal probablhty distribution of potent|all eneRy Emu(E: To) = kaToln n(E) = ToS(E). (11)
(E; T) is then given by the product of the density of states
n(E) and the Boltzmann weight facta¥s (E; T): Here, SE) is the entropy in the microcanonical ensemble.

Since the density of states of the system is usually unknown,
the multicanonical weight factor has to be determined nu-
merically by iterations of short preliminary rufis5,16]

A multicanonical Monte Carlo simulation is performed,
for instance, with the usual Metropolis criterigh]: The
transition probability of state with potential energyE to
statex’ with potential energye’ is given by

Pe(E;T) xn(EYWs(E; T). (6)

Sincen(E) is a rapidly increasing function and the Boltz-
mann factor decreases exponentially, the canonical ensem-
ble yields a bell-shaped distribution which has a maximum
around the average energy at temperaflirdhe conven-
tional MC or MD simulations at constant temperature are
expected to yieldPg(E; T). A MC simulation based on the , Wmu(E') n(E)
Metropolis algorithm[1] is performed with the following wlx > x) = min <1’ Wmu(E)) - mm( ’ n(E’)>
transition probability from a state of potential energye = min(L, exp(—BoA Emu)), (12)
to a statex' of potential energy’”:

where
w(x — ¥) = min (1, YeE:T) AEmu = Emu(E'; To) — Emu(E: To). (13)
" We(E; T) . . . . .
_ , The molecular dynamics algorithm in multicanonical ensem-
= min(1, exp[-B(E" — E)]). (7)

ble also naturally follows fronkq. (10) in which the regular
constant temperature molecular dynamics simulation (with
T = To) is performed by solving the following modified
Newton equation instead &fq. (8) [38,41]

A MD simulation, on the other hand, is based on the fol-
lowing Newton equation:

: OE AEmu(E: To)  9Emu(E: To)

pk:__—fk’ (8) . mult, 10 _ mul £, ) 14
gy Py 3q; £y S (14)

where f is the force acting on thiethatom g = 1..., N). FromEg. (11)this equation can be rewritten as

This equation actually yields the microcanonical ensemble, To

and we have to add a thermostat such as Nosé—HoovePx = ﬁf ko (15)

algorithm [112,113] and the constraint method 14,115]

in order to obtain the canonical ensemble. However, in

practice, it is very difficult to obtain accurate canonical

distributions of complex systems at low temperatures by 9S(E) 1 (16)

conventional MC or MD simulation methods. This is be-  9E [;_p_ T T(El)’

cause simulations at low temperatures tend to get trapped .

in one or a few of local-minimum-energy states. with
In the multicanonical ensemb]&5,16), on the other hand,  Ea = (E)7(£,)- a7

each state is weighted by a non-Boltzmann weight factor

Wmu(E) (which we refer to as thenulticanonical weight

factor) so that a uniform potential energy distributiBg(E)

is obtained:

where the following thermodynamic relation gives the defi-
nition of the “effective temperaturer(E):

If the exact multicanonical weight factoWmy(E) is
known, one can calculate the ensemble averages of any
physical quantityA at any temperaturd(= 1/kgB) as
follows:

> AE)PR(E:T) ) A(E)n(E)exp(—BE)
The flat distribution implies that a free random walk in the (), = E _ £
potential energy space is realized in this ensemble. This > Pe(E;T) > " n(E) exp(—pE)
allows the simulation to escape from any local minimum- E E

energy states and to sample the configurational space much (18)

Pmu(E) « n(E)Wmu(E) = constant (9)




428

where the density of states is given by (& (10)

(19)

The summation instead of integration is usecEiq. (18)
because we often discretize the potential en&rgyith step
sizes (E = E;; i = 1,2,...). Here, the explicit form of
the physical quantityA should be known as a function of
potential energye. For instanceA(E) = E gives the aver-
age potential energdE)r as a function of temperature, and
A(E) = B2(E — (E)7)? gives specific heat.

In general, the multicanonical weight factét,u(E), or
the density of states(E), is not a priori known, and one
needs its estimator for a numerical simulation. This estimator
is usually obtained from iterations of short trial multicanon-

ical simulations. The details of this process are described,

for instance, in Refd26,34] However, the iterative process
can be non-trivial and very tedius for complex systems.

In practice, itis impossible to obtain the ideal multicanon-
ical weight factor with completely uniform potential energy
distribution. The question is when to stop the iteration for the
weight factor determination. Our criterion for a satisfactory
weight factor is that as long as we do get a random walk in
potential energy space, the probability distributigqy(E)
does not have to be completely flat with a tolerance of, say,

an order of magnitude deviation. In such a case, we usually

perform with this weight factor a multicanonical simulation
with high statistics (production run) in order to get even
better estimate of the density of states. Ngty(E) be the
histogram of potential energy distributid®y, (E) obtained

by this production run. The best estimate of the density of

states can then be given by the single-histogram reweighting

techniqueg9] as follows (see the proportionality relation in
Eqg. (9):
 Nmu(E)

ME) = B

(20)

By substituting this quantity int&q. (18) one can calculate
ensemble averages of physical quankif) as a function of
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Egs. (18) and (21dr any other equations which involve
summations of exponential functions often encounter with
numerical difficulties such as overflows. These can be
overcome by using, for instance, the following equation
[116,117] ForC = A+ B (with A > 0 andB > 0) we have

min(A, B)

max(A, B))] ’
= max(In A, In B) + In{1 4+ exp[min(in A, In B)

—max(In A, In B)]}.

InC =1In |:max(A, B) <1+

(22)

We now briefly review the originadimulated tempering
(ST) method[62,63] In this method temperature itself be-
comes a dynamical variable, and both the configuration and
the temperature are updated during the simulation with a
weight:

WsT(E; T) = exp(—BE + a(T)), (23)
where the functiora(T) is chosen so that the probability
distribution of temperature is flat:

Pst(T) = /dEn(E)WST(E; T)
= /dEn(E) exp(—BE + a(T)) = constant (24)

Hence, in simulated tempering tiemperature is sampled
uniformly. A free random walk in temperature space is real-
ized, which in turn induces a random walk in potential en-
ergy space and allows the simulation to escape from states
of energy local minima.

In the numerical work we discretize the temperatur®iin
different valuesT,, im = 1, ..., M). Without loss of gener-
ality we can order the temperature so thiat< 7> < ... <
Ty . The lowest temperatu® should be sufficiently low so
that the simulation can explore the global-minimum-energy
region, and the highest temperatilifg should be sufficiently
high so that no trapping in an energy-local-minimum state
occurs. The probability weight factor iBg. (23)is now

temperature. Moreover, ensemble averages of any physicalwritten as

guantityA (including those that cannot be expressed as func-
tions of potential energy) at any temperatdte= 1/kgp)

can now be obtained as long as one stores the “trajectory”

of configurations (and\) from the production run. Namely,
we have

no
3 AG) Wik (E(x(k))) expl-BE(x(k))]

(A)r = =

m . (21
Y Wni(E(x(k))) expl-BE(x(E))]

k=1
wherex(K) is the configuration at thieth MC (or MD) step
and ng is the total number of configurations stored. Note

that whenA is a function ofE, Eq. (21)reduces tdeq. (18)
where the density of states is given By. (20)

Wst(E; Tn) = eXp(—Bm E + am), (25)

wherea,, = a(T,,) (m = 1..., M). Note that fromEgs. (24)
and (25)we have

exp(—an) « /dEn(E) exp(—Bm E). (26)
The parameters,, are therefore “dimensionless” Helmholtz
free energy at temperatufeg, (i.e., the inverse temperature
B, multiplied by the Helmholtz free energy). We remark
that the density of stategE) (and hence, the multicanonical
weight factor) and the simulated tempering weight parame-
tersa,, are related by a Laplace transfof@®]. The knowl-

edge of one implies that of the other, although in numerical
work the inverse Laplace transformBf]. (26)is nontrivial.
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Once the parameteas, are determined and the initial con- M 3
figuration and the initial temperatuf, are chosen, a sim- Y 8u Nu(E)
ulated tempering simulation is then realized by alternately () — m=1 (30)
7 ;

performing the following two step62,63} Zg;lnm eXpfir — B E)

m=1

1. A canonical MC or MD simulation at the fixed temper-

atureT,, (based orEgs. (7) or (8) is carried out for a
certain steps. where we have for each(=1, ..., M)

2. The temperatur€,, is updated to the neighboring values

T,,+1 With the configuration fixed. The transition prob- exXp(—fm) = Z”(E) exp(—pnE). (31)

ability of this temperature-updating process is given by E

the Metropolis criterion (sekEq. (25): Here,g,, = 1+ 21, andt,, is the integrated autocorrelation
time at temperaturd@,,. For many systems the quantity,

w(T,,, — Tu+1) = Min(d, exp(—A)), (27) can safely be set to be a constant in the reweighting formulae
[11], and so we usually set, = 1.

where Note thatEgs. (30) and (31are solved self-consistently
by iteration[10,11]to obtain the density of state$E) and

A= Bt — Bn)E — @ms1 — am). (28) the dimensionless Helmholtz free enerfgy Namely, we

can set all thé,, (m = 1..., M) to, e.g., zero initially. We
then useEq. (30)to obtainn(E), which is substituted into
Note that in Step 2 we exchange only pairs of neighboring Eq. (31)to obtain next values df,, and so on.
temperatures in order to secure sufficiently large acceptance Moreover, ensemble averages of any physical quaatity
ratio of temperature updates. (including those that cannot be expressed as functions of
As in multicanonical algorithm, the simulated tempering potentia| energy) at any temperatufe= 1/kgf8) can now
parametersy, = a(T,) (m = 1,..., M) are also deter-  pe obtained from the “trajectory” of configurations of the
mined by iterations of short trial simulations (see, e.g., Refs. production run. Namely, we first obtafp (m =1, ..., M)

[40,64,65]for details). This process can be non-trivial and by solvingEgs. (30) and (313elf-consistently, and then we
very tedius for complex systems. have[88]

M ny M
D> Ao (k) (gml/ (Zgg_lnzeXP[fe — BeE(xm (k))])) expl=BE (xn (k)]

m=1k=1 =1

M ny M
> (gml/ <Zg@lne explfe — BeE(xn <k)>]>) expl—BE(xn ())]

m=1k=1 =1

(A)r =

: (32)

wherex,, (k) (k =1, ..., n,) are the configurations obtai-
After the optimal simulated tempering weight factor is ned at temperaturg,,.

determined, one performs a long simulated tempering run

once. The canonical expectation value of a physical quantity 2.2. Replica-

A at temperaturd,, (m = 1, ..., M) can be calculated by

the usual arithmetic mean as follows:

exchange method

The replica-exchange method (REM) [71-73] was de-
veloped as an extension of simulated tempefiflj (thus

(A, = iZA(xm(k)), (29) it is also referred to aparallel tempering [64]) (see, e.g.,
) Ref. [80] for a detailed description of the algorithm). The

system for REM consists d¥l non-interacting copies (or,
wherex,, (k) (k = 1, ..., n,) are the configurations obtained replicas) of the original system in the canonical ensemble

at temperaturd,, andn,, is the total number of measure- at M different temperature3,, (m = 1,..., M). We ar-
ments made al’ = T,,. The expectation value at any in- range the replicas so that there is always exactly one replica
termediate temperature can also be obtained fEgmn(18) at each temperature. Then there exists a one-to-one corre-

where the density of states is given by the multiple-histogram spondence between replicas and temperatures; the ilabel
reweighting techniqug40,11]as follows. LeiN,, (E) andn,, (i=1,..., M) for replicas is a permutation of the lab®l

be respectively the potential-energy histogram and the total(m = 1, ..., M) for temperatures, and vice versa:
number of samples obtained at temperatlijye= 1/kg S o .
(m = 1,..., M). The best estimate of the density of states ] ¢ =i(m) = fim), 33)

is then given by{10,11] m=m@) = f710),
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wheref(m) is a permutation function af andf~(i) is its
inverse. ,
Let X = {x[l(l)] ,xE{,I(M)]} = {xm ERERE XEHMJ]VI
for a “state” in this generalized ensemble. Eac
x is specified by the coordinate§! and momental® of
N atoms in replica at temperaturd,,:

0 = (g1, pliy,,.

} stand

(34)

Because the replicas are non-interacting, the weight factor

for the stateX in this generalized ensemble is given by the
product of Boltzmann factors for each replica (or at each
temperature):

M " "
= [ [expt—Buma H(g™, pih)}

i=1

WrRem(X)

M
= [ [expl—BnH(g" ™", plit™l))

m=1
pih) ]

= exp{
M . .
= expi—Zﬂm H(g"™, p['("’”)} :
m=1
where i(m) and m(i) are the permutation functions in
Eqg. (33)
We now consider exchanging a pair of replicas in the
generalized ensemble. Suppose we exchange replaras
j which are at temperaturds, andT,,, respectively:

M I
_Zlgm(i) H(q[l] ,

i=1

(35)

[
LX)

X=1{..
X’:{...,x%],,...,xg]/,...}.

,xL{],... 1=

(36)

Here,i, j, m, andn are related by the permutation functions
in Eq. (33) and the exchange of replicas introduces a new

permutation functior’:

i = flm)— j=f'(m),
jo=fm) —i=fm.

The exchange of replicas can be written in more detail as
= (gl pliy,,
1 = (g, pli),

37)

i XE;{] = (q[j], P[j]/)m, (38)

= 1 = (g, pll'y,,

where the definitions fopl" and pl1" will be given below.

We remark that this process is equivalent to exchanging
a pair of temperature3,, and T, for the corresponding
replicasi andj as follows:

= (g, pi),,
41 = (g, pl,

N x[i]’ = (gl plly,,
(q[]] p[J])

In the original implementation of the replica-exchange
method[71-73] Monte Carlo algorithm was used, and only
the coordinateg| (and the potential energy functide(q))

(39)

—))C

“substate”

where in the second expression (i.e(x! |x,[,’

Y. Okamoto/ Journal of Molecular Graphics and Modelling 22 (2004) 425439

rithm, on the other hand, we also have to deal with the mo-
mentap. We proposed the following momentum assignment
in Eq. (38)(and inEg. (39) [80]:

4, T, .

[ = /27 0
p TmP )

O T .

= /2™ i
P =y Tnl? )

which we believe is the simplest and the most natural. This
assignment means that we just rescale uniformly the veloci-
ties of all the atoms in the replicas by the square root of the
ratio of the two temperatures so that the temperature condi-
tion in Eq. (4) may be satisfied.

In order for this exchange process to converge towards an
equilibrium distribution, it is sufficient to impose the detailed
balance condition on the transition probabilityX — X'):

Wrem(X) Wrem(X')
V4

whereZ is the partition function of the entire system. From
Egs. (1), (2), (35), (40) and (4,1yve have

wX — X
w(X' — X)
= expl—pulK () + E@] — pulK () + E@)]
+Bu[K(p) + E@M] + B.[K (P + E@D]},

= exp{ ﬂm—K<p[ﬂ> — Bu —K(p[']) + BuK(pl)

(40)

wX - X)) = wX — X), (41)

I‘l

+B. K(plhy — ﬂm[E(q["]) — E(g']

—Bul E(gl) — E(q“h]} ,

= exp(—A4), (42)
where

A = Bu(E@) — E(g™) — Bu(E(@) — E(qT))  (43)

= (B — B)(E(@) — E(gl)), (44)

andi, j, m, andn are related by the permutation functions
in Eqg. (33)before the exchange:

{i= fim),
j= fn).

This can be satisfied, for instance, by the usual Metropolis
criterion[1]:

w(X — X') = wilx1) = min(1, exp(—4)),

(45)

(46)

'])) we ex-
plicitly wrote the pair of replicas (and temperatures) to be
exchanged. Note that this is exactly the same criterion that

was originally derived for Monte Carlo algorithfiil—73]

Without loss of generality we can again assufe <
T < ... < Ty. A simulation of the replica-exchange
method[71-73] is then realized by alternately performing

had to be taken into account. In molecular dynamics algo- the following two steps:
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1. Each replica in canonical ensemble of the fixed temper- 2.3. Replica-exchange multicanonical algorithm and
ature is simulatedimultaneously andindependently for replica-exchange simulated tempering
a certain MC or MD steps.

2. A pair of replicas at neighboring temperatures, say The replica-exchange multicanonical algorithm (RE-

K and x,[,{]Jrl, are exchanged with the probability MUCA) [83,88] overcomes both the difficulties of
w(x%]|x,[¢{]+1) in Eq. (46) MUCA gthe multicanonical weight factor determirllatio.n is
non-trivial) and REM (a lot of replicas, or computation time,

Note that in Step 2 we exchange only pairs of replicas cor- s required). In REMUCA we first perform a short REM
responding to neighboring temperatures, because the accepsimulation (withM replicas) to determine the multicanoni-
tance ratio of the exchange process decreases exponentiallga| weight factor and then perform with this weight factor
with the difference of the twg's (seeEgs. (44) and (49) a regular multicanonical simulation with high statistics.
Note also that whenever a replica exchange is accepted inThe first step is accomplished by the multiple-histogram
Step 2, the permutation functions liig. (33)are updated. reweighting techniquefl0,11] Let N,,(E) andn,, be re-

The REM simulation is particularly suitable for parallel spectively the potential-energy histogram and the total
computers. Because one can minimize the amount of infor- number of Samp|es obtained at temperaffjjé= 1/k813m)
mation exchanged among nodes, it is best to assign eachpf the REM run. The density of state¢E) is then given by
replica to each node (exchanging pairs of temperature valuessolving Egs. (30) and (313elf-consistently by iteration.
among nodes is much faster than exchanging coordinates Once the estimate of the density of states is obtained,
and momenta). This means that we keep track of the permu-the multicanonical weight factor can be directly determined
tation functionm(i; 1) = f~1(i; 1) in Eq. (33)as a function  from Eq. (10)(see alscEq. (11). Actually, the density of
of MC or MD stept during the simulation. After parallel  statesn(E) and the multicanonical potential ener@(E;
canonical MC or MD simulations for a certain steps (Step 1), thus determined are only reliable in the following range:
1), M/2 pairs of replicas corresponding to neighboring tem-
peratures are simulateneously exchanged (Step 2), and thd1 = E = En, (47)
pairing is alternated between the two possible choices, i.e.
(T1, T2), (T3, Ty), . ..-and (I, T3), (14, Ts), . . ..

The major advantage of REM over other generalized- { Ey=(E)n, (48)
ensemble methods such as multicanonical algor[ttByi6] Ev= (E)ry,
and simulated temperin2,63] lies in the fact that the  angT; andT), are respectively the lowest and the highest
weight factor is a priori known (se&qg. (35), while in the temperatures used in the REM run. Outside this range we
extrapolate the multicanonical potential energy linedB8]

where

0Emu(E; Tt
M (E — E1) + Emu(E1; Tp), for E < E1,
BE E=E;
SET?E,(E) =\ Emu(E; To), forEy < E < En, (49)
0Emu(E; Tt
mu( 0) (E— Epy) + Emu(Ep; To), fOorE > Epy
oE E=Ey

latter algorithms the determination of the weight factors can ~ The multicanonical MC and MD runs are then performed
be very tedius and time-consuming. A random walk in “tem- respectively with the Metropolis criterion dfq. (12) and
perature space” is realized for each replica, which in turn with the modified Newton equation i&g. (14) in which
induces a random walk in potential energy space. This alle- eé?fj(E) in Eq. (49)is substituted intaEmu(E; Tp). We ex-
viates the problem of getting trapped in states of energy local pect to obtain a flat potential energy distribution in the

minima. In REM, however, the number of required replicas range ofEq. (47) Finally, the results are analyzed by the

increases as the system siténcreases (according t@gN) single-histogram reweighting techniques as describé&atjin
[71]. This demands a lot of computer power for complex (20) (andEq. (18).
systems. Some remarks are now in order. Frdags. (11), (16),

(17), and (48)Eq. (49)becomes
To To
F(E — E1) + ToS(E1) = ?E + constant forE < E1 = (E)py,
1 1
EU(E) = | ToS(E), for E1 < E < Ey. (50)

T Tt
—O(E — Epy) 4+ ToS(Ty) = —OE+ constant forE > Ey = (E)r,,.
TM TM
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The Newton equation ifeq. (14)is then written as (see We finally present the new method which we refer to as
Egs. (15)—(17) the replica-exchange simulated tempering (REST)[84]. In
To this method, just as in REMUCA, we first perform a short
ka, forE < Eq, REM simulation (withM replicas) to determine the simu-
L lated tempering weight factor and then perform with this
by = To fi. forEi < E < Ey, (51) weight factor a regular ST simulation with high statistics.
I(E) The first step is accomplished by the multiple-histogram

reweighting techniquefl0,11], which give the dimension-
less Helmholtz free enerdy, (seeEgs. (30) and (33)
Once the estimate of the dimensionless Helmholtz free

) X energyf,, are obtained, the simulated tempering weight fac-
tential energyE enters in the Boltzmann factor (sg. (5)), tor can be directly determined by usifg. (25)where we

a rescaling of the potential energy (or'force) by a constant, seta,, = f, (compareEq. (26)with Eq. (31). A long sim-
saya, can be considered as the res%?llng of the temperature e tempering run is then performed with this weight fac-
by 1/ [38,95] Hence, our choice afini(E) in Eq. (49)re- tor. LetN,,(E) andn,, be respectively the potential-energy
sults in a canonical simulation &t = 7 for £ < E1, @ hjstogram and the total number of samples obtained at
multhanonlpal simulation foE1 < E < Ej, and a canon- temperaturel,, (= 1/kgpBy)) from this simulated temper-
ical simulation atl" = Ty for E > Ej. Note also that the  jng run. The multiple-histogram reweighting techniques of
above arguments are independent of the valuipand we  Eqs. (30) and (313an be used again to obtain the best es-
will get the same results, regardless of its value. timate of the density of state¥E). The expectation value

For Monte Carlo method, the above statement follows ; ; ;
. A ' . . of a physical quantityA at any temperatur@(= 1/kgp) is
directly from the following equation. Namely, our choice then calculated fronkq. (18)

of the multicanonical potential energy ky. (49)gives (by

Tt
—Ofk, forE > Ey.
Ty

Because only the product of inverse temperagignd po-

substitutingEq. (50)into Eq. (10) The formulations of REMUCA and REST are simple and
straightforward, but the numerical improvement is great, be-

Winu(E) = expl—Bosm(E)] cause the weight factor determination for MUCA and ST
exp(—B1E + constant, for E < Eq, becomes very difficult by the usual iterative processes for

complex systems.

= 1 forE1 <E<E
- n(E) ) 1= = M
exp(—Bu E + constant, for E > Ey,. 2.4. Multicanonical replica-exchange method and

(52) simulated tempering replica-exchange method

We now present another effective method of the mul-

. . ; o ) ) In the previous subsection we presented REMUCA, which
ticanonical weight factor determinatiofir], which is

losel lated REMUCA. We ; h uses a short REM run for the determination of the multi-

;(ésl\ﬂey_re ?t? to . REMUCAe '?t pler (I)rm a short canonical weight factor. Here, we present two modifications
simu ation as in ; and caicu at(eE)T as of REM and refer to the new methods asilticanonical

a function of T by the multiple-histogram reweighting replica-exchange method (MUCAREM) [83,88] and simu-

technique; (sekgs. (30) and (3)) Let us recall Fhe New- lated tempering replica-exchange method (STREM) [109].
ton equation ofEq. (15)and the thermodynamic relation In MUCAREM the production run is a REM simulation

of Egs. (16) and (17) The effective temperaturd@(E), with a few replicas not in the canonical ensemble but in

or the denvatlve(_aEmu(E; TO)/‘?E)’ can be numerically the multicanonical ensemble, i.e., different replicas perform
obtained as the inverse funcyon 6. (17) where the MUCA simulations with different energy ranges. Likewise
average(E)r(r) has been obta!ned f_rom the results_ of.the in STREM the production run is a REM simulation with
REM .S|mulat|pn by the 'mullt|ple-h|stogr.am reyvelghtlng a few replicas that performs ST simulations with different
t_echmques. Given its denvahye, the mult|ca_non|_cal pote_:n- temperature ranges. While MUCA and ST simulations are
tial energy can then be obtained by numerical integration usually based on local updates, a replica-exchange process
(seekqs. (11) and (16) [7] can be considered to be a global update, and global updates
E3S(E) E dE enhance the sampling further.
Emu(E; To) = TO/ —g 9E= TO/ T(E) (53) We first describe MUCAREM. LetM be the number of

£ £ replicas. Here, each replica is in one-to-one correspondence
We remark that the same equation was used to obtain thenot with temperature but with multicanonical weight factors
multicanonical weight factor in Ref68], where(E)r was of different energy range. Note that because multicanonical
estimated by simulated annealing instead of REM. Essen-simulations cover much wider energy ranges than regular
tially the same formulation was also recently used in Ref. canonical simulations, the number of required replicas for
[58] to obtain the multicanonical potential energy, where the production run of MUCAREM is much less than that
(E)r was calculated by conventional canonical simulations. for the regular REM M <« M).
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The weight factor for this generalized ensemble is now
given by (seeEq. (35)

HW{m i)} (E(x,[;](l)))

Wmucarem (X) =

= [Twi o), (54)
m=1

where we prepare the multicanonical weight factor (and the

density of states) separately farregions (seéq. (10):

1

ntm (Ed))
(55)

wim (EdD)) = expl—Bnem (EGlD)) =

Here, we have introduced arbitrary reference tempera-
turesT,, = 1/kgBn (m = 1,..., M), but the final results
will be independent of the values ®f,, as one can see from
the second equality iRq. (55)(these arbitrary temperatures
are necessary only for MD simulations).

Each multicanonical weight factd#, {m}(E) or the den-
sity of states"™}(E), is defined as follows. For each(m =

., M), we assign a pair of temperaturéq{”(}, T,ﬂ’"}).

Here, we assume tha}”"! < 7,\") and arrange the temper-
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S X ={..a ..,fol]H, ... }. The transition prob-
ability of thls replica exchange is given by the Metropolis
criterion:

w(X — X') = min(1, exp(—A)), (58)

where we now have (sdeq. (43) [83]

A = Buleml (E(gD)) — eiml (E(g)))
—Buiatemi HE@) — e (E@M))). (59)

Here, E(gll) and E(¢l!) are the potential energy of the
i-th replica and thg-th replica, respectively. Note that in
Eqg. (59)we need to newly evaluate the multicanonical po-
tentlal energy,e{’"}(E(q[J])) and £ (E(gl1)), because
emu(E) ands (E) are, in general, different functions for

In this algorithm, them-th multicanonical ensemble actu-
ally results in a canonical simulation &t= T,f’”} for £ <
E™, a multicanonical simulation foE!™ < E < EI,
and a canonical simulation &= 7,\"} for £ > E{}", while
the replica-exchange process samples states of the whole
energy rangel({l_l} <E< ELM}).

For obtaining the canonical distributions at any inter-
mediate temperatur€, the multiple-histogram reweighting

atures so that the neighboring regions covered by the pairstechniqueg10,11] are again used. Le¥,,(E) andn,, be

have sufficient overlaps. Without loss of generality we can

assumeli¥ < ... < 1" and M < ... < TU. We de-
fine the following quantities:
E{"™ = (E) i,
) (56)
EH =<E>T|S|m}’ (m=19~-'7l'l“)'

Suppose that the multicanonical weight factu;u(E) (or
equivalently, the multicanonical potential enefgy,(E; To)
in Eq. (11) has been obtained as in REMUCA or by any
other methods in the entire energy range of mterEé][} (<
E < E,{f}). We then have foreaan(m = 1, ..., u) the fol-
lowing multicanonical potential energies (deg. (49): [83]

0E E; T,
EmulE; Tm) (E — EM™) + Emu(EM™: T,
oE E=piml
— L
et (E) = | Emu(E: Tp).
E E; T,
mu( m) (E E{m})+Emu(E m} . T )
oE Eepim
=y

Finally, a MUCAREM simulation is realized by alternately
performing the following two steps.

1. Each replica of the fixed multicanonical ensemble is sim-

ulatedsimultaneously andindependently for a certain MC
or MD steps.

2. A pair of replicas, say andj, which are in neighboring
multicanonical ensembles, sayth and (z + 1)-th, re-

; . i [
spectively, are exchangel:= {.. x,[ﬂ], .. njH, o)

respectively the potential-energy histogram and the total
number of samples obtained with the multicanonical weight
factor W) (E) im = 1, ..., M). The expectation value of a
physical quantityA at any temperaturé (= 1/kgpB) is then
obtained fromEq. (18) where the best estimate of the den-
sity of states is obtained by solving the WHAM equations,
which now read83]

w 12
Y &u N (E) Y &n Nu(E)
n(E) m=1 m=1
ng o €XP(fon) Wi (E) ng i €XQ fon — Bt (E))
m=1 m=1
(60)
for £ < E™,
for E™ < E < EI, (57)
m}
for E > EJ".
and for eacm(=1,..., M)
exXp(—fu) = Y n(E)Wht (E)
E
= Zn(E) eXp(—Pmeind (E)). (61)

Note thatWr{Tﬂ’,}(E) is used instead of the Boltzmann factor

exp(pE) in Egs. (30) and (31)
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Moreover, ensemble averages of any physical quaAtity We now describe themulated tempering replica-exchange
(including those that cannot be expressed as functions ofmethod (STREM) [109]. Suppose that the simulated tem-
potential energy) at any temperatufrg= 1/kgg) can now pering weight factoWsT(E; T,) (or equivalently, the di-
be obtained from the “trajectory”of configurations of the mensionless Helmholtz free energy in Eq. (25) has
production run. Namely, we first obtafp (m =1, ..., M) been obtained as in REST or by any other methods in the
by solvingEgs. (60) and (613elf-consistently, and then we entire temperature range of interedy (< 7, < Ty). We
have[88]

M Ny n
3 A (k) <g;1/ (Zg;lne exXp(fo) Windd (E Gt (k))))) exXpl-BE (xm (k)]

(A)p = m=1k=1 =1 ’ (62)

Mmoo ngy 12
> (g,zl/ (Zgglne exp( fo) Windd (ECxn (k))))) expl—BE (xm (k)]

m=1k=1 (=1

where the trajectories,, (k) (k = 1,...,n,) are taken  devide the overlapping temperature ranges iforegions
from each multicanonical simulation with the multicanoni- (M « M). Suppose each temperature rangeas\/,, tem-
cal weight factorw,m) (E) (m=1,..., M) separately. peratures:Tk{’"} k=1... . N,)form=1.. M We

As seen above, both REMUCA and MUCAREM can be  assign each temperature range to a replica; each replica

used to obtain the multicanonical weight factor, or the den- js in one-to-one correspondence with a different tempera-
sity of states, for the entire potential energy range of interest. ture rangem of ST run, whereTl{’"} < Tk{m} < TJ%} k =

For complex systems, however, a single REMUCA or MU- 1,--., N,,). We then introduce the replica-exchange pro-

CAR_EM simulation_is often insufficient. In such Cases We .o phetween neighboring temperature ranges. This works
can iterate MUCA (in REMUCA) and/or MUCAREM sim- he \ye allow sufficient overlaps between the temperature
ulations in which the estimate of the multicanonical weight regions

factor is updated by the single- and/or multiple-histogram A STREM simulation is then realized by alternately per-

reweighting techniques, respectively. forming the following two step§l09].
To be more specific, this iterative process can be sum-

marized as follows/88]. The REMUCA production run 1. Each replica performs a ST simulation within the fixed
corresponds to a MUCA simulation with the weight factor ~ temperature ranggmultaneously andindependently for
Wmu(E). The new estimate of the density of states can be  a certain MC or MD steps.

obtained by the single-histogram reweighting techniques of 2. A pair of replicas, sayandj, which are at, sa§ = Tk{m}

Eg. (20) On the other hand, from the MUCAREM produc- and7 = Te{m"'l}, in neighboring temperature ranges, say
tion run, the improved density of states can be obtained by  m-th and ¢ + 1)-th, respectively, are exchanged:

the multiple-histogram reweighting techniqueskafs. (60) X=1.. XE:] x%f] s X = x][(jl

and (61) fo], ...}. The transition probability of this replica ex-

The improved density of states thus obtained leads to a
new multicanonical weight factor (sdeqg. (10). The next
iteration can be either a MUCA production run (as in RE- w(X — X') = min(1, exp(—A)), (63)
MUCA) or MUCAREM production run. The results of this
production run may yield an optimal multicanonical weight where
factor that yields a sufficiently flat energy distribution for _ plm) {m+1) ~ i
the entire energy range of interest. If not, we can repeat the A=B — b )(E(q[j]) B E(q[ D). (64)
above process by obtaining the third estimate of the multi- o )
canonical weight factor either by a MUCA production run  While in MUCAREM each replica performs a random

(as in REMUCA) or by a MUCAREM production run, and walk in multicanonical ensemble of finite energy range, in
S0 on. ’ STREM each replica performs a random walk by simulated

We remark that as the estimate of the multicanonical [€MPering of finite temperature range. These “local” ran-
weight factor becomes more accurate, one is required tod0m walks are made “global” to cover the entire energy
have a less number of replicas for a successful MUCAREM "@nge of interest by the replica-exchange process.
simulation, because each replica will have a flat energy dis-
tribution for a wider energy range. Hence, for a large, com- 2.5. Multidimensional replica-exchange method
plex system, itis often more efficient to first try MUCAREM
and iteratively reduce the number of replicas so that eventu- We now present our multidimensional extension of REM,
ally one needs only one or a few replicas (instead of trying which we refer to asmultidimensional replica-exchange
REMUCA directly from the beginning and iterating MUCA  method (MREM) [82]. The crucial observation that led to
simulations). the new algorithm is: As long as we havenon-interacting

change is given by the Metropolis criterion:
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replicas of the original system, the Hamiltonibitqg, p) of
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the potential-energy histogram and the total number of

the system does not have to be identical among the replicassamples obtained for thenrth parameter setA,,. The
and it can depend on a parameter with different parameterWHAM equations that yield the canonical probability

values for different replicas.
Namely, we can write the Hamiltonian for tih¢h replica
at temperaturd,, as

Hy (g, pthy = K(pt) + E;,, (¢!),

where the potential energy,,, depends on a parametey,
and can be written as

Es,, (g = Eo (¢'") + 1 Vig™).

(65)

(66)

This expression for the potential energy is often used in sim-
ulations. For instance, in umbrella sampli24], Eo(q) and
V(q) can be respectively taken as the original potential en-
ergy and the “biasing” potential energy with the coupling
parametet.,,. In simulations of spin systems, on the other
hand,Eg(g) and V(q) (here,q stands for spins) can be re-

distribution Pr, (Eo, V) n(Eo,V)exp(—BE;) with any
potential-energy parameter value at any temperature
T = 1/Kkgp are then given by82]

M
Zgr;]'Nm(EO, V)

m=1

n(Eo,V) = — : (69)
Zg;;ln:nexﬁfm - ﬂmEk,,,)
m=1

and foreachm (=1, ..., M)

exp(—fum) = Y _ n(Eo, V) €XQ(—Bu Ey,,). (70)

Eo,V

Here, n(Ep, V) is the generalized density of states. Note

spectively considered as the zero-field term and the magne-that n(Eog, V) is independent of the parameter setg =

tization term coupled with the external fielg,.

While replicai and temperatur€,, are in one-to-one cor-
respondence in the original REM, replicand “parame-
ter set” A,, = (T,,, Ay) are in one-to-one correspondence

(T, Am) (m =1, ..., M). The density of statayEp, V) and

the “dimensionless” Helmholtz free ener§y in Egs. (69)

and (70)are solved self-consistently by iteration.
Incidentally, these formulations of MREM give multidi-

in the new algorithm. Hence, the present algorithm can be mensional extensions of REMUCI83,88] and REST[84].

considered as a multidimensional extension of the original

In the former, we obtain uniform distributions both

replica-exchange method where the “parameter space” isandV, whereas in the latter, the parameter sétsbecome

one-dimensional (i.e.,, = T,,). Because the replicas are
non-interacting, the weight factor for the statén this new

generalized ensemble is again given by the product of Boltz-

mann factors for each replica (sgq. (35):

M o o
_Z:Bm(i) Hyiy (g7, plT

|

M . .
_ Z'B’” H,, (q[l(m)]’ p[l(m)])

m=1

WMrem(X) = EXD{

= exp{

where i(m) and m(i) are the permutation functions in
Eqg. (33) Then the same derivation that led to the original
replica-exchange criterion follows, and the transition prob-
ability of replica exchange is given yq. (46) where we
now have (se&q. (43) [82]

} (67)

A = Bu(Es, (¥ — Es, (¢i)
—Bu(Es, () — Ej, (g™)).

Here,E,, andE,, are the total potential energies (4.
(66)). Note that we need to newly evaluate the potential
energy for exchanged coordinatés,, (¢l1) and E;,, (¢I),
becauser,, andE,, are in general different functions.

For obtaining the canonical distributions, the multiple-
histogram reweighting techniquefl0,11] are particu-

(68)

dynamical variables and a uniform distribution in those pa-
rameters will be obtained. Namely, after a short MREM
simulation, we can use the multiple-histogram reweighting
techniques oEgs. (69) and (70)o obtainn(Eo, V) andf,,.
Hence, we can determine the multidimensional multicanoni-
cal weight factoMny(Eo, V) and the multidimensional sim-
ulated tempering weight fact®st(Eo, V; A,,). The former

is given by

Wmu(EOaV) = n(Eo,V)’ (71)
and the latter is given by (sdgg. (25)
WsT(Eo, Vi Am) = eXX—Bm Ex,, + fn)- (72)

We can use MREM for free energy calculations. We first
describe the free energy perturbation case. The method is
referred to asreplica-exchange free energy perturbation
(REFEP)[82]. The potential energy is given by

E(q9) = Ei(q) + MEF(q) — Ei(q)). (73)

whereE; andEy are the potential energy for a “wild-type”
molecule and a “mutated” molecule, respectively. Note that
this equation has the same formEg. (66)

Our replica-exchange simulation is performed figr
replicas withM different values of the parameters,,

larly suitable. Suppose we have made a single run of the (T,,, A,;). SinceE;—o(g) = E;(q) and E;—1(q) = Er(q),

present replica-exchange simulation with replicas that
correspond taM different parameter setd,, = (Ty,, An)
m =1,...,M). Let N, (Eg, V) and n,, be respectively

we should choose enough, values distributed in the range
between 0 and 1 so that we may have sufficient acceptance
of replica exchange. From the simulatiod, histograms
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N (Er, EF — Ej), or equivalentlyN,,(E;, EF), are ob- WherePrh(Eo,E) = n(Ep, §)exp(—pE)) is obtained from
tained. The Helmholtz free energy difference of “mutation” the WHAM equations oEgs. (77) and (78)

at temperaturd (= 1/kgpB), AF = F)—1 — F)—o, can then The potential of mean force (PMF), or free energy as a
be calculated from function of the reaction coordinate, of the original, unbiased

system at temperatuigis given b
z Pr=1(E;, EF) y P g y
ZT,A:l __ ELEF

Z13-0 Z Pri—o(E;, EF)
E[EF

exp(—p AF) =

(74) WT,A:{O}(S) = —kgTIn Z PT,A:{O}(EO’ &, (80)

Eo

where Py (Ey. Er) = n(E;, Er)exp(—BE;) are obtained ~ Where{0} =(0...., 0). o
from the WHAM equations oEgs. (69) and (70) We now present two examples of realization of REUS.

We now describe another free energy calculations basedIn the first example, we use only one'temperatifreandL
on MREM applied to umbrella sampling, which we refer to umbrella potentials. We prepare replicas so that the poten-
as replica-exchange urmbrella sampling (REUS) [82]. The tial energy for each replica includes exactly one umbrella

otential energy is a generalization®f. (66)and is given  Potential (here, we havef = L).
P 9y g 8. (66) g Namely, inEq. (75)for A = A, we set

by

L )\S;f) = BZ,m’ (81)

_ 0 . .

Ex(@) = Eo(g) + ZA Ve(@). (75) wheres; ; is Kronecker’s delta function, and we have

=1 . . .

Ep, (@) = Eo(g") + Vi (g!). 82
where Eg(q) is the original unbiased potentialy (¢)(¢£ = A, 7 1 (82)
1,...,L) are the biasing (umbrella) potentials, and We exchange replicas corresponding to “neighboring” um-
1® are the corresponding coupling constar®s = brella potentialsy,, andV,, 1.
@D, A Dy), The acceptance criterion for replica exchange is given by
Introducing a “reaction coordinate?, the umbrella po- Eq. (46) whereEq. (68)now reads (with the fixed inverse

tentials are usually written as harmonic restraints: temperatured = 1/kgT) [82]
Ve@) = ki) = dp® (= 1. L), (76) A= B(Vu(g") = V(@) = Virr1(@) + Vinra(g™)),
whered, are the midpoints ané, are the strengths of the (83)

restraining potentials. We prepaké replicas withM dif-
ferent values of the parametens, = (7)., A,»), and the
replica-exchange simulation is performed. Since the um-
brella potentials/; (¢)in Eqg. (76)are all functions of the re-
action coordinaté only, we can take the histograNy, (Eo,

&) instead ofN,,(Ep, V1, ..., V). The WHAM equations

of Egs. (69) and (70¢an then be written d82]

where replica andj respectively have umbrella potentials
V,, andV,, 11 before the exchange.

In the second example, we prepétgtemperatures and
umbrella potentials, which makes the total number of repli-
casM = Nr x L. We can introduce the following relabeling
for the parameters that characterize the replicas:

M Ay = (T Ay) — AI,] = (Ty, A (84)
. (m=1,....M) (I=1,..,Nr,J=1,...L)
E 8m Nm(Eo, $) _ o _

The potential energy is given lg. (82)with the replace-

n(Eo, §) = M = (77) ment:m — J. We perform the following replica-exchange
Z G ©XP( fin — Bum E)) processes alternately:
m=1 1. Exchange pairs of replicas corresponding to neighboring
and for eactm (= 1, ..., M) temperatures]; andT; 1 (i.e., exchange replicasand
j that respectively correspond to parametars; and
exp(— fin) = Z n(Eo§) exp(—BmE), ). (78) Ar11.7). (We refer to this process dsexchange.)
Eo.§ 2. Exchange pairs of replicas corresponding to “neighboring”

umbrella potentialsy; andV, 1 (i.e., exchange replicas
i andj that respectively correspond to parametais;
andA; j+1). (We refer to this process asexchange.)

The expectation value of a physical quant&kywith any
potential-energy parameter valieat any temperaturd
(= 1kgp) is now given by
The acceptance criterion for these replica exchanges is
Z A(Eo, §) P\ (Eo. §) given byEq. (46) whereEq. (68)now readq82]

Fos (79)

o 4 .
(Arn S PraEo © A = (B1 = B0 (Eo@) + V(g

Fox —Eo(q — v;(gthy), (85)
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for T-exchange, and with first-order phase transitions), then other more powerful
, , , , algorithms such as those presented in the present article are
A= BV — Vgt — Vipa@ ) + Vi@, recommended.

(86)
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