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Abstract

In complex systems with many degrees of freedom such as spin glass and biomolecular systems, conventional simulations in canonical
ensemble suffer from the quasi-ergodicity problem. A simulation in generalized ensemble performs a random walk in potential energy
space and overcomes this difficulty. From only one simulation run, one can obtain canonical ensemble averages of physical quantities
as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review the
generalized ensemble algorithms. Three well-known methods, namely, multicanonical algorithm (MUCA), simulated tempering (ST), and
replica-exchange method (REM), are described first. Both Monte Carlo (MC) and molecular dynamics (MD) versions of the algorithms
are given. We then present five new generalized-ensemble algorithms which are extensions of the above methods.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Since the pioneering work of Metropolis et al.[1] half a
century ago, computer simulations have been indispensable
means of research in many fields of physical science. In
the field of molecular science, for instance, a number of
powerful simulation algorithms have been developed (for
reviews see, e.g., Refs.[2–4]).

Canonical fixed temperature simulations of complex
systems such as spin glasses and biopolymers are greatly
hampered by the multiple-minima problem, or the quasi-
ergodicity problem. Because simulations at low temper-
atures tend to get trapped in one of huge number of
local-minimum-energy states, it is very difficult to obtain
accurate canonical distributions at low temperatures by con-
ventional Monte Carlo (MC) and molecular dynamics (MD)
methods. One way to overcome this multiple-minima prob-
lem is to perform a simulation in ageneralized ensemble
where each state is weighted by an artificial, non-Boltzmann
probability weight factor so that a random walk in potential
energy space may be realized (for reviews see, e.g., Refs.
[5–8]). The random walk allows the simulation to escape
from any energy barrier and to sample much wider configu-
rational space than by conventional methods. Monitoring the
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energy in a single simulation run, one can obtain not only the
global-minimum-energy state but also canonical-ensemble
averages as functions of temperature by the single-histogram
[9] and/or multiple-histogram[10,11] reweighting tech-
niques (an extension of the multiple-histogram method is
also referred to as weighted histogram analysis method
(WHAM) [11]). Besides generalized-ensemble algorithms,
which are usually based on local updates, methods based
on non-local updates such as cluster algorithms and their
generalizations have also been widely used[12–14]. In this
article, we focus our discussion on generalized-ensemble
algorithms.

One of the most well-known generalized-ensemble meth-
ods is perhapsmulticanonical algorithm (MUCA) [15,16]
(for a review see, e.g., Ref.[17]). (The method is also
referred to asentropic sampling [18], adaptive umbrella
sampling [19] of the potential energy [20], random walk
algorithm [21,22], anddensity of states Monte Carlo [23].
MUCA can also be considered as a sophisticated, ideal re-
alization of a class of algorithms calledumbrella sampling
[24]. Also closely related methods aretransition matrix
methods reviewed in Refs.[8,25].) MUCA and its general-
izations have been applied to spin systems (see, e.g., Refs.
[26–30]). MUCA was also introduced to the molecular sim-
ulation field[31]. Since then MUCA and its generalizations
have been extensively used in many applications in protein
and related systems[32–60]. Molecular dynamics version of
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MUCA has also been developed[38,41,20](see also Refs.
[38,61] for Langevin dynamics version). MUCA has been
extended so that flat distributions in other parameters instead
of potential energy may be obtained[27,28,37,42,44,59].
Moreover, multidimensional (or multicomponent) exten-
sions of MUCA can be found in Refs.[37,42,43,60].

While a simulation in multicanonical ensemble performs
a free 1D random walk in potential energy space, that insim-
ulated tempering (ST) [62,63] (the method is also referred
to as themethod of expanded ensemble [62]) performs a free
random walk in temperature space (for a review, see, e.g.,
Ref. [64]). This random walk, in turn, induces a random
walk in potential energy space and allows the simulation to
escape from states of energy local minima. ST has also been
applied to protein folding problem[65,39,40,66].

The generalized-ensemble algorithm is powerful, but in
the above two methods the probability weight factors are not
a priori known and have to be determined by iterations of
short trial simulations. This process can be non-trivial and
very tedius for complex systems with many degreees of free-
dom. Therefore, there have been attempts to accelerate the
convergence of the iterative process for MUCA weight fac-
tor determination[20,26,37,67–69](see also Refs.[17,70]).

In thereplica-exchange method (REM) [71–73], the diffi-
culty of weight factor determination is greatly alleviated. (A
closely related method was independently developed in Ref.
[74]. Similar methods in which the same equations are used
but emphasis is laid on optimizations have been developed
[75,76]. REM is also referred to asmultiple Markov chain
method [77] andparallel tempering [64]. Details of literature
about REM and related algorithms can be found in recent
reviews[6,78].) In this method, a number of non-interacting
copies (or replicas) of the original system at different tem-
peratures are simulated independently and simultaneously
by the conventional MC or MD method. Every few steps,
pairs of replicas are exchanged with a specified transition
probability. The weight factor is just the product of Boltz-
mann factors, and so it is essentially known.

REM has already been used in many applications in pro-
tein systems[79,80,66,81–91]. Other molecular simulation
fields have also been studied by this method in various
ensembles[92–97]. Moreover, REM was applied to clus-
ter studies in quantum chemistry field[98]. The details of
molecular dynamics algorithm have been worked out for
REM in Ref.[80] (see also Refs.[79,95]). This led to a wide
application of replica-exchange molecular dynamics method
in the protein folding problem[99–106].

However, REM also has a computational difficulty: As the
number of degrees of freedom of the system increases, the
required number of replicas also greatly increases, whereas
only a single replica is simulated in MUCA or ST. This de-
mands a lot of computer power for complex systems. Our
solution to this problem is: Use REM for the weight factor
determinations of MUCA or ST, which is much simpler than
previous iterative methods of weight determinations, and
then perform a long MUCA or ST production run. The first

example is thereplica-exchange multicanonical algorithm
(REMUCA) [83,88]. In REMUCA, a short replica-exchange
simulation is performed, and the multicanonical weight fac-
tor is determined by the multiple-histogram reweighting
techniques[10,11]. Another example of such a combination
is the replica-exchange simulated tempering (REST) [84].
In REST, a short replica-exchange simulation is performed,
and the simulated tempering weight factor is determined by
the multiple-histogram reweighting techniques[10,11].

We have introduced two further extensions of REM,
which we refer to asmulticanonical replica-exchange
method (MUCAREM) [83,88](see also Refs.[107,108]) and
simulated tempering replica-exchange method (STREM)
[109]. In MUCAREM, a replica-exchange simulation
is performed with a small number of replicas each in
multicanonical-ensemble of different energy ranges. In
STREM, on the other hand, a replica-exchange simulation
is performed with a small number of replicas in “simulated
tempering” ensemble of diffierent temperature ranges.

Finally, one is naturally led to a multidimensional (or,
multivariable) extension of REM, which we refer to asmul-
tidimensional replica-exhcange method (MREM) [82] (see
also Refs.[93,106,110,111]). Special realizations of MREM
arereplica-exchange free energy perturbation (REFEP)[82]
and replica-exchange umbrella sampling (REUS) [82] and
they are particularly useful in free energy calculations.

In this article, we describe the eight generalized-ensemble
algorithms mentioned above. Namely, we first review three
familiar methods: MUCA, ST, and REM. We then present
the five new algorithms: REMUCA, REST, MUCAREM,
STREM, and MREM (and REFEP and REUS).

2. Generalized-ensemble algorithms

2.1. Multicanonical algorithm and simulated tempering

Let us consider a system ofN atoms of massmk (k =
1, . . . , N) with their coordinate vectors and momentum vec-
tors denoted byq ≡ {q1, . . . , qN} andp ≡ {p1, . . . ,pN},
respectively. The HamiltonianH(q, p) of the system is the
sum of the kinetic energyK(p) and the potential energyE(q):

H(q, p) = K(p)+ E(q), (1)

where

K(p) =
N∑
k=1

p2
k

2mk
. (2)

In the canonical ensemble at temperatureT each state
x ≡ (q, p) with the HamiltonianH(q, p) is weighted by the
Boltzmann factor:

WB(x; T ) = exp(−βH(q, p)), (3)

where the inverse temperatureβ is defined byβ = 1/kBT
(kB is the Boltzmann constant). The average kinetic energy
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at temperatureT is then given by

〈K(p)〉T =
〈
N∑
k=1

p2
k

2mk

〉
T

= 3

2
NkBT. (4)

Because the coordinatesq and momentap are decoupled
in Eq. (1), we can suppress the kinetic energy part and can
write the Boltzmann factor as

WB(x; T ) = WB(E; T ) = exp(−βE). (5)

The canonical probability distribution of potential energyPB
(E; T) is then given by the product of the density of states
n(E) and the Boltzmann weight factorWB(E; T):

PB(E; T ) ∝ n(E)WB(E; T ). (6)

Sincen(E) is a rapidly increasing function and the Boltz-
mann factor decreases exponentially, the canonical ensem-
ble yields a bell-shaped distribution which has a maximum
around the average energy at temperatureT. The conven-
tional MC or MD simulations at constant temperature are
expected to yieldPB(E; T). A MC simulation based on the
Metropolis algorithm[1] is performed with the following
transition probability from a statex of potential energyE
to a statex′ of potential energyE′:

w(x → x′) = min

(
1,
WB(E

′; T )
WB(E; T )

)
= min(1,exp[−β(E′ − E)]). (7)

A MD simulation, on the other hand, is based on the fol-
lowing Newton equation:

ṗk = − ∂E
∂qk

= f k, (8)

wheref k is the force acting on thek-th atom (k = 1 . . . , N).
This equation actually yields the microcanonical ensemble,
and we have to add a thermostat such as Nosé–Hoover
algorithm [112,113] and the constraint method[114,115]
in order to obtain the canonical ensemble. However, in
practice, it is very difficult to obtain accurate canonical
distributions of complex systems at low temperatures by
conventional MC or MD simulation methods. This is be-
cause simulations at low temperatures tend to get trapped
in one or a few of local-minimum-energy states.

In the multicanonical ensemble[15,16], on the other hand,
each state is weighted by a non-Boltzmann weight factor
Wmu(E) (which we refer to as themulticanonical weight
factor) so that a uniform potential energy distributionPmu(E)
is obtained:

Pmu(E) ∝ n(E)Wmu(E) ≡ constant. (9)

The flat distribution implies that a free random walk in the
potential energy space is realized in this ensemble. This
allows the simulation to escape from any local minimum-
energy states and to sample the configurational space much

more widely than the conventional canonical MC or MD
methods.

The definition inEq. (9) implies that the multicanoni-
cal weight factor is inversely proportional to the density of
states, and we can write it as follows:

Wmu(E) ≡ exp[−β0Emu(E; T0)] = 1

n(E)
, (10)

where we have chosen an arbitrary reference temperature,
T0 = 1/kBβ0, and the “multicanonical potential energy” is
defined by

Emu(E; T0) ≡ kBT0ln n(E) = T0S(E). (11)

Here,S(E) is the entropy in the microcanonical ensemble.
Since the density of states of the system is usually unknown,
the multicanonical weight factor has to be determined nu-
merically by iterations of short preliminary runs[15,16].

A multicanonical Monte Carlo simulation is performed,
for instance, with the usual Metropolis criterion[1]: The
transition probability of statex with potential energyE to
statex′ with potential energyE′ is given by

w(x → x′) = min

(
1,
Wmu(E

′)
Wmu(E)

)
= min

(
1,
n(E)

n(E′)

)
= min(1,exp(−β0�Emu)), (12)

where

�Emu = Emu(E
′; T0)− Emu(E; T0). (13)

The molecular dynamics algorithm in multicanonical ensem-
ble also naturally follows fromEq. (10), in which the regular
constant temperature molecular dynamics simulation (with
T = T0) is performed by solving the following modified
Newton equation instead ofEq. (8): [38,41]

ṗk = −∂Emu(E; T0)

∂qk
= ∂Emu(E; T0)

∂E
f k. (14)

FromEq. (11)this equation can be rewritten as

ṗk = T0

T(E)
f k, (15)

where the following thermodynamic relation gives the defi-
nition of the “effective temperature”T(E):

∂S(E)

∂E

∣∣∣∣
E=Ea

= 1

T(Ea)
, (16)

with

Ea = 〈E〉T(Ea). (17)

If the exact multicanonical weight factorWmu(E) is
known, one can calculate the ensemble averages of any
physical quantityA at any temperatureT(= 1/kBβ) as
follows:

〈A〉T =

∑
E

A(E)PB(E; T )
∑
E

PB(E; T )
=

∑
E

A(E)n(E)exp(−βE)
∑
E

n(E)exp(−βE)
,

(18)
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where the density of states is given by (seeEq. (10))

n(E) = 1

Wmu(E)
. (19)

The summation instead of integration is used inEq. (18),
because we often discretize the potential energyE with step
size ε (E = Ei; i = 1,2, . . . ). Here, the explicit form of
the physical quantityA should be known as a function of
potential energyE. For instance,A(E) = E gives the aver-
age potential energy〈E〉T as a function of temperature, and
A(E) = β2(E − 〈E〉T )2 gives specific heat.

In general, the multicanonical weight factorWmu(E), or
the density of statesn(E), is not a priori known, and one
needs its estimator for a numerical simulation. This estimator
is usually obtained from iterations of short trial multicanon-
ical simulations. The details of this process are described,
for instance, in Refs.[26,34]. However, the iterative process
can be non-trivial and very tedius for complex systems.

In practice, it is impossible to obtain the ideal multicanon-
ical weight factor with completely uniform potential energy
distribution. The question is when to stop the iteration for the
weight factor determination. Our criterion for a satisfactory
weight factor is that as long as we do get a random walk in
potential energy space, the probability distributionPmu(E)
does not have to be completely flat with a tolerance of, say,
an order of magnitude deviation. In such a case, we usually
perform with this weight factor a multicanonical simulation
with high statistics (production run) in order to get even
better estimate of the density of states. LetNmu(E) be the
histogram of potential energy distributionPmu(E) obtained
by this production run. The best estimate of the density of
states can then be given by the single-histogram reweighting
techniques[9] as follows (see the proportionality relation in
Eq. (9)):

n(E) = Nmu(E)

Wmu(E)
. (20)

By substituting this quantity intoEq. (18), one can calculate
ensemble averages of physical quantityA(E) as a function of
temperature. Moreover, ensemble averages of any physical
quantityA (including those that cannot be expressed as func-
tions of potential energy) at any temperatureT(= 1/kBβ)

can now be obtained as long as one stores the “trajectory”
of configurations (andA) from the production run. Namely,
we have

〈A〉T =

n0∑
k=1

A(x(k)W−1
mu(E(x(k)))exp[−βE(x(k))]

n0∑
k=1

W−1
mu(E(x(k)))exp[−βE(x(E))]

, (21)

wherex(k) is the configuration at thek-th MC (or MD) step
and n0 is the total number of configurations stored. Note
that whenA is a function ofE, Eq. (21)reduces toEq. (18)
where the density of states is given byEq. (20).

Eqs. (18) and (21)or any other equations which involve
summations of exponential functions often encounter with
numerical difficulties such as overflows. These can be
overcome by using, for instance, the following equation
[116,117]. ForC = A+B (with A > 0 andB > 0) we have

lnC = ln

[
max(A,B)

(
1 + min(A,B)

max(A,B)

)]
,

= max(lnA, lnB)+ ln{1 + exp[min(lnA, lnB)

−max(lnA, lnB)]}. (22)

We now briefly review the originalsimulated tempering
(ST) method[62,63]. In this method temperature itself be-
comes a dynamical variable, and both the configuration and
the temperature are updated during the simulation with a
weight:

WST(E; T ) = exp(−βE + a(T )), (23)

where the functiona(T) is chosen so that the probability
distribution of temperature is flat:

PST(T ) =
∫

dEn(E)WST(E; T )

=
∫

dEn(E)exp(−βE + a(T )) = constant. (24)

Hence, in simulated tempering thetemperature is sampled
uniformly. A free random walk in temperature space is real-
ized, which in turn induces a random walk in potential en-
ergy space and allows the simulation to escape from states
of energy local minima.

In the numerical work we discretize the temperature inM
different values,Tm (m = 1, . . . ,M). Without loss of gener-
ality we can order the temperature so thatT1 < T2 < . . . <

TM . The lowest temperatureT1 should be sufficiently low so
that the simulation can explore the global-minimum-energy
region, and the highest temperatureTM should be sufficiently
high so that no trapping in an energy-local-minimum state
occurs. The probability weight factor inEq. (23) is now
written as

WST(E; Tm) = exp(−βmE + am), (25)

wheream = a(Tm) (m = 1 . . . ,M). Note that fromEqs. (24)
and (25)we have

exp(−am) ∝
∫

dEn(E)exp(−βmE). (26)

The parametersam are therefore “dimensionless” Helmholtz
free energy at temperatureTm (i.e., the inverse temperature
βm multiplied by the Helmholtz free energy). We remark
that the density of statesn(E) (and hence, the multicanonical
weight factor) and the simulated tempering weight parame-
tersam are related by a Laplace transform[39]. The knowl-
edge of one implies that of the other, although in numerical
work the inverse Laplace transform ofEq. (26)is nontrivial.
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Once the parametersam are determined and the initial con-
figuration and the initial temperatureTm are chosen, a sim-
ulated tempering simulation is then realized by alternately
performing the following two steps[62,63]:

1. A canonical MC or MD simulation at the fixed temper-
atureTm (based onEqs. (7) or (8)) is carried out for a
certain steps.

2. The temperatureTm is updated to the neighboring values
Tm±1 with the configuration fixed. The transition prob-
ability of this temperature-updating process is given by
the Metropolis criterion (seeEq. (25)):

w(Tm → Tm±1) = min(1,exp(−∆)), (27)

where

∆ = (βm±1 − βm)E − (am±1 − am). (28)

Note that in Step 2 we exchange only pairs of neighboring
temperatures in order to secure sufficiently large acceptance
ratio of temperature updates.

As in multicanonical algorithm, the simulated tempering
parametersam = a(Tm) (m = 1, . . . ,M) are also deter-
mined by iterations of short trial simulations (see, e.g., Refs.
[40,64,65]for details). This process can be non-trivial and
very tedius for complex systems.

〈A〉T =

M∑
m=1

nm∑
k=1

A(xm(k))

(
g−1
m /

(
M∑
#=1

g−1
# n#exp[f# − β#E(xm(k))]

))
exp[−βE(xm(k))]

M∑
m=1

nm∑
k=1

(
g−1
m /

(
M∑
#=1

g−1
# n# exp[f# − β#E(xm(k))]

))
exp[−βE(xm(k))]

, (32)

After the optimal simulated tempering weight factor is
determined, one performs a long simulated tempering run
once. The canonical expectation value of a physical quantity
A at temperatureTm (m = 1, . . . ,M) can be calculated by
the usual arithmetic mean as follows:

〈A〉Tm = 1

nm

nm∑
k=1

A(xm(k)), (29)

wherexm(k) (k = 1, . . . , nm) are the configurations obtained
at temperatureTm andnm is the total number of measure-
ments made atT = Tm. The expectation value at any in-
termediate temperature can also be obtained fromEq. (18),
where the density of states is given by the multiple-histogram
reweighting techniques[10,11]as follows. LetNm(E) andnm
be respectively the potential-energy histogram and the total
number of samples obtained at temperatureTm = 1/kBβm
(m = 1, . . . ,M). The best estimate of the density of states
is then given by[10,11]

n(E) =

M∑
m=1

g−1
m Nm(E)

M∑
m=1

g−1
m nm exp(fm − βmE)

, (30)

where we have for eachm(= 1, . . . ,M)

exp(−fm) =
∑
E

n(E)exp(−βmE). (31)

Here,gm = 1+2τm, andτm is the integrated autocorrelation
time at temperatureTm. For many systems the quantitygm
can safely be set to be a constant in the reweighting formulae
[11], and so we usually setgm = 1.

Note thatEqs. (30) and (31)are solved self-consistently
by iteration[10,11] to obtain the density of statesn(E) and
the dimensionless Helmholtz free energyfm. Namely, we
can set all thefm (m = 1 . . . ,M) to, e.g., zero initially. We
then useEq. (30) to obtainn(E), which is substituted into
Eq. (31)to obtain next values offm, and so on.

Moreover, ensemble averages of any physical quantityA
(including those that cannot be expressed as functions of
potential energy) at any temperatureT(= 1/kBβ) can now
be obtained from the “trajectory” of configurations of the
production run. Namely, we first obtainfm (m = 1, . . . ,M)
by solvingEqs. (30) and (31)self-consistently, and then we
have[88]

wherexm(k) (k = 1, . . . , nm) are the configurations obtai-
ned at temperatureTm.

2.2. Replica-exchange method

The replica-exchange method (REM) [71–73] was de-
veloped as an extension of simulated tempering[71] (thus
it is also referred to asparallel tempering [64]) (see, e.g.,
Ref. [80] for a detailed description of the algorithm). The
system for REM consists ofM non-interacting copies (or,
replicas) of the original system in the canonical ensemble
at M different temperaturesTm (m = 1, . . . ,M). We ar-
range the replicas so that there is always exactly one replica
at each temperature. Then there exists a one-to-one corre-
spondence between replicas and temperatures; the labeli
(i = 1, . . . ,M) for replicas is a permutation of the labelm
(m = 1, . . . ,M) for temperatures, and vice versa:{
i = i(m) ≡ f(m),
m = m(i) ≡ f−1(i),

(33)
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wheref(m) is a permutation function ofm and f−1(i) is its
inverse.

Let X = {x[i(1)]
1 , . . . , x

[i(M)]
M } = {x[1]

m(1), . . . , x
[M]
m(M)} stand

for a “state” in this generalized ensemble. Each “substate”
x

[i]
m is specified by the coordinatesq[i ] and momentap[i ] of

N atoms in replicai at temperatureTm:

x[i]
m ≡ (q[i], p[i])m. (34)

Because the replicas are non-interacting, the weight factor
for the stateX in this generalized ensemble is given by the
product of Boltzmann factors for each replica (or at each
temperature):

WREM(X) =
M∏
i=1

exp{−βm(i)H(q[i], p[i])}

=
M∏
m=1

exp{−βmH(q[i(m)], p[i(m)])}

= exp

{
−
M∑
i=1

βm(i)H(q
[i], p[i])

}

= exp

{
−

M∑
m=1

βmH(q
[i(m)], p[i(m)])

}
, (35)

where i(m) and m(i) are the permutation functions in
Eq. (33).

We now consider exchanging a pair of replicas in the
generalized ensemble. Suppose we exchange replicasi and
j which are at temperaturesTm andTn, respectively:

X = {. . . , x[j]
m , . . . , x

[j]
n , . . . } →

X′ = {. . . , x[i]′
m , . . . , x

[i]′
n , . . . }. (36)

Here,i, j, m, andn are related by the permutation functions
in Eq. (33), and the exchange of replicas introduces a new
permutation functionf′:{
i = f(m)→ j = f ′(m),
j = f(n)→ i = f ′(n). (37)

The exchange of replicas can be written in more detail as{
x

[i]
m ≡ (q[i], p[i])m → x

[j]′
m ≡ (q[j], p[j]′)m,

x
[j]
n ≡ (q[j], p[j])n → x

[i]′
n ≡ (q[i], p[i]′)n,

(38)

where the definitions forp[i]′ andp[j]′ will be given below.
We remark that this process is equivalent to exchanging
a pair of temperaturesTm and Tn for the corresponding
replicasi andj as follows:

x

[i]
m ≡ (q[i], p[i])m → x

[i]′
n ≡ (q[i], p[i]′)n,

x
[j]
n ≡ (q[j], p[j])n → x

[j]′
m ≡ (q[j], p[j]′)m.

(39)

In the original implementation of the replica-exchange
method[71–73], Monte Carlo algorithm was used, and only
the coordinatesq (and the potential energy functionE(q))
had to be taken into account. In molecular dynamics algo-

rithm, on the other hand, we also have to deal with the mo-
mentap. We proposed the following momentum assignment
in Eq. (38)(and inEq. (39)) [80]:

p[i]′ ≡

√
Tn

Tm
p[i],

p[j]′ ≡
√
Tm

Tn
p[j],

(40)

which we believe is the simplest and the most natural. This
assignment means that we just rescale uniformly the veloci-
ties of all the atoms in the replicas by the square root of the
ratio of the two temperatures so that the temperature condi-
tion in Eq. (4)may be satisfied.

In order for this exchange process to converge towards an
equilibrium distribution, it is sufficient to impose the detailed
balance condition on the transition probabilityw(X → X′):
WREM(X)

Z
w(X → X′) = WREM(X

′)
Z

w(X′ → X), (41)

whereZ is the partition function of the entire system. From
Eqs. (1), (2), (35), (40) and (41), we have

w(X → X′)
w(X′ → X)

= exp{−βm[K(p[j]′)+E(q[j])] −βn[K(p[i]′)+E(q[i])]

+βm[K(p[i])+ E(q[i])] + βn[K(p[j])+ E(q[j])]},
= exp

{
−βm Tm

Tn
K(p[j])− βn Tn

Tm
K(p[i])+ βmK(p[i])

+βnK(p[j])− βm[E(q[j])− E(q[i])]

−βn[E(q[i])− E(q[j])]

}
,

= exp(−∆), (42)

where

∆ = βm(E(q[j])− E(q[i]))− βn(E(q[j])− E(q[i])) (43)

= (βm − βn)(E(q[j])− E(q[i])), (44)

and i, j, m, andn are related by the permutation functions
in Eq. (33)before the exchange:{
i = f(m),
j = f(n). (45)

This can be satisfied, for instance, by the usual Metropolis
criterion [1]:

w(X → X′) ≡ w(x[i]
m |x[j]

n ) = min(1,exp(−∆)), (46)

where in the second expression (i.e.,w(x[i]
m |x[j]

n )) we ex-
plicitly wrote the pair of replicas (and temperatures) to be
exchanged. Note that this is exactly the same criterion that
was originally derived for Monte Carlo algorithm[71–73].

Without loss of generality we can again assumeT1 <

T2 < . . . < TM . A simulation of the replica-exchange
method[71–73] is then realized by alternately performing
the following two steps:
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1. Each replica in canonical ensemble of the fixed temper-
ature is simulatedsimultaneously and independently for
a certain MC or MD steps.

2. A pair of replicas at neighboring temperatures, say
x

[i]
m and x[j]

m+1, are exchanged with the probability

w(x
[i]
m |x[j]

m+1) in Eq. (46).

Note that in Step 2 we exchange only pairs of replicas cor-
responding to neighboring temperatures, because the accep-
tance ratio of the exchange process decreases exponentially
with the difference of the twoβ’s (seeEqs. (44) and (46)).
Note also that whenever a replica exchange is accepted in
Step 2, the permutation functions inEq. (33)are updated.

The REM simulation is particularly suitable for parallel
computers. Because one can minimize the amount of infor-
mation exchanged among nodes, it is best to assign each
replica to each node (exchanging pairs of temperature values
among nodes is much faster than exchanging coordinates
and momenta). This means that we keep track of the permu-
tation functionm(i; t) = f−1(i; t) in Eq. (33)as a function
of MC or MD step t during the simulation. After parallel
canonical MC or MD simulations for a certain steps (Step
1), M/2 pairs of replicas corresponding to neighboring tem-
peratures are simulateneously exchanged (Step 2), and the
pairing is alternated between the two possible choices, i.e.
(T1, T2), (T3, T4), . . . ·and (T2, T3), (T4, T5), . . . .

The major advantage of REM over other generalized-
ensemble methods such as multicanonical algorithm[15,16]
and simulated tempering[62,63] lies in the fact that the
weight factor is a priori known (seeEq. (35)), while in the

ε{0}
mu(E) ≡




∂Emu(E; T0)

∂E

∣∣∣∣
E=E1

(E − E1)+ Emu(E1; T0), forE < E1,

Emu(E; T0), forE1 ≤ E ≤ EM,
∂Emu(E; T0)

∂E

∣∣∣∣
E=EM

(E − EM)+ Emu(EM; T0), forE > EM.

(49)

latter algorithms the determination of the weight factors can
be very tedius and time-consuming. A random walk in “tem-
perature space” is realized for each replica, which in turn
induces a random walk in potential energy space. This alle-
viates the problem of getting trapped in states of energy local
minima. In REM, however, the number of required replicas
increases as the system sizeN increases (according to

√
N)

[71]. This demands a lot of computer power for complex
systems.

ε
{0}
mu(E) =




T0

T1
(E − E1)+ T0S(E1) = T0

T1
E + constant, forE < E1 ≡ 〈E〉T1,

T0S(E), forE1 ≤ E ≤ EM,
T0

TM
(E − EM)+ T0S(TM) = T0

TM
E + constant, forE > EM ≡ 〈E〉TM .

(50)

2.3. Replica-exchange multicanonical algorithm and
replica-exchange simulated tempering

The replica-exchange multicanonical algorithm (RE-
MUCA) [83,88] overcomes both the difficulties of
MUCA (the multicanonical weight factor determination is
non-trivial) and REM (a lot of replicas, or computation time,
is required). In REMUCA we first perform a short REM
simulation (withM replicas) to determine the multicanoni-
cal weight factor and then perform with this weight factor
a regular multicanonical simulation with high statistics.
The first step is accomplished by the multiple-histogram
reweighting techniques[10,11]. Let Nm(E) and nm be re-
spectively the potential-energy histogram and the total
number of samples obtained at temperatureTm(= 1/kBβm)

of the REM run. The density of statesn(E) is then given by
solvingEqs. (30) and (31)self-consistently by iteration.

Once the estimate of the density of states is obtained,
the multicanonical weight factor can be directly determined
from Eq. (10)(see alsoEq. (11)). Actually, the density of
statesn(E) and the multicanonical potential energy,Emu(E;
T0), thus determined are only reliable in the following range:

E1 ≤ E ≤ EM, (47)

where{
E1 = 〈E〉T1,

EM = 〈E〉TM , (48)

andT1 andTM are respectively the lowest and the highest
temperatures used in the REM run. Outside this range we
extrapolate the multicanonical potential energy linearly:[83]

The multicanonical MC and MD runs are then performed
respectively with the Metropolis criterion ofEq. (12)and
with the modified Newton equation inEq. (14), in which
ε
{0}
mu(E) in Eq. (49) is substituted intoEmu(E; T0). We ex-

pect to obtain a flat potential energy distribution in the
range ofEq. (47). Finally, the results are analyzed by the
single-histogram reweighting techniques as described inEq.
(20) (andEq. (18)).

Some remarks are now in order. FromEqs. (11), (16),
(17), and (48), Eq. (49)becomes
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The Newton equation inEq. (14)is then written as (see
Eqs. (15)–(17))

ṗk =




T0

T1
f k, forE < E1,

T0

T(E)
f k, forE1 ≤ E ≤ EM,

T0

TM
f k, forE > EM.

(51)

Because only the product of inverse temperatureβ and po-
tential energyE enters in the Boltzmann factor (seeEq. (5)),
a rescaling of the potential energy (or force) by a constant,
sayα, can be considered as the rescaling of the temperature
by 1/α [38,95]. Hence, our choice ofε{0}

mu(E) in Eq. (49)re-
sults in a canonical simulation atT = T1 for E < E1, a
multicanonical simulation forE1 ≤ E ≤ EM , and a canon-
ical simulation atT = TM for E > EM . Note also that the
above arguments are independent of the value ofT0, and we
will get the same results, regardless of its value.

For Monte Carlo method, the above statement follows
directly from the following equation. Namely, our choice
of the multicanonical potential energy inEq. (49)gives (by
substitutingEq. (50)into Eq. (10))

Wmu(E) = exp[−β0ε
{0}
mu(E)]

=




exp(−β1E + constant), forE < E1,

1

n(E)
, forE1 ≤ E ≤ EM,

exp(−βME + constant), forE > EM.

(52)

We now present another effective method of the mul-
ticanonical weight factor determination[7], which is
closely related to REMUCA. We first perform a short
REM simulation as in REMUCA and calculate〈E〉T as
a function of T by the multiple-histogram reweighting
techniques (seeEqs. (30) and (31)). Let us recall the New-
ton equation ofEq. (15) and the thermodynamic relation
of Eqs. (16) and (17). The effective temperatureT(E),
or the derivative(∂Emu(E; T0)/∂E), can be numerically
obtained as the inverse function ofEq. (17), where the
average〈E〉T (E) has been obtained from the results of the
REM simulation by the multiple-histogram reweighting
techniques. Given its derivative, the multicanonical poten-
tial energy can then be obtained by numerical integration
(seeEqs. (11) and (16)): [7]

Emu(E; T0) = T0

∫ E

E1

∂S(E)

∂E
dE = T0

∫ E

E1

dE

T(E)
. (53)

We remark that the same equation was used to obtain the
multicanonical weight factor in Ref.[68], where〈E〉T was
estimated by simulated annealing instead of REM. Essen-
tially the same formulation was also recently used in Ref.
[58] to obtain the multicanonical potential energy, where
〈E〉T was calculated by conventional canonical simulations.

We finally present the new method which we refer to as
the replica-exchange simulated tempering (REST) [84]. In
this method, just as in REMUCA, we first perform a short
REM simulation (withM replicas) to determine the simu-
lated tempering weight factor and then perform with this
weight factor a regular ST simulation with high statistics.

The first step is accomplished by the multiple-histogram
reweighting techniques[10,11], which give the dimension-
less Helmholtz free energyfm (seeEqs. (30) and (31)).

Once the estimate of the dimensionless Helmholtz free
energyfm are obtained, the simulated tempering weight fac-
tor can be directly determined by usingEq. (25)where we
setam = fm (compareEq. (26)with Eq. (31)). A long sim-
ulated tempering run is then performed with this weight fac-
tor. Let Nm(E) andnm be respectively the potential-energy
histogram and the total number of samples obtained at
temperatureTm(= 1/kBβm)) from this simulated temper-
ing run. The multiple-histogram reweighting techniques of
Eqs. (30) and (31)can be used again to obtain the best es-
timate of the density of statesn(E). The expectation value
of a physical quantityA at any temperatureT(= 1/kBβ) is
then calculated fromEq. (18).

The formulations of REMUCA and REST are simple and
straightforward, but the numerical improvement is great, be-
cause the weight factor determination for MUCA and ST
becomes very difficult by the usual iterative processes for
complex systems.

2.4. Multicanonical replica-exchange method and
simulated tempering replica-exchange method

In the previous subsection we presented REMUCA, which
uses a short REM run for the determination of the multi-
canonical weight factor. Here, we present two modifications
of REM and refer to the new methods asmulticanonical
replica-exchange method (MUCAREM) [83,88] and simu-
lated tempering replica-exchange method (STREM) [109].
In MUCAREM the production run is a REM simulation
with a few replicas not in the canonical ensemble but in
the multicanonical ensemble, i.e., different replicas perform
MUCA simulations with different energy ranges. Likewise
in STREM the production run is a REM simulation with
a few replicas that performs ST simulations with different
temperature ranges. While MUCA and ST simulations are
usually based on local updates, a replica-exchange process
can be considered to be a global update, and global updates
enhance the sampling further.

We first describe MUCAREM. LetM be the number of
replicas. Here, each replica is in one-to-one correspondence
not with temperature but with multicanonical weight factors
of different energy range. Note that because multicanonical
simulations cover much wider energy ranges than regular
canonical simulations, the number of required replicas for
the production run of MUCAREM is much less than that
for the regular REM (M� M).
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The weight factor for this generalized ensemble is now
given by (seeEq. (35))

WMUCAREM(X) =
µ∏
i=1

W
{m(i)}
mu (E(x

[i]
m(i)))

=
µ∏
m=1

W
{m}
mu (E(x

[i(m)]
m )), (54)

where we prepare the multicanonical weight factor (and the
density of states) separately form regions (seeEq. (10)):

W
{m}
mu (E(x

[i]
m )) = exp[−βmε{m}

mu (E(x
[i]
m )) ≡ 1

n{m}(E(x[i]
m ))

.

(55)

Here, we have introducedM arbitrary reference tempera-
turesTm = 1/kBβm (m = 1, . . . ,M), but the final results
will be independent of the values ofTm, as one can see from
the second equality inEq. (55)(these arbitrary temperatures
are necessary only for MD simulations).

Each multicanonical weight factorW {m}
mu (E), or the den-

sity of statesn{m}(E), is defined as follows. For eachm (m =
1, . . . ,M), we assign a pair of temperatures (T

{m}
L , T

{m}
H ).

Here, we assume thatT {m}
L < T

{m}
H and arrange the temper-

atures so that the neighboring regions covered by the pairs
have sufficient overlaps. Without loss of generality we can
assumeT {1}

L < . . . < T
{µ}
L andT {1}

H < . . . < T
{µ}
H . We de-

fine the following quantities:

E

{m}
L = 〈E〉

T
{m}
L
,

E
{m}
H = 〈E〉

T
{m}
H
, (m = 1, . . . , µ).

(56)

Suppose that the multicanonical weight factorWmu(E) (or
equivalently, the multicanonical potential energyEmu(E; T0)
in Eq. (11)) has been obtained as in REMUCA or by any
other methods in the entire energy range of interest (E

{1}
L <

E < E
{µ}
H ). We then have for eachm (m = 1, . . . , µ) the fol-

lowing multicanonical potential energies (seeEq. (49)): [83]

ε
{m}
mu (E) =




∂Emu(E; Tm)
∂E

∣∣∣∣
E=E{m}

L

(E − E{m}
L )+ Emu(E

{m}
L ; Tm), forE < E{m}

L ,

Emu(E; Tm), forE{m}
L ≤ E ≤ E{m}

H ,

∂Emu(E; Tm)
∂E

∣∣∣∣
E=E{m}

H

(E − E{m}
H )+ Emu(E

{m}
H ; Tm), forE > E{m}

H .

(57)

Finally, a MUCAREM simulation is realized by alternately
performing the following two steps.

1. Each replica of the fixed multicanonical ensemble is sim-
ulatedsimultaneously andindependently for a certain MC
or MD steps.

2. A pair of replicas, sayi and j, which are in neighboring
multicanonical ensembles, saym-th and (m + 1)-th, re-
spectively, are exchanged:X = {. . . , x[i]

m , . . . , x
[j]
m+1, . . . }

→ X′ = {. . . , x[j]
m , . . . , x

[i]
m+1, . . . }. The transition prob-

ability of this replica exchange is given by the Metropolis
criterion:

w(X → X′) = min(1,exp(−∆)), (58)

where we now have (seeEq. (43)) [83]

� = βm{ε{m}
mu (E(q

[j]))− ε{m}
mu (E(q

[i]))}
−βm+1{ε{m+1}

mu (E(q[j]))− ε{m+1}
mu (E(q[i]))}. (59)

Here,E(q[i]) andE(q[j]) are the potential energy of the
i-th replica and thej-th replica, respectively. Note that in
Eq. (59)we need to newly evaluate the multicanonical po-
tential energy,ε{m}

mu (E(q
[j])) and E{m+1}

mu (E(q[i])), because
ε
{m}
mu (E) andε{n}mu(E) are, in general, different functions for
m �= n.

In this algorithm, them-th multicanonical ensemble actu-
ally results in a canonical simulation atT = T

{m}
L for E <

E
{m}
L , a multicanonical simulation forE{m}

L ≤ E ≤ E
{m}
H ,

and a canonical simulation atT = T {m}
H for E > E{m}

H , while
the replica-exchange process samples states of the whole
energy range (E{1}

L ≤ E ≤ E{M}
H ).

For obtaining the canonical distributions at any inter-
mediate temperatureT, the multiple-histogram reweighting
techniques[10,11] are again used. LetNm(E) and nm be
respectively the potential-energy histogram and the total
number of samples obtained with the multicanonical weight
factorW {m}

mu (E) (m = 1, . . . ,M). The expectation value of a
physical quantityA at any temperatureT (= 1/kBβ) is then
obtained fromEq. (18), where the best estimate of the den-
sity of states is obtained by solving the WHAM equations,
which now read[83]

n(E) =

µ∑
m=1

g−1
m Nm(E)

µ∑
m=1

g−1
m nm exp(fm)W

{m}
mu (E)

=

µ∑
m=1

g−1
m Nm(E)

µ∑
m=1

g−1
m nm exp(fm − βmε{m}

mu (E))

,

(60)

and for eachm (= 1, . . . ,M)

exp(−fm) =
∑
E

n(E)W
{m}
mu (E)

=
∑
E

n(E)exp(−βmε{m}
mu (E)). (61)

Note thatW {m}
mu (E) is used instead of the Boltzmann factor

exp(−βmE) in Eqs. (30) and (31).



434 Y. Okamoto / Journal of Molecular Graphics and Modelling 22 (2004) 425–439

Moreover, ensemble averages of any physical quantityA
(including those that cannot be expressed as functions of
potential energy) at any temperatureT (= 1/kBβ) can now
be obtained from the “trajectory”of configurations of the
production run. Namely, we first obtainfm (m = 1, . . . ,M)
by solvingEqs. (60) and (61)self-consistently, and then we
have[88]

〈A〉T =

µ∑
m=1

nm∑
k=1

A(xm(k))

(
g−1
m /

(
µ∑
#=1

g−1
# n# exp(f#)W

{m}
mu (E(xm(k)))

))
exp[−βE(xm(k))]

µ∑
m=1

nm∑
k=1

(
g−1
m /

(
µ∑
#=1

g−1
# n# exp(f#)W

{m}
mu (E(xm(k)))

))
exp[−βE(xm(k))]

, (62)

where the trajectoriesxm(k) (k = 1, . . . , nm) are taken
from each multicanonical simulation with the multicanoni-
cal weight factorW {m}

mu (E) (m = 1, . . . ,M) separately.
As seen above, both REMUCA and MUCAREM can be

used to obtain the multicanonical weight factor, or the den-
sity of states, for the entire potential energy range of interest.
For complex systems, however, a single REMUCA or MU-
CAREM simulation is often insufficient. In such cases we
can iterate MUCA (in REMUCA) and/or MUCAREM sim-
ulations in which the estimate of the multicanonical weight
factor is updated by the single- and/or multiple-histogram
reweighting techniques, respectively.

To be more specific, this iterative process can be sum-
marized as follows[88]. The REMUCA production run
corresponds to a MUCA simulation with the weight factor
Wmu(E). The new estimate of the density of states can be
obtained by the single-histogram reweighting techniques of
Eq. (20). On the other hand, from the MUCAREM produc-
tion run, the improved density of states can be obtained by
the multiple-histogram reweighting techniques ofEqs. (60)
and (61).

The improved density of states thus obtained leads to a
new multicanonical weight factor (seeEq. (10)). The next
iteration can be either a MUCA production run (as in RE-
MUCA) or MUCAREM production run. The results of this
production run may yield an optimal multicanonical weight
factor that yields a sufficiently flat energy distribution for
the entire energy range of interest. If not, we can repeat the
above process by obtaining the third estimate of the multi-
canonical weight factor either by a MUCA production run
(as in REMUCA) or by a MUCAREM production run, and
so on.

We remark that as the estimate of the multicanonical
weight factor becomes more accurate, one is required to
have a less number of replicas for a successful MUCAREM
simulation, because each replica will have a flat energy dis-
tribution for a wider energy range. Hence, for a large, com-
plex system, it is often more efficient to first try MUCAREM
and iteratively reduce the number of replicas so that eventu-
ally one needs only one or a few replicas (instead of trying
REMUCA directly from the beginning and iterating MUCA
simulations).

We now describe thesimulated tempering replica-exchange
method (STREM) [109]. Suppose that the simulated tem-
pering weight factorWST(E; Tn) (or equivalently, the di-
mensionless Helmholtz free energyan in Eq. (25)) has
been obtained as in REST or by any other methods in the
entire temperature range of interest (T1 ≤ Tn ≤ TM). We

devide the overlapping temperature ranges intoM regions
(M� M). Suppose each temperature rangem hasNm tem-
peratures:T {m}

k (k = 1, . . . ,Nm) for m = 1, . . . ,M. We
assign each temperature range to a replica; each replicai
is in one-to-one correspondence with a different tempera-
ture rangem of ST run, whereT {m}

1 ≤ T
{m}
k ≤ T

{m}
Nm
(k =

1, · · · ,Nm). We then introduce the replica-exchange pro-
cess between neighboring temperature ranges. This works
when we allow sufficient overlaps between the temperature
regions.

A STREM simulation is then realized by alternately per-
forming the following two steps[109].

1. Each replica performs a ST simulation within the fixed
temperature rangesimultaneously andindependently for
a certain MC or MD steps.

2. A pair of replicas, sayi andj, which are at, sayT = T {m}
k

andT = T {m+1}
# , in neighboring temperature ranges, say

m-th and (m+ 1)-th, respectively, are exchanged:
X = {. . . , x[i]

k , . . . , x
[j]
# , . . . } → X′ = {. . . , x[j]

k , . . . ,

x
[i]
# , . . . }. The transition probability of this replica ex-

change is given by the Metropolis criterion:

w(X → X′) = min(1,exp(−∆)), (63)

where

∆ ≡ (β{m}
k − β{m+1}

# )(E(q[j])− E(q[i])). (64)

While in MUCAREM each replica performs a random
walk in multicanonical ensemble of finite energy range, in
STREM each replica performs a random walk by simulated
tempering of finite temperature range. These “local” ran-
dom walks are made “global” to cover the entire energy
range of interest by the replica-exchange process.

2.5. Multidimensional replica-exchange method

We now present our multidimensional extension of REM,
which we refer to asmultidimensional replica-exchange
method (MREM) [82]. The crucial observation that led to
the new algorithm is: As long as we haveM non-interacting
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replicas of the original system, the HamiltonianH(q, p) of
the system does not have to be identical among the replicas
and it can depend on a parameter with different parameter
values for different replicas.

Namely, we can write the Hamiltonian for thei-th replica
at temperatureTm as

Hm(q
[i], p[i]) = K(p[i])+ Eλm(q[i]), (65)

where the potential energyEλm depends on a parameterλm
and can be written as

Eλm(q
[i]) = E0 (q

[i])+ λmV(q[i]). (66)

This expression for the potential energy is often used in sim-
ulations. For instance, in umbrella sampling[24], E0(q) and
V(q) can be respectively taken as the original potential en-
ergy and the “biasing” potential energy with the coupling
parameterλm. In simulations of spin systems, on the other
hand,E0(q) and V(q) (here,q stands for spins) can be re-
spectively considered as the zero-field term and the magne-
tization term coupled with the external fieldλm.

While replicai and temperatureTm are in one-to-one cor-
respondence in the original REM, replicai and “parame-
ter set”Λm ≡ (Tm, λm) are in one-to-one correspondence
in the new algorithm. Hence, the present algorithm can be
considered as a multidimensional extension of the original
replica-exchange method where the “parameter space” is
one-dimensional (i.e.,Λm = Tm). Because the replicas are
non-interacting, the weight factor for the stateX in this new
generalized ensemble is again given by the product of Boltz-
mann factors for each replica (seeEq. (35)):

WMREM(X) = exp

{
−
M∑
i=1

βm(i)Hm(i)(q
[i], p[i])

}

= exp

{
−

M∑
m=1

βmHm(q
[i(m)], p[i(m)])

}
(67)

where i(m) and m(i) are the permutation functions in
Eq. (33). Then the same derivation that led to the original
replica-exchange criterion follows, and the transition prob-
ability of replica exchange is given byEq. (46), where we
now have (seeEq. (43)) [82]

∆ = βm(Eλm(q[j])− Eλm(q[i]))

−βn(Eλn(q[j])− Eλn(q[i])). (68)

Here,Eλm andEλn are the total potential energies (seeEq.
(66)). Note that we need to newly evaluate the potential
energy for exchanged coordinates,Eλm(q

[j]) andEλn(q
[i]),

becauseEλm andEλn are in general different functions.
For obtaining the canonical distributions, the multiple-

histogram reweighting techniques[10,11] are particu-
larly suitable. Suppose we have made a single run of the
present replica-exchange simulation withM replicas that
correspond toM different parameter setsΛm ≡ (Tm, λm)

(m = 1, . . . ,M). Let Nm(E0, V) and nm be respectively

the potential-energy histogram and the total number of
samples obtained for them-th parameter set/m. The
WHAM equations that yield the canonical probability
distribution PT,λ(E0, V) = n(E0,V)exp(−βEλ) with any
potential-energy parameter valueλ at any temperature
T = 1/kBβ are then given by[82]

n(E0,V) =

M∑
m=1

g−1
m Nm(E0, V)

M∑
m=1

g−1
m nmexp(fm − βmEλm)

, (69)

and for eachm (= 1, . . . ,M)

exp(−fm) =
∑
E0,V

n(E0, V)exp(−βmEλm). (70)

Here, n(E0, V) is the generalized density of states. Note
that n(E0, V) is independent of the parameter setsΛm ≡
(Tm, λm) (m = 1, . . . ,M). The density of statesn(E0, V) and
the “dimensionless” Helmholtz free energyfm in Eqs. (69)
and (70)are solved self-consistently by iteration.

Incidentally, these formulations of MREM give multidi-
mensional extensions of REMUCA[83,88]and REST[84].
In the former, we obtain uniform distributions both inE0
andV, whereas in the latter, the parameter setsΛm become
dynamical variables and a uniform distribution in those pa-
rameters will be obtained. Namely, after a short MREM
simulation, we can use the multiple-histogram reweighting
techniques ofEqs. (69) and (70)to obtainn(E0, V) and fm.
Hence, we can determine the multidimensional multicanoni-
cal weight factorWmu(E0, V) and the multidimensional sim-
ulated tempering weight factorWST(E0, V;Λm). The former
is given by

Wmu(E0,V) = 1

n(E0,V)
, (71)

and the latter is given by (seeEq. (25))

WST(E0, V ;Λm) = exp(−βmEλm + fm). (72)

We can use MREM for free energy calculations. We first
describe the free energy perturbation case. The method is
referred to asreplica-exchange free energy perturbation
(REFEP)[82]. The potential energy is given by

Eλ(q) = EI(q)+ λ(EF(q)− EI(q)), (73)

whereEI andEF are the potential energy for a “wild-type”
molecule and a “mutated” molecule, respectively. Note that
this equation has the same form asEq. (66).

Our replica-exchange simulation is performed forM
replicas withM different values of the parametersΛm =
(Tm, λm). SinceEλ=0(q) = EI(q) andEλ=1(q) = EF(q),
we should choose enoughλm values distributed in the range
between 0 and 1 so that we may have sufficient acceptance
of replica exchange. From the simulation,M histograms
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Nm(EI,EF − EI), or equivalentlyNm(EI , EF ), are ob-
tained. The Helmholtz free energy difference of “mutation”
at temperatureT (= 1/kBβ), �F ≡ Fλ=1 − Fλ=0, can then
be calculated from

exp(−β�F) = ZT,λ=1

ZT,λ=0
=

∑
EI,EF

PT,λ=1(EI, EF )

∑
EI,EF

PT,λ=0(EI, EF )
, (74)

wherePT,λ(EI, EF ) = n(EI,EF )exp(−βEλ) are obtained
from the WHAM equations ofEqs. (69) and (70).

We now describe another free energy calculations based
on MREM applied to umbrella sampling, which we refer to
as replica-exchange umbrella sampling (REUS) [82]. The
potential energy is a generalization ofEq. (66)and is given
by

E�(q) = E0(q)+
L∑
#=1

λ(#)V#(q), (75)

whereE0(q) is the original unbiased potential,V#(q)(# =
1, . . . , L) are the biasing (umbrella) potentials, and
λ(#) are the corresponding coupling constants(� =
(λ(1), . . . , λ(L))).

Introducing a “reaction coordinate”ξ, the umbrella po-
tentials are usually written as harmonic restraints:

V#(q) = k#(ξ(q)− d#)2, (# = 1, . . . , L), (76)

whered# are the midpoints andk# are the strengths of the
restraining potentials. We prepareM replicas withM dif-
ferent values of the parametersΛm = (Tm,λm), and the
replica-exchange simulation is performed. Since the um-
brella potentialsV#(q)in Eq. (76)are all functions of the re-
action coordinateξ only, we can take the histogramNm(E0,
ξ) instead ofNm(E0, V1, . . . , VL). The WHAM equations
of Eqs. (69) and (70)can then be written as[82]

n(E0, ξ) =

M∑
m=1

g−1
m Nm(E0, ξ)

M∑
m=1

g−1
m nm exp(fm − βmE�m)

(77)

and for eachm (= 1, . . . ,M)

exp(−fm) =
∑
E0,ξ

n(E0,ξ)exp(−βmE�m). (78)

The expectation value of a physical quantityA with any
potential-energy parameter value� at any temperatureT
(= 1/kBβ) is now given by

〈A〉T,� =

∑
E0,ξ

A(E0, ξ)PT,�(E0, ξ)

∑
E0,ξ

PT,�(E0, ξ)
(79)

wherePT,�(E0,ξ) = n(E0, ξ)exp(−βE�) is obtained from
the WHAM equations ofEqs. (77) and (78).

The potential of mean force (PMF), or free energy as a
function of the reaction coordinate, of the original, unbiased
system at temperatureT is given by

WT,�={0}(ξ) = −kBT ln


∑
E0

PT,�={0}(E0, ξ)


 , (80)

where{0} = (0, . . . ,0).
We now present two examples of realization of REUS.

In the first example, we use only one temperature,T, andL
umbrella potentials. We prepare replicas so that the poten-
tial energy for each replica includes exactly one umbrella
potential (here, we haveM = L).

Namely, inEq. (75)for λ = λm we set

λ(#)m = δ#,m, (81)

whereδk,l is Kronecker’s delta function, and we have

E�m(q
[i]) = E0(q

[i])+ Vm(q[i]). (82)

We exchange replicas corresponding to “neighboring” um-
brella potentials,Vm andVm+1.

The acceptance criterion for replica exchange is given by
Eq. (46), whereEq. (68)now reads (with the fixed inverse
temperatureβ = 1/kBT) [82]

∆ = β(Vm(q[j])− Vm(q[i])− Vm+1(q
[j])+ Vm+1(q

[i])),

(83)

where replicai and j respectively have umbrella potentials
Vm andVm+1 before the exchange.

In the second example, we prepareNT temperatures andL
umbrella potentials, which makes the total number of repli-
casM = NT ×L. We can introduce the following relabeling
for the parameters that characterize the replicas:

Λm = (Tm,�m)
(m=1,...,M)

→ ΛI,J = (TI,�J ).
(I=1,...,NT ,J=1,...,L)

(84)

The potential energy is given byEq. (82)with the replace-
ment:m → J . We perform the following replica-exchange
processes alternately:

1. Exchange pairs of replicas corresponding to neighboring
temperatures,TI andTI+1 (i.e., exchange replicasi and
j that respectively correspond to parameters�I,J and
�I+1,J ). (We refer to this process asT-exchange.)

2. Exchange pairs of replicas corresponding to “neighboring”
umbrella potentials,VJ andVJ+1 (i.e., exchange replicas
i and j that respectively correspond to parameters�I,J
and�I,J+1). (We refer to this process asλ-exchange.)

The acceptance criterion for these replica exchanges is
given byEq. (46), whereEq. (68)now reads[82]

∆ = (βI − βI+1)(E0(q
[j])+ VJ(q[j])

−E0(q
[i])− VJ(q[i])), (85)
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for T-exchange, and

∆ = βI(VJ(q[j])− VJ(q[i])− VJ+1(q
[j])+ VJ+1(q

[i])),

(86)

for λ-exchange. By this procedure, the random walk in the
reaction coordinate space as well as in the temperature space
can be realized.

3. Conclusions

In this article we have reviewed uses of generalized-
ensemble algorithms for both Monte Carlo simulations and
molecular dynamics simulations. A simulation in general-
ized ensemble realizes a random walk in potential energy
space, alleviating the multiple-minima problem that is a
common difficulty in simulations of complex systems with
many degrees of freedom.

Detailed formulations of the three well-known genera-
lized-ensemble algorithms, namely, multicanonical algo-
rithm, simulated tempering, and replica-exchange method,
were given.

We then introduced five new generalized-ensemble algo-
rithms that combine the merits of the above three methods.
We refer to these methods as replica-exchange multicano-
nical algorithm, replica-exchange simulated tempering,
multicanonical replica-exchange method, simulated temper-
ing replica-exchange method, and multidimensional replica-
exchange method, the last of which also led to replica-
exchange free energy perturbation and replica-exchange
umbrella sampling.

The question is then which method is the most rec-
ommended. We have recently studied the effectiveness of
MUCA, REM, REMUCA, and MUCAREM in the protein
folding problem [88]. Our criterion for the effectiveness
was how many times the random walk cycles between
the high-energy region and low-energy region are realized
within a fixed number of total MC (or MD) steps. We found
that once the optimal MUCA weight factor is obtained,
MUCA (and REMUCA) is the most effective (i.e., has the
most number of random walk cycles), and REM is the least
[88]. We also found that once the optimal ST weight factor
is obtained, ST (and REST) has more random walk cycles
than REM[84,109]. Moreover, we compared the efficiency
of Berg’s recursion[69], Wang–Landau method[21,22],
and REMUCA/MUCAREM as methods for the multi-
canonical weight factor determination in two-dimensional
10-state Potts model and found that the three methods are
about equal in efficiency[118–120].

Hence, the answer to the above question will depend on
how much time one is willing to (or forced to) spend in
order to determine the MUCA or ST weight factors. Given a
problem, the first choice is REM because of its simplicity (no
weight factor determination is required). If REM turns out
to be insufficient or too much time-consuming (like the case

with first-order phase transitions), then other more powerful
algorithms such as those presented in the present article are
recommended.
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