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1. INTRODUCTION
Monte Carlo computations have consumed and continue to consume a large
fraction of all the available high-performance computing cycles. While
much work has been done on numerical software in areas such as numeri-
cal linear algebra and the numerical solution of differential equations,
there is a dearth of good software tools for Monte Carlo computations,
despite their ubiquity and importance. In particular, defects in pseudoran-
dom-number generators can cause erroneous results in the Monte Carlo
computation. To make matters worse, many of the popular pseudorandom-
number generators in use, particularly those supplied by vendors, have
been found to be defective in the context of real applications. Parallelism
further complicates this state of affairs. The random-number software we
describe in detail below was developed to rectify this situation. Apart from
the implementation of good generators, we have designed a user-friendly,
standard interface which others can use for their implementation of new
parallel pseudorandom number generators (PPRNGs).

Monte Carlo applications are widely perceived as embarrassingly paral-
lel.1 The truth of this notion depends, to a large extent, on the quality of
the parallel random-number generators used. It is widely assumed that
with N processors executing N copies of a Monte Carlo calculation, the
pooled result will achieve a variance N times smaller than a single instance
of this calculation in the same amount of time. This is true only if the
results in each processor are statistically independent. In turn, this will be
true only if the streams of random numbers generated in each processor are
independent.

Here we present an overview of the Scalable Parallel Random Number
Generators (SPRNG) library. This library was designed to support parallel
Monte Carlo applications on scalable and distributed architectures. We
begin by briefly presenting several methods of parallel pseudorandom-
number generation and discuss pros and cons for each method. If the
reader is interested in background material on plain old serial pseudoran-
dom-number generation consult the following references by Knuth [1998],
L’Ecuyer [1990; 1994; 1998], Niederreiter [1992], Park and Miller [1988],

1Monte Carlo enthusiasts prefer the term “naturally parallel” to the somewhat derogatory
“embarrassingly parallel” coined by computer scientists.
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and Tezuka [1995], while a good overview of parallel pseudorandom-
number generation can be found in a recent work by the present article’s
authors [Mascagni 1999a; 1999b; Srinivasan et al. 1999a]. Finally, general
references on testing PPRNGs can be found in Cuccaro et al. [1995], De
Matteis and Pagnutti [1995], Entacher [1998], and Vattulainen [1999].

In our parallel pseudorandom-number generation review we are inter-
ested, exclusively, in methods for obtaining PPRNGs via parameterization.
The exact meaning of parameterization depends on the type of PRNG under
discussion, but we wish to distinguish parameterization from splitting
methods. We will not be considering the production of parallel streams of
pseudorandom numbers by taking substreams from a single, long-period
PRNG. For readers interested in splitting methods and the consequences of
using split streams in parallel please consult the works by Deák [1990], De
Matteis and Pagnutti [1988; 1990a; 1990b], Frederickson et al. [1984], and
L’Ecuyer and Côté [1991]. In general, we seek to determine a parameter in
the underlying recursion of the PRNG that can be varied. Each valid value
of this parameter will lead to a recursion that produces a unique, full-
period stream of pseudorandom numbers. We then discuss efficient means
to specify valid parameter values and consider these choices in terms of the
quality of the pseudorandom numbers produced. Quality here refers not
only to the randomness properties of the individual streams of random
numbers but on the correlation properties between streams that are used
in parallel.

We then describe the SPRNG library in detail. We present the rationale
for the design of SPRNG, outline the overall design methodology, which is
based on full-period parameterized random-number generators, and then
detail the suite of randomness tests that is included in SPRNG. In our
selection of random-number generators to parameterize and include in
SPRNG, we utilized extensive tests of randomness to empirically validate
and refine our choices. Because our intention was to make SPRNG extensi-
ble to new types of PRNGs, we have included this suite of tests in our
release of SPRNG. This suite includes standard single-processor tests of
randomness, parallel versions of these same tests, and several inherently
parallel tests. Among the inherently parallel tests are several physically
based tests that stress generators with known computations of physical
quantities that have been shown to be particularly sensitive to defects in
random-number generators.

The plan of the paper is as follows. In Section 2 we present an extensive
overview of parallel pseudorandom-number generation mostly viewed from
the parameterization point of view. In Section 2.1, we present two methods
for parameterizing linear congruential generators (LCGs). In Section 2.2
we present a parameterization of another linear method: shift-register
generators (SRGs). This parameterization is analogous to one of the LCG
parameterizations presented in Section 2.1. The SRG has been imple-
mented but not released into SPRNG to date. The reason being that
performance of the SRGs is suboptimal, and we wish to tune the code for
performance before releasing it into SPRNG. However, we plan to incorporate
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both this version of the SRG as well as the famous “Mersenne Twister”
SRG of Matsumoto and Kurita [1992] and Matsumoto and Nishimura
[1998] into SPRNG in the very near future. In Section 2.3 we consider the
parallel parameterization of so-called lagged-Fibonacci generators. In Sec-
tion 3, we describe the SPRNG library, a comprehensive tool for parallel
and distributed pseudorandom-number generation developed by the au-
thors. In this description we also give some examples on how to use SPRNG
in serial and parallel codes. Then, in Section 4, we describe the suite of
tests of randomness that is an integral part of SPRNG. Finally, in Section 5
we conclude and comment on some new directions for SPRNG.

2. PARALLEL PSEUDORANDOM-NUMBER GENERATION

In this next, rather extensive, section we will look at several methods for
parallel pseudorandom-number generation. Most of the methods we will
present will be based on some kind of parameterization of the generators.

2.1 Linear Congruential Generators

The most commonly used generator for pseudorandom numbers is the LCG.
The LCG was first proposed for use by Lehmer [1949] and is referred to as
the Lehmer generator in the early literature. The linear recursion underly-
ing LCGs is

xn 5 axn21 1 b ~mod m!. (1)

When the multiplier, a, additive constant, b, and modulus, m, are chosen
appropriately one obtains a purely periodic sequence with period as long as
Per~xn! 5 2k, when m is a power-of-two, and Per~xn! 5 m 2 1, when m is
prime. It is well known that s-tuples made up from LCGs lie on lattices
composed of a family of parallel hyperplanes [Marsaglia 1968; 1972]. The
xn’s in Eq. (1) are integer residues modulo m; a uniform pseudorandom
number in [0,1] is produced via zn 5 xn / m; and the initial value of the
LCG, x0, is often called the seed.

The most important parameter of an LCG is the modulus, m. Its size
constrains the period, and for implementational reasons it is always chosen
to be either prime or a power-of-two. Based on which type of modulus is
chosen, there is a different parameterization method. When m is prime, a
method based on using the multiplier, a, as the parameter has been
proposed. The rationale for this choice is outlined in Mascagni [1998] and
leads to several interesting computational problems.

2.1.1 Prime Modulus. Given we wish to parameterize a when m is
prime, we must determine first the family of permissible a ’s. A condition on
a when m is prime to obtain the maximal period (of length m 2 1 in this
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case) is that a must be a primitive element modulo m [Knuth 1998].2 Given
primitivity, one can use the following fact: if a and a are primitive
elements modulo m then a 5 ai ~mod m! for some i relatively prime to
f~m!. Note that when m is prime that f~m! 5 m 2 1. Thus a single,
reference, primitive element, a, and an explicit enumeration of the integers
relatively prime to m 2 1 furnish an explicit parameterization for the jth
primitive element, aj as aj 5 a, j ~mod m! where , j is the jth integer
relatively prime to m 2 1. Given an explicit factorization of m 2 1 [Brill-
hart et al. 1988], efficient algorithms for computing , j can be found in a
recent work of the author [Mascagni 1998]. An interesting open question in
this regard is whether the overall efficiency of this PPRNG is minimized by
choosing the prime modulus to minimize the cost of computing , j or to
minimize the cost of modular multiplication modulo m.

Given this scheme there are some positive and negative features to be
mentioned. A motivation for this scheme is that a common theoretical
measure of the correlation among parallel streams predicts little correla-
tion. This measure is based on exponential sums. Exponential sums are of
interest in many areas of number theory. We define the exponential sum
for the sequence of residues modulo m, $xn%n50

k21, as

C~k! 5 O
n50

k21

e
2pi
m xn, ~i 5 Î21!. (2)

If the xn are periodic and k is the period, then Eq. (2) is called a full-period
exponential sum. If xn is periodic and k is less than the full period, then Eq.
(2) is a partial-period exponential sum. Examining Eq. (2) shows it to be a
sum of k quantities on the unit circle. A trivial upper bound is thus
?C~k!? # k. If the sequence $ xn% is indeed uniformly distributed, then we
would expect ?C~k!? 5 O~ Îk! [Kuipers and Niederreiter 1974]. Thus the
desire is to show that exponential sums of interest are neither too big nor
too small to reassure us that the sequence in question is theoretically
equidistributed.

Since we are interested in studying sequences for use in parallel, we
must consider the cross-correlations among the sequences to be used on
different processors. If $ xn% and $ yn% are two sequences of interest then
their exponential sum cross-correlation is given by

C~i, j, k! 5 O
n50

k21

e
2pi
m ~xi1n2yj1n!, ~i 5 Î21!. (3)

Here the sum has k terms and begins with xi and yj.

2An integer, a, is primitive modulo m if the set of integers $ai ~mod m!1 # i # m 2 1%
equals the set $1 # i # m 2 1%.

440 • M. Mascagni and A. Srinivasan

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.



In a previous work we only considered full-period exponential sum
cross-correlation for studying these issues for a different recursion [Pryor
et al. 1994]. We will take the same approach here. Suppose we have j
full-period LCGs defined by xkn 5 a, ixkn21 ~mod m!, 0 # k , j. All of the
pairwise full-period exponential sum cross-correlations are known to sat-
isfy [Schmidt 1976]

uC~m!u # ~@max
k

,k#21!Îm. (4)

The choice of the exponents, ,k, that minimizes Eq. (4) is to make , j the jth
integer relatively prime to m 2 1. This necessitates an algorithm to
compute this jth integer relatively prime to an integer with known factor-
ization, m 2 1. This is discussed at great length in Mascagni [1998];
however, two important open questions remain: (1) is it more efficient
overall to choose m to be amenable to fast modular multiplication or fast
calculation of the jth integer relatively prime to m 2 1, and (2) does the
good interstream correlation of Eq. (4) also ensure good intrastream
independence via the spectral test? The first of these questions is of
practical interest to performance; the second, however, if answered nega-
tively, makes such techniques less attractive for parallel pseudorandom-
number generation.

2.1.2 Power-of-Two Modulus. An alternative way to use LCGs to make
a PPRNG is to parameterize the additive constant in Eq. (1) when the
modulus is a power-of-two, i.e., m 5 2k for some integer k . 1. This is a
technique first proposed by Percus and Kalos [1989] to provide a PPRNG
for the NYU Ultracomputer. It has some interesting advantages over
parameterizing the multiplier; however, there are some considerable disad-
vantages in using power-of-two modulus LCGs.

The parameterization chooses a set of additive constants $bj% that are
pairwise relatively prime, i.e., gcd~bi, bj! 5 1 when i Þ j. A prudent choice
is to let bj be the jth prime. This both ensures the pairwise relative
primality and is the largest set of such residues. With this choice certain
favorable interstream properties can be theoretically derived from the
spectral test [Percus and Kalos 1989]. However, this choice necessitates a
method for the difficult problem of computing the jth prime. In their paper,
Percus and Kalos do not discuss this aspect of their generator in detail,
partly due to the fact that they expect to provide only a small number of
PRNGs. When a large number of PPRNGs are to be provided with this
method, one can use fast algorithms for the computation of p~x!, the
number of primes less than x [Deleglise and Rivat 1996; Lagarias et al.
1985]. This is the inverse of the function which is desired, so we designate
p21~ j ! as the jth prime. The details of such an implementation need to be
specified, but a very related computation for computing the jth integer
relatively prime to a given set of integers is given in Mascagni [1998]. It is
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believed that the issues for computing p21~ j ! are similar. At present, this
is implemented in SPRNG with a table of primes. Currently, SPRNG users
have found this to be both fast enough and able to provide a sufficient
number of parallel streams.

One important advantage of this parameterization is that there is an
interstream correlation measure based on the spectral test that suggests
that there will be good interstream independence. Given that the spectral
test for LCGs essentially measures the quality of the multiplier, this sort of
result is to be expected. A disadvantage of this parameterization is that to
provide a large number of streams, computing p21~ j ! will be necessary.
Regardless of the efficiency of implementation, this is known to be a
difficult computation with regards to its computational complexity. Finally,
one of the biggest disadvantages to using a power-of-two modulus is the
fact the least-significant bits of the integers produced by these LCGs have
extremely short periods. If $ xn% are the residues of the LCG modulo 2k,
with properly chosen parameters, $ xn% will have period 2k. However, $xn

~mod 2 j!% will have period 2 j for all integers 0 , j , k [Knuth 1998]. In
particular, this means the least-significant bit of the LCG will alternate
between 0 and 1. This is such a major short coming, which motivated us to
consider parameterizations of prime modulus LCGs as discussed in Section
2.1.1.

2.2 Shift-Register Generators

Shift register generators (SRGs) are linear recursions modulo 2 [Golomb
1982; Lewis and Payne 1973; Tausworthe 1965] of the form

xn1k 5 O
i50

k21

ai xn1i ~mod 2!, (5)

where the ai’s are either 0 or 1. An alternative way to describe this
recursion is to specify the kth-degree binary characteristic polynomial [Lidl
and Niederreiter 1986]:

f~x! 5 xk 1 O
i50

k21

ai xi ~mod 2!. (6)

To obtain the maximal period of 2k21, a sufficient condition is that f~x! be
a primitive kth-degree polynomial modulo 2. If only a few of the ai’s are 1,
then Eq. (5) is very cheap to evaluate. Thus people often use known
primitive trinomials to specify SRG recursions. This leads to very efficient,
two-term recursions.

There are two ways to make pseudorandom integers out of the bits
produced by Eq. (5). The first, called the digital multistep method, takes
successive bits from Eq. (5) to form an integer of desired length. Thus, with
the digital multistep method, it requires n iterations of Eq. (5) to produce a
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new n-bit pseudorandom integer. The second method, called the general-
ized feedback shift-register, creates a new n-bit pseudorandom integer for
every iteration of Eq. (5). This is done by constructing the n-bit word from
xn1k and n 2 1 other bits from the k bits of SRG state. While these two
methods seem different, they are very related, and theoretical results for
one always hold for the other. One way to parameterize SRGs is analogous
to the LCG parameterization discussed in Section 2.1.1. There we took the
object that made the LCG full-period, the primitive root multiplier, and
found a representation for all of them. Using this analogy we identify the
primitive polynomial in the SRG as the object to parameterize. We begin
with a known primitive polynomial of degree k, p~x!. It is known that only
certain decimations of the output of a maximal-period shift register are
themselves maximal and unique with respect to cyclic reordering [Lidl and
Niederreiter 1986]. We seek to identify those. The number of decimations
that are both maximal-period and unique when p~x! is primitive modulo 2
and k is a Mersenne exponent is ~2k22! / k. If a is a primitive root modulo
the prime 2k21, then the residues ai ~mod 2k21! for i 5 1 to ~2k22! / k
form a set of all the unique, maximal-period decimations. Thus we have a
parameterization of the maximal-period sequences of length 2k21 arising
from primitive degree-k binary polynomials through decimations.

The entire parameterization goes as follows. Assume the kth stream is
required; compute dk [ ak ~mod 2k21!; and take the dkth decimation of
the reference sequence produced by the reference primitive polynomial,
p~x!. This can be done quickly with polynomial algebra. Given a decimation
of length 2k 1 1, this can be used as input the Berlekamp-Massey algo-
rithm to recover the primitive polynomial corresponding to this decimation.
The Berlekamp-Massey algorithm finds the minimal polynomial that gen-
erates a given sequence [Massey 1969] in time linear in k.

This parameterization is relatively efficient when the binary polynomial
algebra is implemented correctly. However, there is one major drawback to
using such a parameterization. While the reference primitive polynomial,
p~x!, may be sparse, the new polynomials need not be. By a sparse
polynomial we mean that most of the ai’s in Eq. (5) are zero. The cost of
stepping Eq. (5) once is proportional to the number of nonzero ai’s in Eq.
(5). Thus we can significantly increase the bit-operational complexity of a
SRG in this manner.

The fact that the parameterization methods for prime modulus LCGs and
SRGs are so similar is no accident. Both are based on maximal period
linear recursions over a finite field. Thus, the discrepancy and exponential
sum results for both the types of generators are similar [Niederreiter 1992].
However, a result for SRGs analogous to that in Eq. (4) is not known. It is
open whether or not such a cross-correlation result holds for SRGs, but it is
widely thought to.
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2.3 Lagged-Fibonacci Generators

In the previous sections we have discussed generators that can be parallel-
ized by varying a parameter in the underlying recursion. In this section we
discuss the additive lagged-Fibonacci generator (ALFG): a generator that
can be parameterized through its initial values. The ALFG can be written
as

xn 5 xn2j 1 xn2k ~mod 2m!, j , k. (7)

In recent years the ALFG has become a popular generator for serial as well
as scalable parallel machines [Makino 1994]. In fact, the generator with
j 5 5, k 5 17, and m 5 32 was the standard PPRNG in the Thinking
Machines Connection Machine Scientific Subroutine Library. This genera-
tor has become popular for a variety of reasons: (1) it is easy to implement,
(2) it is cheap to compute using Eq. (7), and (3) the ALFG does well on
standard statistical tests [Marsaglia 1985].

An important property of the ALFG is that the maximal period is ~2k

2 1!2m21. This occurs for very specific circumstances [Brent 1994; Marsa-
glia and Tsay 1985], from which one can infer that this generator has
2 ~k21!3~m21! different full-period cycles [Mascagni et al. 1995a]. This means
that the state space of the ALFG is toroidal, with Eq. (7) providing the
algorithm for movement in one of the torus dimensions. It is clear that
finding the algorithm for movement in the other dimension is the basis of a
very interesting parameterization. Since Eq. (7) tells us how to cycle over
the full period of the ALFG, one must find a seed that is not in a given
full-period cycle to move in the second dimension. The key to moving in this
second dimension is to find an algorithm for computing seeds in any given
full-period cycle.

A very elegant algorithm for movement in this second dimension is based
on a simple enumeration as follows. One can prove that the initial seed,
$x0, x1, . . . , xk21%, can be bitwise initialized using the following template:

m.s.b. l.s.b.
bm21 bm22 . . . b1 b0

■ ■ . . . 0 0 xk21

0 ■ ■ 0 xk22···
···

···
···

···
■ 0 . . . ■ 0 x1

■ ■ . . . ■ 1 x0 (8)

Here each square is a bit location to be assigned. Each unique assignment
gives a seed in a provably distinct full-period cycle [Mascagni et al. 1995a].
Note that here the least-significant bits, b0, are specified to be a fixed,
nonzero pattern. If one allows an O~k2! precomputation to find a particular
least-significant-bit pattern then the template is particularly simple:
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m.s.b. l.s.b.
bm21 bm22 . . . b1 b0

■ ■ . . . ■ b0k21 xk21

0 ■ . . . ■ b0k22 xk22···
···

···
···

···
■ ■ . . . ■ b01 x1

0 0 . . . 0 b00 x0 (9)

Given the elegance of this explicit parameterization, one may ask about
the exponential sum correlations between these parameterized sequences.
It is known that certain sequences are more correlated than others as a
function of the similarity in the least-significant bits in the template for
parameterization [Mascagni et al. 1995b]. However, it is easy to avoid all
but the most uncorrelated pairs in a computation [Pryor et al. 1994]. In this
case there is extensive empirical evidence that the full-period exponential
sum correlation between streams is O~ Î~2k21!2m21!, the square root of
the full-period. This is essentially optimal. Unfortunately, there is no
analytic proof of this result, and improvement of the best known analytic
result [Mascagni et al. 1995b] is an important open problem in the theory of
ALFGs.

Another advantage of the ALFG is that one can implement these gener-
ators directly with floating-point numbers to avoid the constant conversion
from integer to floating point that accompanies the use of other generators.
This is a distinct speed improvement when only floating-point numbers are
required in the Monte Carlo computation. However, care must be taken to
maintain the identity of the corresponding integer recursion when using
the floating-point ALFG in parallel to maintain the uniqueness of the
parallel streams. A discussion of how to ensure fidelity with the integer
streams can be found in Brent [1992].

An interesting cousin of the ALFG is the multiplicative lagged-Fibonacci
generator (MLFG). It is defined by

xn 5 xn2j 3 xn2k ~mod 2m!, j , k. (10)

While this generator has a maximal-period of ~2k21!2m23, which is a
quarter the length of the corresponding ALFG [Marsaglia and Tsay 1985],
it has empirical properties considered to be superior to ALFG’s [Marsaglia
1985]. Of interest for parallel computing is that a parameterization analo-
gous to that of the ALFG exists for the MLFG [Coddington 1996; 1997;
Mascagni 1997].

3. SPRNG

The SPRNG library is currently in its first, full, version 1.0 release.
Moreover SPRNG is now supported and maintained by NCSA under their
high-performance software activities funded by the NSF under PACI. In
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addition, there has been considerable interest from most of the high-
performance computing vendors in using SPRNG as a common, parallel
pseudorandom-number generation library on their machines. Thus
SPRNG, itself, will be a lasting contribution to mathematical software for
parallel Monte Carlo computations.

SPRNG is designed to use parameterized pseudorandom-number genera-
tors to provide random-number streams to parallel processes. SPRNG
includes the following:

—Several, qualitatively distinct, well-tested, scalable PRNGs

—Initialization without interprocessor communication

—Reproducibility by using the parameters to index the streams

—Reproducibility controlled by a single “global” seed

—Minimization of interprocessor correlation with the included generators

—A uniform C, C11, Fortran, and MPI interface

—Extensibility

—An integrated test suite including physical tests

The decision to use parameterized generators was based on work of the
author in parameterizing several different, common PRNGs to provide
full-period streams of random numbers for each unique parameter value.
These generators then formed the core of the generators currently available
in SPRNG:

—Additive lagged-Fibonacci: xn 5 xn2r 1 xn2s ~mod 2m!

—Multiplicative lagged-Fibonacci: xn 5 xn2r 3 xn2s ~mod 2m!

—Prime modulus multiplicative congruential: xn 5 axn21 ~mod m!

—Power-of-two modulus linear congruential: xn 5 axn 1 b ~mod 2m!

—Combined multiple recursive generator: zn 5 xn 1 yn 3 232, where xn is
a linear congruential generator modulo 264 and where yn satisfies yn 5
107374182yn21 1 104480yn25 ~mod 2147483647!

All the above generators can be thought of as being parameterized by a
simple integer-valued function f~ z!, where f~i! gives the appropriate param-
eter for the ith random-number stream. Given this uniformity, the random-
number streams are mapped onto the binary tree through the canonical
enumeration via the index i. This allows us to take the parameterization
and use it to produce new streams from existing streams without the need
for interprocessor communication. We accomplish this by allowing a given
stream access only to those streams associated with the subtree rooted at
the given stream. This can be used to automatically manage static and
dynamic creation of streams, and prohibits reuse of streams. To permit a
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calculation to be redone with different random numbers, we can apply a
mixing function ps~ z! so that we map the streams onto the binary tree via
the index ps~i! instead of just i. The function ps~ z! is a permutation
parameterized by the global seed s. Different values of s give different
permutations and thus map the streams onto the binary tree in different
yet distinct ways. In our initial work with parallelizing ALFGs, we built
ps~ z! up from an SRG, where s was a 31-bit seed to the same-size SRG. We
found that the SRG gave unexpected interstream correlations, so we
changed over to an analogous LCG, which eliminated the correlations.
Because of this experience we feel that a very interesting area for future
research is in characterizing and implementing good permutation func-
tions.

SPRNG was also designed to be flexible, and to be as easy to use as
possible. The Monte Carlo community is very conservative, and many
groups use PRNGs that have been handed down the generations (some-
times all the way back to Lehmer or Metropolis!). Thus, we not only
developed the library in collaboration with a member of this conservative
community, but we added the ability to extend the library with a user
supplied generator. Thus, users may add their own PRNG by rewriting two
dummy SPRNG functions and recompiling SPRNG. This then gives a user
access to their own generator within the SPRNG parallel infrastructure.
This is a powerful capability, and our own implementational experience has
shown that any implementation must be thoroughly tested, empirically, to
prevent unforeseen correlations within streams (we found such unantici-
pated correlations ourselves in very carefully thought-out implementa-
tions). Thus SPRNG includes a comprehensive testing suite to validate new
generators. Together, the extensibility and testing suite aids both users
wanting to implement their own generators in parallel, and provides
library developers a powerful rapid-prototyping tool.

Through the default generators, SPRNG is a tool for parallel pseudoran-
dom-number generation. The results obtained are also reproducible, and
SPRNG provides a simple way to run on distributed-memory parallel
machines using popular languages and parallel paradigms and supports
distribution on a heterogeneous collection of machines.3 When a different
PRNG is desired, e.g., when a particular PRNG is thought to give spurious
results in a given application, a qualitatively different generator can
replace the original by merely recompiling the user program with calls to
the appropriate new SPRNG generator.4 Finally, new PRNGs can be
incorporated into SPRNG with little more than coding the generation and
initialization routines and recompiling SPRNG.

3In fact, the developers of CONDOR, a distributed computing tool, plan to incorporate SPRNG
directly into CONDOR to make CONDOR a comprehensive tool for Monte Carlo on distributed
heterogeneous collections of machines; see Litzkow et al. [1998]. Preliminary work by one of
the authors and a colleague has already been accomplished [Zhou and Mascagni 1999].
4Version 1.0 of SPRNG has separate generators in one of several separate SPRNG libraries.
The currently available version of SPRNG, version 2.0, has all generators in a single library.

Algorithm 806: SPRNG • 447

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.



It is important to remember that SPRNG was designed initially to
provide support for distributed-memory multiprocessor systems. As such,
certain parallel random-number tasks are very easy with SPRNG, while
others require some work. As an example of the latter, suppose one wants
to use SPRNG to produce a code that uses the same random numbers on
any number of processors. To do so, one must begin with a Monte Carlo
computation that has an a priori decomposition of the random numbers
used into explicit substreams. This is because each SPRNG generator is
based on a parameterized generator, and so within a certain type of
generator it is usually not the case that random-number substreams are
part of a single generator’s full period. Thus, the easiest way to produce a
code that uses the same random numbers on any number of processors is to
break up the random-number use into discrete, known blocks and use the
blocks in the order that they are provided by SPRNG, independently of the
number of processors. In fact, this is a very easy job for most Monte Carlo
applications, and once such a code is written it may be efficiently and
reproducibly executed on a wide variety of parallel, clustered, and distrib-
uted machines.

3.1 Using SPRNG: Some Examples

The SPRNG library has extensive on-line documentation available on the
SPRNG Web pages. Thus the curious reader is referred to these Web pages
for a detailed tutorial and examples. In this article we present the bare
minimum required for a user to use SPRNG via the “simple” interface.
Below we show the definition of the init_sprng routine along with a
description of all of the inputs required to call init_sprng . This is the
routine that one calls to initialize the various random-number streams for
parallel use.

int *init_sprng(int streamnum, int nstreams, int seed, int param)
SPRNG_POINTER init_sprng(integer streamnum, integer nstreams,

integer seed, integer param)

—init_sprng initializes random-number streams.

—streamnum is the stream number and is typically the process number
and must be in [0,nstreams-1] .

—nstreams is the number of different streams that will be initialized
across all the processes.

—seed is the seed to the generators. The seed is not the starting state of
the sequence; rather, it is an encoding of the starting state. It is
acceptable (and recommended) to use the same seed for all the streams.

—param selects the appropriate parameters (e.g., the multiplier for a
Linear Congruential Generator or the lag for a Lagged Fibonacci Gener-
ator).

—init_sprng returns the ID of the stream.
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Below we have a simple C program that shows how to initialize several
SPRNG PRNGs in parallel using MPI. This example shows how easy it is to
replace existing PRNGs with those from SPRNG. Note, in the subsequent
example, we use SPRNG’s “Simple” interface which only has two argu-
ments in its init_sprng call. In fact, with the “Simple” interface one can
avoid calling init_sprng and instead use the default settings. In our
general discussion of init_sprng given above, we show its use using the
“Default” interface, which permits the user to specify all four arguments as
described.

/*****************************************************************/
/* Demonstrates sprng use with one stream per process */
/* A distinct stream is created on each process and */
/* then prints a few random numbers. */
/*****************************************************************/

#include
#include /* MPI header file */

#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /* use MPI to find number of processes */
#include “sprng.h” /* SPRNG header file */

#define SEED 985456376

main(int argc, char *argv[])
{

double rn;
int i, myid;

/************************** MPI calls *************************/

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myid); /* find process id */

/********************** Initialization ************************/

init_sprng(SEED,SPRNG_DEFAULT); /* initialize stream */
printf(“Process %d, print information about stream: \n”, myid);
print_sprng();

/******************** print random numbers ********************/

for (i 50;i ,3;i 11)
{

rn 5 sprng(); /* generate double-precision random number */
printf(”Process %d, random number %d: %.14f\n”, myid, i 11, rn);

}

MPI_Finalize(); /* Terminate MPI */

}
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4. SPRNG TEST SUITE

The results of Monte Carlo (MC) computations can be adversely affected by
defects (essentially, correlations) in the random-number sequences used. A
PPRNG must be tested for two types of correlations—(i) intrastream
correlation (correlation between numbers in the same stream), as for any
serial generator, and (ii) interstream correlation for correlations between
random-number streams on different processes. Since bounds on these
correlations are difficult to prove mathematically, large empirical tests are
necessary. Many of the popular PRNGs in use today were tested when
computational power was much lower, and hence they were evaluated with
much smaller test sizes. Defects were later discovered in several such
generators when used in simulations [Ferrenberg et al. 1992; Grassberger
1993]. The SPRNG generators, on the other hand, have passed some of the
largest empirical random-number tests ever undertaken; many of the
statistical tests being a few orders of magnitude larger than previous
records.

SPRNG, therefore, comes with a test suite to verify the quality of serial
and parallel random-number sequences. We corrected all the defects in our
earlier generators so that they pass these standard PRNG tests, making
the SPRNG generators some of the best tested available. The SPRNG test
suite can also be used by others to test their own generators. We consider
this to be important, because defects are often observed in generators as
the size of the simulations increase. As computers become faster, new
generators will inevitably have to be developed and tested.

The SPRNG test suite consists of (i) statistical tests and (ii) physically
based tests. The statistical tests are designed so that the expected value of
some test statistic is known for an independent identically distributed
random sample from the uniform distribution. The empirically generated
random-number stream is then subjected to the same test, and the statistic
obtained is compared against the expected value. It is also necessary to
verify the quality of a PRNG by using it in real applications. Thus we also
include physically based tests which use random numbers in a manner
similar to that in a real application, except that the exact solution is
known. The advantage of the statistical tests is that they are usually much
faster than the physically based randomness tests. On the other hand, the
latter use random numbers in the same manner as real applications, and
can thus be considered more representative, and they test correlations of
more numbers at a time.

4.1 Statistical Tests

The tests described by Knuth [1998] and those implemented in the DIE-
HARD package (ftp://stat.fsu.edu/pub/diehard) are considered de facto stan-
dards for serial PRNGs. The SPRNG test suite includes all the tests
described by Knuth. We have modified these tests to test for parallel
correlation in the following manner: we interleave several streams to form
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a new stream, and then test this new stream with conventional tests as
shown in Figure 1.

We form several such new streams, and test several blocks of random
numbers from each stream. Usually the result of the test for each block is a
Chi-square value. We take the Chi-square statistics for all the blocks and
use the Kolmogorov-Smirnov (KS) test to verify that they are distributed
according to the Chi-square distribution. If the KS percentile is between
2.5% and 97.5%, then the test is passed by the random-number generator.

The tests in the SPRNG test suite take several arguments. The first few
arguments are common to all the statistical tests, and are explained below.
The test specific arguments will be explained later. We also have a Java
Test Wizard that helps users specify the test arguments in the correct
order. The SPRNG tests are called as follows:

test.lib nstreams ncombine seed param nblocks skip test_args

where the name of the executable test.lib is formed by concatenating the
name of the test and the random-number library from which the random
numbers are generated. For example:

equidist.lc g 4 2 0 0 3 1 2 100
mpirun -np 2 equidist.lc g 4 2 0 0 3 1 2 100

perform the equidistribution test with the 48-bit Linear Congruential
Generator with prime addend in a serial and parallel machine respectively.

The argument ncombine (5 2 in our example) indicates the number of
streams we interleave to form a new stream. We form nstreams (5 4) such
new streams and test nblocks (5 3) blocks of random numbers from each
new stream. The argument seed (5 0) is the encoded seed to the random-

Fig. 1. We interleave streams to form a new stream, and test this stream with conventional
serial tests.
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number generator, and param (5 0) is the parameter to the generator. The
argument skip (5 1) indicates how many random numbers we skip after
testing a block before we start a test on the next block. The rest of the
arguments in our example are specific to that test. Note that we can
perform tests on individual streams (tests for intrastream correlations) by
setting ncombine to 1. The meaning of the test parameters is clarified in
Figure 2

The results of the example given above are as follows:
sprng/TESTS:sif% mpirun -np 2 equidist.lc g 4 2 0 0 3 1 2 100
equidist.lc g 4 2 0 0 3 1 2 100
Result: KS value 5 0.601752
KS value prob 5 17.50

The KS value prob line gives the KS percentile for the entire set of tests.
Since it is between 2.5% and 97.5%, we consider this example to have
passed. It should be noted that the real tests are much larger than this
simple example.

Note. When we state that a particular test is parallel, we are referring
to the fact that it can be used to test for correlations between streams. We
do not mean that it actually runs on multiple processors. All the SPRNG
statistical tests can run either on a single processor or on multiple
processors.

We next briefly describe each test followed by its test specific arguments.
We also give the number of random numbers tested and asymptotic
memory requirements (in bytes, assuming that an integer is four bytes and
double precision is eight bytes). This should helps users estimate the time
required for their calculations from smaller sample runs.

The details concerning these tests are presented in Knuth [1998], unless
we mention otherwise.

Fig. 2. Illustration of the test parameters from the example given above.
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(1) Collisions test: n log md log d

We concatenate the log d most significant bits from log md random
integers to form a new log2 m 5 log md p log d bit random integer. We
form n ,, m such numbers. A collision is said to have occurred each
time some such number repeats. We count the number of collisions and
compare with the expected number. This test thus checks for absence of
logd-dimensional correlation. It is one of the most effective tests among
those proposed by Knuth.

Number of random numbers tested: n p log md

Memory: 8 p nstreams p nblocks 1 4 p n 1 2log md p log d

(2) Coupon collector’s test: n t d

We generate random integers in @0, d 2 1#. We then scan the sequence
until we find at least one instance of each of the d integers, and note
the length of the segment over which we found this complete set. For
example, if d 5 3 and the sequence is 0, 2, 0, 1, ..., then the length of
the first segment over which we found a complete set of integers is 4.
We continue from the next position in the sequence until we find n such
complete sets. The distribution of lengths of the segments is compared
against the expected distribution. In our analysis, we lump segments of
length greater than t together.

Number of random numbers tested: n p d p log d

Memory: 8 p nstreams p nblocks 1 4 p d 1 16 p ~t 2 d 1 1!

(3) Equidistribution test: d n

We generate random integers in @0, d 2 1# and check whether they
come from a uniform distribution, that is, if each of the d numbers has
equal probability.

Number of random numbers tested: n

Memory: 8 p nstreams p nblocks 1 16 p d

(4) Gap test: t a b n

We generate floating-point numbers in ~0, 1! and note the gap in the
sequence between successive appearances of numbers in the interval
@a, b# in ~0, 1!. For example, if @a, b# 5 @0.4, 0.7# and the sequence is
0.1, 0.5, 0.9, 0.6, ..., then the length of the first gap (between the
numbers 0.5 and 0.6 is 2. We record n such gaps, and lump gap
lengths greater than t together in a category in our analysis.

Number of random numbers tested: n / ~b 2 a!

Memory: 8 p nstreams p nblocks 1 16 p t
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(5) Maximum-of-t test: n t

We generate t floating-point numbers in @0, 1! and note the largest
number. We repeat this n times. The distribution of this largest
number should be as xt.
Number of random numbers tested: n p m
Memory: 8 p nstreams p nblocks 1 16 p n

(6) Permutations test: m n

We generate m floating-point numbers in ~0, 1!. We can rank them
according to their magnitude; the smallest number is ranked 1, . . . ,
and the largest is ranked m. There are m! possible ways in which the
ranks can be ordered. For example, if m 5 3, then the following orders
are possible: ~1, 2, 3!, ~1, 3, 2!, ~2, 1, 3!, ~2, 3, 1!, ~3, 1, 2!, ~3, 2, 1!.
We repeat this test n times and check if each possible permutations
was equally probable.
Number of random numbers tested: n p m
Memory: 8 p nstreams p nblocks 1 8 p m 1 16 p ~m!!

(7) Poker test: n k d

We generate k integers in @0, d 2 1# and count the number of distinct
integers obtained. For example if k 5 3, d 5 3, and the sequence is
0, 1, 1, . . . , then the number of distinct integers obtained in the first
three-tuple is 2. We repeat this n times and compare with the expected
distribution for random samples from the uniform distribution.
Number of random numbers tested: n p k
Memory: 8 p nstreams p nblocks 1 0.4 p min~n, k!112 p k 1 4 p d

(8) Runs up test: t n
We count the length of a “run” in which successive random numbers are
nondecreasing. For example if the sequence is 0.1, 0.2, 0.4, 0.3, then
the length of the first run is 3. We repeat this n times and compare
with the expected distribution of run lengths for random samples from
the uniform distribution. Runs of length greater than t are lumped
together during our analysis.
Number of random numbers tested: 1.5 p n
Memory: 8 p nstreams p nblocks 1 16 p t

(9) Serial test: d n

We generate n pairs of integers in @0, d 2 1#. Each of the d2 pairs
should be equally likely to occur.
Number of random numbers tested: 2 p n
Memory: 8 p nstreams p nblocks 1 16 p d p d
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4.1.1 Inherently Parallel Tests. Unlike the preceding tests which modify
sequential tests to test for correlations between streams, the tests men-
tioned below are inherently parallel. The meaning of the arguments for
these tests are slightly different from those for the preceding tests. Since
these tests are inherently parallel, we need not interleave streams, and
thus the second argument ncombine should be set to 1. The first argument
nstreams is the total number of streams tested. All these streams are
tested simultaneously, rather than independently as in the previous case.
The rest of the arguments are identical to the previous case.

(1) Blocking (sum of independent distributions) test: n groupsize
The central limit theorem states that the sum of groupsize independent
variables with zero mean and unit variance approaches the normal
distribution with mean zero and variance equal to groupsize. To test for
the independence of random-number streams, we form such random
variables and check for normality. Clearly, with groupsize small, we
expect deviation from normality. However, it is well known that 12
uniform random numbers almost completely converge to the normal.
We add groupsize .. 100 random numbers in ~0, 1! from each stream
to form a sum. We generate n such sums and check if their distribution
is normal. (Note: We also computed the exact distribution and deter-
mined that the assumption of normality was acceptable for the number
of random numbers we added in our tests.)

(2) Fourier Transform test: n
We fill a two-dimensional array with random numbers. Each row of the
array is filled with n random numbers from a different stream. We
calculate the Fourier coefficients and compare with the expected values.
This test is repeated several times, and we check if there are particular
coefficients that are repeatedly “bad.” The current implementation uses
the FFT routine provided by SGI. Users need to modify this test to the
FFT routine available on their local machine.

4.2 Physically Based Tests

(1) Ising model: For statistical mechanical applications, the two-dimen-
sional Ising model (a simple lattice spin model) is often used, since the
exact answers for the Energy and Specific Heat are known [Beale 1996].
Since the Ising model is also known to have a phase transition, this
system is sensitive to long-range correlations in the PRNG. There are
several different algorithms, such as the Metropolis and the Wolff
algorithms, that can be used to simulate the Ising model, and the
random numbers enter quite differently in each algorithm. Thus, this
application is very popular in testing random-number generators and
has often detected defects in generators [Coddington 1994; 1996; Fer-
renberg et al. 1992; Selke et al. 1993; Vattulainen et al. 1994]. We test
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parallel generators on the Ising model application by assigning a
different random-number stream for each site.
Our current Ising model codes run on a single processor. Even the
“parallel” tests are actually serial simulations of a parallel run, in
which we use a different random-number stream for each lattice site.
We have implemented the Metropolis and the Wolff algorithms. These
tests take six command line arguments:

seed param lattice_size block_size discard_blocks use_blocks

For example:
mpirun -np 1 metropolis.lcg64 111 0 16 10 10 100

runs the Metropolis algorithm test using the 64-bit Linear Congruential
Generator. The seed is 111, and the parameter to the generator is 0
(which indicates the default multiplier for the LCG). We use a 16 3

16 lattice. The simulations starts with a random initial configuration.
The simulation then performs several sweeps through the entire lattice.
We record results of blocks of 10 sweeps. We discard the results of the
first 10 blocks (thus a total of 100 sweeps) and then use the results of
the next 100 blocks. We recommend that at least the first 1000 sweeps
be discarded, though this number can be smaller for the Wolff algo-
rithm. (In the actual RNG tests, we discarded the first 100,000 sweeps,
so that the initial configuration would be “forgotten.”) The last parame-
ter must be a power of 10. The tests are carried out with J / KbT 5

0.4406868, where J is the energy per bond and where T is the
temperature. This parameter can be changed in the code, to run the
tests at a different temperature. Sample results are shown below:

Metropolis Algorithm with Serial PRNGs

lattice_size 5 16, block_size 5 10, discard_blocks 5 10,

use_blocks 5 100

64-bit Linear Congruential Generator with Prime Additive Constant

seed 5 111, stream_number 5 0 parameter 5 0

Streams are synchronized!
Energy Energy 2error Sigma 2Energy . . .

0. 21.4737500 0.0206851 0.0465998 . . .

1. 21.4819062 0.0288413 0.0141733 . . .

The important fields are the Energy_error which gives the observed
error in Energy, and the Sigma_Energy which gives the standard error
for the energy. We have similar fields for the specific heat, Cv. The first
line is obtained after 10 blocks of data have been averaged. Each
subsequent line is the average of 10 times the previous run.

(2) Random walk tests: In the Random Walk test, we start a “Random
Walker” from a certain position on a two-dimensional lattice. The
random walker then takes a certain number of steps to other lattice
points. The direction of each step is determined from the value returned
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by a random number generated. A series of such tests is performed, and
for each such test the final position is noted [Vattulainen et al. 1994].
The first six command line arguments for this test are as for the
statistical tests. The seventh command line argument is the length of
each walk. For example:

mpirun -np 2 random_walk.lcg6 4 2 3 0 0 10 0 100

runs the (parallel) random walk test using the 64-bit Linear Congruen-
tial Generator, where we interleave three streams at a time to produce
a new stream; two such streams being tested. The seed is 0, and the
parameter to the generator is 0 (which indicated the default multiplier
for the LCG). We perform 10 tests per stream. Each test uses a walk
length of 100.

4.3 Summary of Test Results

We shall now give a summary of the tests results, since this is a major
factor in the quality of the random-number software. All the SPRNG
generators were tested with the DIEHARD suite, and they all passed these
tests, except that the lower-order bits of the 48-bit LCG are not very
random, as expected. The tests from Knuth [1998] mentioned above were
performed, including their parallel versions. At least around 1011 random
numbers were tested for each generator in each test. The collisions test
used 1012 random numbers. The serial gap test for the ALFG used 1013

random numbers—the largest empirical random-number test ever accom-
plished. The parallel gap test for this generator used 1012 random num-
bers. (ALFGs are susceptible to the gap test, hence the larger tests for this
generator.) We also performed the blocking test for parallel generators, and
the Metropolis and Wolff algorithm for the Ising model with at least 1011

random numbers. More details can be found at our Web site (http://
sprng.cs.fsu.edu).

5. CONCLUSIONS AND THE FUTURE OF SPRNG

We have presented a considerable amount of detail about parallel pseudo-
random-number generation through parameterization. In particular, we
have described the SPRNG library as an example of a comprehensive
library for parallel Monte Carlo based on parameterized PRNGs. In addi-
tion, we have described in detail the suite of randomness tests that is part
of the SPRNG library.

While care has been taken in constructing generators for the SPRNG
package, the designers realize that there is no such thing as a PRNG that
behaves flawlessly for every application. This is even more true when one
considers using scalable platforms for Monte Carlo. The underlying recur-
sions that are used for PRNGs are simple, and so they inevitably have
regular structure. This deterministic regularity permits analysis of the
sequences and is the PRNG’s Achilles heel. Thus any large Monte Carlo
calculation must be viewed with suspicion. There is always the possibility
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that a numerical result produced is incorrect due to an unfortunate
interplay between the application and the PRNG used. The only way to
prevent this is to treat each new Monte Carlo derived result as an
experiment that must be controlled. The tools required to control problems
with the PRNG include the ability to use another PRNG in the same
calculation. In addition, one must be able to develop and use entirely new
PRNGs as well. These capabilities, as well as parallel and serial tests of
randomness [Cuccaro et al. 1995; Srinivasan et al. 1999b], are components
that make the SPRNG package unique among tools for parallel Monte Carlo.

In the future, SPRNG will be extended in several ways. First, the
Accelerated Strategic Computing Initiative (ASCI) has begun support for
further SPRNG development. This work will be aimed at adapting the
existing SPRNG generators and finding new generators for SPRNG to be
more appropriate for ASCI-class Monte Carlo applications that will run on
the current and future generations of ASCI hardware. Among the genera-
tors that are planned for incorporation into SPRNG are the previously
mentioned “Mersenne Twister” SRG and both the implicit and explicit
inversive congruential generator [Eichenauer and Lehn 1986; Niederreiter
1994; Hellekalek et al. 2000]. Besides the search for more ASCI-appropri-
ate generators, SPRNG will also be generalized to include explicit support
for distributed computing on heterogeneous systems by incorporating
SPRNG into the CONDOR [Litzkow et al. 1998; Zhou and Mascagni 1999]
distributed computing environment. The ability to use SPRNG on distrib-
uted systems will be used to provide computing cycles for several Web-
based applications involving SPRNG. These include the development of a
Web-based interface to a larger and more comprehensive testing suite and
a Monte Carlo numerical integration server. In addition, the design of
SPRNG will be used as a model for the construction of a library to provide
quasirandom numbers for parallel and distributed systems. Quasirandom
numbers [Niederreiter 1988] are very uniform in their metrical distribution
and hence are more effective at error reduction on certain Monte Carlo
applications (such as numerical integration) than are pseudorandom num-
bers. However, while pseudorandom numbers are designed to pass tests of
randomness, quasirandom numbers are often highly correlated by construc-
tion and thus fail these same randomness tests. Nonetheless, the list of
applications that benefit from the use of quasirandom numbers is sufficient
in size to justify the efforts to provide software for their use on new
architectures. Finally, SPRNG will be the random-number server in a
planned problem solving environment (PSE) for Monte Carlo computations
based on the evaluation of path integrals on a wide range of architectures.
Such a PSE for path integrals would have a wide range of applicability
from particle physics to the pricing of financial derivatives.
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