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FAST MONTE CARLO ALGORITHMS FOR MATRICES I:
APPROXIMATING MATRIX MULTIPLICATION∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. Motivated by applications in which the data may be formulated as a matrix, we
consider algorithms for several common linear algebra problems. These algorithms make more effi-
cient use of computational resources, such as the computation time, random access memory (RAM),
and the number of passes over the data, than do previously known algorithms for these problems.
In this paper, we devise two algorithms for the matrix multiplication problem. Suppose A and B
(which are m × n and n × p, respectively) are the two input matrices. In our main algorithm, we
perform c independent trials, where in each trial we randomly sample an element of {1, 2, . . . , n} with
an appropriate probability distribution P on {1, 2, . . . , n}. We form an m × c matrix C consisting
of the sampled columns of A, each scaled appropriately, and we form a c × n matrix R using the
corresponding rows of B, again scaled appropriately. The choice of P and the column and row scaling
are crucial features of the algorithm. When these are chosen judiciously, we show that CR is a good
approximation to AB. More precisely, we show that

‖AB − CR‖F = O(‖A‖F ‖B‖F /
√
c),

where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2
F =

∑
i,j

A2
ij . This algorithm can be implemented

without storing the matrices A and B in RAM, provided it can make two passes over the matrices
stored in external memory and use O(c(m+n+p)) additional RAM to construct C and R. We then
present a second matrix multiplication algorithm which is similar in spirit to our main algorithm.
In addition, we present a model (the pass-efficient model) in which the efficiency of these and other
approximate matrix algorithms may be studied and which we argue is well suited to many applications
involving massive data sets. In this model, the scarce computational resources are the number of
passes over the data and the additional space and time required by the algorithm. The input matrices
may be presented in any order of the entries (and not just row or column order), as is the case in
many applications where, e.g., the data has been written in by multiple agents. In addition, the input
matrices may be presented in a sparse representation, where only the nonzero entries are written.
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1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. Examples
of such computations include matrix multiplication, the computation of the singular
value decomposition of a matrix, and the computation of compressed approximate
decompositions of a matrix. In this paper, we present a computational model for
computing on massive data sets (the pass-efficient model) in which our algorithms
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may naturally be formulated; we also present two algorithms for the approximation
of the product of two matrices. In a second paper we present two algorithms for the
computation of low-rank approximations to a matrix [11]. Finally, in a third paper
we present two algorithms to compute a compressed approximate decomposition to
a matrix that has several appealing properties [12]. We expect our algorithms to
be useful in many applications where data sets are modeled by matrices and are
extremely large. For example, in information retrieval and data mining (two rapidly
growing areas of research in computer science and scientific computation that build
on techniques and theories from fields such as statistics, linear algebra, database
theory, pattern recognition, and learning theory) a large collection of m objects, e.g.,
documents, genomes, images, or web pages, is implicitly presented as a set of points
in an n-dimensional Euclidean space, where n is the number of features that describe
the object. This collection may be represented by an m × n matrix A, the rows of
which are the object vectors and the columns of which are the feature vectors.

Recent interest in computing with massive data sets has led to the development of
computational models in which the usual notions of time efficiency and space efficiency
have been modified [23, 19, 3, 14, 10, 5]. In the applications that motivate these data-
streaming models [19, 5], e.g., the observational sciences and the monitoring and
operation of large networked systems, the data sets are much too large to fit into
main memory. Thus, they are either not stored or are stored in a secondary storage
device which may be read sequentially as a data stream but for which random access
is very expensive. Typically, algorithms that compute on a data stream examine the
data stream, keep a small “sketch” of the data, and perform computations on the
sketch. Thus, these algorithms are usually randomized and approximate, and their
performance is evaluated by considering resources such as the time to process an item
in the data stream, the number of passes over the data, the additional workspace and
additional time required, and the quality of the approximations returned. (Note that
in some cases the term “data-streaming model” refers to a model in which only a
single pass over the data is allowed [19, 5].)

The motivation for our particular “pass-efficient” approach is that in modern
computers the amount of external memory (e.g., disk storage or tape storage) has
increased enormously, while RAM and computing speeds have increased, but at a
substantially slower pace. Thus, we have the ability to store large amounts of data,
but not in RAM, and we do not have the computational ability to process these data
with algorithms that require superlinear time. A related motivation is that input-
output rates have not increased proportionally. Thus, the size of the data inputs (as
limited, e.g., by the size of disks) has increased substantially faster than the rate at
which we can access the data randomly.

In order to provide a framework in which to view the algorithms presented herein,
we first introduce and describe the pass-efficient model of data-streaming computa-
tion [10]. In the pass-efficient model the computational resources are the number
of sequential-access passes over the data and the additional RAM space and the
additional time required. Thus, our algorithms are quite different from traditional
numerical analysis approaches and generally fit within the following framework. Our
algorithms will be allowed to read the matrices from external storage a few—e.g., one
or two or three—times and keep a small randomly chosen and rapidly computable
“sketch” of the matrices in RAM. Our algorithms will also be permitted additional
RAM space and additional time in order to perform computations on the “sketch.”
The results of these computations will be returned as approximations to the solution
of the original problem.
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In all of our algorithms, an important implementation issue will be how to form
the random sample. An obvious choice is to use uniform sampling, where each data
object is equally likely to be picked. Uniform sampling can be performed blindly, in
which case the sample to be chosen can be decided before seeing the data. Even when
the number of data elements is not known in advance an element can be selected
uniformly at random in one pass over the data; see Lemma 1. Uniform sampling fits
within our framework and is useful for certain (restricted) classes of problems. To
obtain much more generality, we will sample according to a judiciously chosen (and
data-dependent) set of nonuniform sampling probabilities. This nonuniform sampling,
in which in the first pass through the data we compute sampling probabilities (e.g.,
we may keep rows or columns of a data matrix with probability proportional to the
square of their lengths) and in the second pass we draw the sample, offers substantial
gains. For example, it allows us to approximately solve problems in sparse matrices
as well as dense matrices.

The idea of sampling rows or columns of matrices in order to approximate various
operations is not new; indeed, a motivation for our main matrix multiplication algo-
rithm came from [15]. In this paper and accompanying work [11, 12], we extend those
ideas and develop algorithms with provable error bounds for a variety of matrix oper-
ations. One of the main contributions of our work is to demonstrate that a “sketch”
consisting of a small judiciously chosen random sample of rows and/or columns of the
input matrix or matrices is adequate for provably rapid and efficient approximation of
several common matrix operations. We believe that the underlying principle of using
nonuniform sampling to create “sketches” of the data in a small number of passes
(and “pass-efficient” approaches more generally) constitutes an appealing and fruitful
direction for algorithmic research in order to address the size and nature of modern
data sets.

In the present paper, we present two simple and intuitive algorithms which, when
given an m× n matrix A and an n× p matrix B, compute an approximation to the
product AB. In the first algorithm, the BasicMatrixMultiplication algorithm of
section 4, we perform c independent trials, where in each trial we randomly sample an
element of {1, 2, . . . , n} with an appropriate probability distribution P on {1, 2, . . . , n}.
We form an m × c matrix C consisting of the sampled columns of A, each scaled
appropriately, and we form a c×n matrix R using the corresponding rows of B, again
scaled appropriately. The choice of P and the column and row scaling are crucial
features of the algorithm. When these are chosen judiciously, we show that CR is a
good approximation to AB. More precisely, we show that

‖AB − CR‖F = O( ‖A‖F ‖B‖F /
√
c),

where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2
F =

∑
i,j A

2
ij , holds in expectation

and with high probability. Thus, in particular, when B = AT we have that if c =
Ω(1/ε2), then ‖AAT −CCT ‖F ≤ ε ‖A‖2

F holds with high probability. This algorithm
can be implemented without storing the matrices A and B in RAM, provided it can
make two passes over the matrices stored in external memory and use O(c(m+n+p))
additional RAM; thus it will be efficient in the pass-efficient model.

In the second algorithm, the ElementwiseMatrixMultiplication algorithm
of section 5, which is an extension of ideas from [2, 1], elements of A and B, rather
than columns and rows, are randomly either zeroed out or kept and rescaled, thereby
constructing matrices Ã and B̃. Although this algorithm lacks a useful bound on
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‖AB − ÃB̃‖F , under appropriate assumptions a bound on the spectral norm of the
form

‖AB − ÃB̃‖2 = O( ‖A‖F ‖B‖F /
√
c)

holds with high probability.
After this introduction, we provide in section 2 a review of the relevant linear

algebra, and in section 3 we introduce the pass-efficient model of data-streaming com-
putation and discuss several technical sampling lemmas. In section 4 we introduce
and analyze in detail the BasicMatrixMultiplication algorithm to approximate
the product of two matrices. Then, in section 5 we describe and analyze the Ele-

mentwiseMatrixMultiplication algorithm which is based on the ideas of [2, 1].
Finally, in section 6 we provide a discussion and conclusion. In the appendix, we
provide further analysis of the BasicMatrixMultiplication algorithm.

2. Review of linear algebra. This section contains a review of some linear
algebra that will be useful throughout the paper. For more detail, see [18, 20, 25, 6]
and the references therein.

For a vector x ∈ R
n we let |x| =

(∑n
i=1 |xi|2

)1/2
denote its Euclidean length.

For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, denote the jth column of A as a

column vector and A(i), i = 1, . . . ,m, denote the ith row of A as a row vector. We
denote matrix norms by ‖A‖ξ, using subscripts to distinguish between various norms.
Of particular interest will be the Frobenius norm which is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij ,(1)

and the spectral norm which is defined by

‖A‖2 = sup
x∈Rn, x �=0

|Ax|
|x| .(2)

These norms are related to each other as ‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2.

3. The pass-efficient model and sampling lemmas. In this section, we
informally define a computational model in which the computational resources are
the number of passes over the data and the additional space and additional time
required. In addition, we present several technical sampling lemmas.

3.1. The pass-efficient model. The pass-efficient model of data-streaming
computation is a model that is motivated by the observation that in modern com-
puters the amount of disk storage, i.e., sequential access memory, has increased very
rapidly while random access memory (RAM) and computing speeds have increased at
a substantially slower pace [10]. Thus, one has the ability to store very large amounts
of data but does not have random access to the data. Additionally, processing the
data with algorithms that take low polynomial time or linear time with large constants
is prohibitive.

To model this phenomenon, we consider the pass-efficient model, in which the
three computational resources of interest are the number of passes over the data and
the additional space and time required [10]. The data are assumed to be stored in an
external disk space, to consist of elements whose size is bounded by a constant, and to
be presented to an algorithm on a read-only tape. The only access an algorithm has
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to the data is via a pass, where a pass over the data is a sequential read of the entire
input from disk where only a constant amount of processing time is permitted per bit
read. Note that this is a more restrictive notion of a pass over the data than in other
data-streaming models [23, 19, 14]; in particular, in the pass-efficient model only a
constant rather than a logarithmic (in the data input length) amount of computation
is permitted per bit read. In addition to the external disk space to store the data
and to a small number of passes over the data, an algorithm in the pass-efficient
model is permitted to use additional RAM space and additional computation time.
An algorithm operating in this model is considered pass-efficient if it requires a fixed
number of passes, independent of the input size, and additional space and time which
are sublinear in the length of the data stream in order to compute a “description” of
the solution, which is then returned by the algorithm. A description of the solution
is either an explicit solution (if that is possible within the specified additional space
and time) or an implicit representation of the solution that can be computed in the
allotted additional space and time, and that can be expanded into an explicit solution
with the additional expense of one pass over the data and linear (in the data input
length) additional space and time. Note that, depending on the application, this last
step may or may not be necessary. Note also that if the data are represented by
an m × n matrix, then the data stream has length O(mn) and an algorithm which
uses additional space and time that is linear in the number of data points or in the
dimensionality of the data points, i.e., that is O(m) or O(n), is sublinear in the length
of the data stream and thus is pass-efficient. We will be primarily interested in models
that require additional space and time that is either O(m+n) or constant with respect
to m and n.

The sparse-unordered representation of data is a form of data representation in
which each element of the data stream consists of a pair ((i, j), Aij) where the elements
in the data stream may be unordered with respect to the indices (i, j), and only the
nonzero elements of the matrix A need to be presented. This very general form is
suited to applications where, e.g., multiple agents may write parts of a matrix to a
central database and where one cannot make assumptions about the rules for write-
conflict resolution. The data stream read by algorithms in the pass-efficient model
is assumed to be presented in the sparse-unordered representation. Other related
methods of data representation have been studied within the data-streaming context;
see, e.g., [17] for applications to the problem of dynamic histogram maintenance.

3.2. Sampling lemmas. In this section we present two sampling primitives that
will be used by our algorithms. Consider the Select algorithm presented in Figure 1.
The following lemma establishes that in one pass over the data one can sample an
element according to certain probability distributions.

Lemma 1. Suppose that {a1, . . . , an}, ai ≥ 0, are read in one pass, i.e., one
sequential read over the data, by the Select algorithm. Then the Select algorithm
requires O(1), i.e., constant with respect to n, additional storage space and returns a
random i∗ sampled from the probability distribution Pr [i∗ = i] = ai/

∑n
i′=1 ai′ .

Proof. First, note that retaining the selected value and the running sum requires
O(1) additional space. The remainder of the proof is by induction. After reading

the first element a1, i∗ = 1 with probability a1/a1 = 1. Let D� =
∑�

i′=1 ai′ and
suppose that the algorithm has read a1, . . . , a� thus far and has retained the running
sum D� and a sample i∗ such that Pr [i∗ = i] = ai/D�. Upon reading a�+1 the
algorithm lets i∗ = � + 1 with probability a�+1/D�+1 and retains i∗ at its previous
value otherwise. At that point, clearly Pr [i∗ = � + 1] = a�+1/D�+1; furthermore for
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Select Algorithm.

Input: {a1, . . . , an}, ai ≥ 0, read in one pass, i.e., one sequential read, over the
data.

Output: i∗, ai∗ .

1. D = 0.
2. For i = 1 to n,

(a) D = D + ai.
(b) With probability ai/D, let i∗ = i and ai∗ = ai.

3. Return i∗, ai∗ .

Fig. 1. The Select algorithm.

i = 1, . . . , �, Pr [i∗ = i] = ai

D�
(1 − a�+1

D�+1
) = ai

D�+1
. By induction this result holds when

� + 1 = n and the lemma follows.
In a single pass over the data this algorithm can be run in parallel with O(s)

total memory units to return s independent samples i∗1, . . . , i
∗
s such that for each i∗t ,

t = 1, . . . , s, we have Pr [i∗t = i] = ai/
∑n

i′=1 ai′ .
The next lemma is a modification of the previous lemma to deal with the case

where a matrix is read in the sparse-unordered representation and one wants to choose
a row label with a certain probability. This can also be implemented in O(1) additional
space and time. Note that a trivial modification would permit choosing a column label.

Lemma 2. Suppose that A ∈ R
m×n is presented in the sparse-unordered represen-

tation and is read in one pass, i.e., one sequential read over the data, by the Select

algorithm. Then the algorithm requires O(1), i.e., constant with respect to m and n,

additional storage space and returns i∗, j∗ such that Pr [i∗ = i ∧ j∗ = j] = A2
ij/ ‖A‖2

F

and thus Pr [i∗ = i] = |A(i)|2/ ‖A‖2
F .

Proof. Since A2
i∗j∗ > 0 the first claim follows from Lemma 1; the second follows

since

Pr [i∗ = i] =

n∑
j=1

Pr [i∗ = i ∧ j∗ = j] =

n∑
j=1

A2
ij

‖A‖2
F

=
|A(i)|2

‖A‖2
F

.

Algorithms such as the Select algorithm, which select elements from a large pool
of elements whose size is initially unknown, have been called reservoir algorithms [28].

4. The basic matrix multiplication approximation algorithm. In this
section, which describes the main result of the paper, the BasicMatrixMultipli-

cation algorithm to approximate the product of two matrices is presented; it is
analyzed in this section and in the appendix. After describing the algorithm in sec-
tion 4.1 we describe its implementation and running time issues in section 4.2. In
section 4.3 we analyze the algorithm and provide error bounds for arbitrary probabil-
ity distributions; in section 4.4 error bounds are derived for probability distributions
which are nearly optimal in a well-defined sense. We provide further discussion of
the algorithm in section 6, and in the appendix we provide further analysis of the
BasicMatrixMultiplication algorithm.
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BasicMatrixMultiplication Algorithm.

Input: A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and {pi}ni=1 such that

pi ≥ 0 and
∑n

i=1 pi = 1.

Output: C ∈ R
m×c and R ∈ R

c×p.

1. For t = 1 to c,
(a) Pick it ∈ {1, . . . , n} with Pr [it = k] = pk, k = 1, . . . , n, independently

and with replacement.
(b) Set C(t) = A(it)/

√
cpit and R(t) = B(it)/

√
cpit .

2. Return C,R.

Fig. 2. The BasicMatrixMultiplication algorithm.

4.1. The algorithm. Recall that for A ∈ R
m×n and B ∈ R

n×p, the product
AB may be written as the sum of n rank-one matrices

AB =

n∑
t=1

A(t)B(t).(3)

When matrix multiplication is formulated in this manner, a simple randomized algo-
rithm to approximate the product matrix AB suggests itself: randomly sample with
replacement from the terms in the summation c times according to a probability dis-
tribution {pi}ni=1, scale each term in an appropriate manner, and output the sum of
the scaled terms. If m = p = 1, then A(t), B(t) ∈ R and it is straightforward to show
that this sampling procedure produces an unbiased estimator for the sum. When the
terms in the sum are rank-one matrices, as in (3), we show that similar results hold.

Consider the BasicMatrixMultiplication algorithm described in Figure 2.
When this algorithm is given as input two matrices A and B, a probability distribution
{pi}ni=1, and a number c of column-row pairs to choose, it returns as output matrices
C and R such that the product CR is an approximation to AB. Observe that since

CR =

c∑
t=1

C(t)R(t) =

c∑
t=1

1

cpit
A(it)B(it)

the procedure for sampling and scaling column and row pairs that is used in the
BasicMatrixMultiplication algorithm corresponds to sampling terms in (3) and
rescaling by dividing by cpit if the tth term is sampled. Alternatively, one could define
the sampling matrix S ∈ R

n×c to be the zero-one matrix where Sij = 1 if the ith
column of A (and thus also the ith row of B) is chosen in the jth independent random
trial, and Sij = 0 otherwise. If the rescaling matrix D ∈ R

c×c is the diagonal matrix
with Dtt = 1/

√
cpit , then

C = ASD and R = (SD)TB

so that CR = ASD(SD)TB ≈ AB. Figure 3 presents a diagram illustrating the action
of the BasicMatrixMultiplication algorithm. The product AB is shown as B and
then A operating between the high-dimensional R

p and R
m via the high-dimensional

R
n; this is approximated by CR, which is shown as R and then C operating between

R
p and R

m via the low-dimensional subspace R
c. Also shown are the sampling matrix

S and the diagonal rescaling matrix D.
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c

S
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�������������������

D
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Fig. 3. Diagram for the BasicMatrixMultiplication algorithm.

An important issue is the choice of the probabilities {pi}ni=1 and the scaling. It
is easily seen that the scaling of 1/

√
cpit used in the BasicMatrixMultiplica-

tion algorithm makes CR an unbiased estimator of AB; see Lemma 3. Lemma 3
also computes Var [(CR)ij ] under general probabilities {pi}ni=1. We then compute

E[ ‖AB − CR‖2
F ] and see that probabilities of the form pk = |A(k)||B(k)|/N, k =

1, . . . , n, where N is a normalization, are optimal in that they minimize this quantity;
see Lemma 4.

This approach for approximating matrix multiplication has several advantages.
First, it is conceptually simple, and in some cases it can be generalized to approximate
the product of more than two matrices; see section A.1 for more on the latter point.
Second, since the heart of the algorithm involves matrix multiplication of smaller
matrices, it can use any algorithm in the literature for performing the desired matrix
multiplication [18, 26, 8]. Third, this approach does not tamper with the sparsity
of the matrices, unlike an algorithm that would project both A and B to the same
random c-dimensional subspace and take the product of the projections. Finally, the
algorithm can be easily implemented; see sections 4.2 and 6 for more discussion.

4.2. Implementation of the sampling and running time. To implement
the BasicMatrixMultiplication algorithm, it must be decided which elements
of the input to sample and those elements must then be sampled. In the case of
uniform sampling one can decide before the input is seen which column-row pairs to
sample. Then, a single pass over the matrices is sufficient to sample the columns and
rows of interest and to construct C and R; this requires O(c(m + p)) additional time
and space. We will see below that it is useful to sample according to a nonuniform
probability distribution that depends on column and row lengths, e.g., see (5) and (7).
In order to decide which column-row pairs to sample in such a case, one pass through
the matrices and O(n) additional time and space is sufficient; in the additional space
running totals of |A(k)|2 and |B(k)|2 are kept, so that after the first pass |A(k)|, |B(k)|,
k = 1, . . . , n, and thus the probabilities, can be calculated in O(n) additional time.
Then in a second pass the columns and rows of interest can be sampled and C and
R can be constructed and stored; this requires O(c(m + p)) additional space and
time. Thus, in addition to either one or two passes over the data, for both uniform
and nonuniform sampling, O(c(m + n + p)) additional space and time is sufficient
to sample from the matrices A and B of the input and to construct the matrices C
and R.

If B = AT and nonuniform sampling is performed (assuming probabilities of the
form (5) or (7)), the resource requirements are slightly different. Due to Lemma 2 we
can select which columns of A to choose using constant (with respect to n) additional
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space and time during the first pass. Then, during the second pass, these columns
may be extracted and the matrices C and R = CT may be constructed using O(cm)
additional space and time; this will be used in the LinearTimeSVD algorithm of
[11]. Note that if only a constant-sized part of the columns of C is needed, as, for
example, in the ConstantTimeSVD algorithm of [11], then extracting and storing
this constant-sized subset of the samples desired may be performed using constant
additional space and time.

4.3. Analysis of the algorithm for arbitrary probabilities. In this sec-
tion we prove upper bounds for ‖AB − CR‖2

F , where C and R are returned from
the BasicMatrixMultiplication algorithm. Recall that by Jensen’s inequality
bounding ‖AB − CR‖2

F (in expectation) implies a bound for ‖AB − CR‖F . Recall
also that a bound on ‖AB − CR‖F immediately provides a bound on ‖AB − CR‖2

since ‖AB − CR‖2 ≤ ‖AB − CR‖F .
Our first lemma proves that the expectation of the (i, j)th element of the ap-

proximation is equal to the (i, j)th element of the exact product; it also describes the
variance of the approximation of the (i, j)th element.

Lemma 3. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n,

and {pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Construct C and R with the
BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.
Then

E [(CR)ij ] = (AB)ij

and

Var [(CR)ij ] =
1

c

n∑
k=1

A2
ikB

2
kj

pk
− 1

c
(AB)2ij .

Proof. Fix i, j. For t = 1, . . . , c, define Xt =
(A(it)B(it)

cpit

)
ij

=
AiitBitj

cpit
. Thus,

E [Xt] =

n∑
k=1

pk
AikBkj

cpk
=

1

c
(AB)ij and E

[
X2

t

]
=

n∑
k=1

A2
ikB

2
kj

c2pk
.

Since by construction (CR)ij =
∑c

t=1 Xt, we have E [(CR)ij ] =
∑c

t=1 E [Xt] =
(AB)ij . Since (CR)ij is the sum of c independent random variables, Var [(CR)ij ] =∑c

t=1 Var [Xt]. Since Var [Xt] = E
[
X2

t

]
− E [Xt]

2
, we see that

Var [Xt] =

n∑
k=1

A2
ikB

2
kj

c2pk
− 1

c2
(AB)2ij

and the lemma follows.
Using this lemma, we bound E

[
‖AB − CR‖2

F

]
in the next lemma. In addition,

we note how this measure of the error depends on the pi’s.
Lemma 4. Suppose A ∈ R

m×n, B ∈ R
n×p, c ∈ Z

+ such that 1 ≤ c ≤ n,
and {pi}ni=1 are such that pi ≥ 0 and

∑n
i=1 pi = 1. Construct C and R with the

BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.



FAST MONTE CARLO ALGORITHMS FOR MATRICES I 141

Then

E
[
‖AB − CR‖2

F

]
=

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2
cpk

− 1

c
‖AB‖2

F .(4)

Furthermore, if

pk =

∣∣A(k)
∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ ,(5)

then

E
[
‖AB − CR‖2

F

]
=

1

c

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣)2

− 1

c
‖AB‖2

F .(6)

This choice of pk minimizes E
[
‖AB − CR‖2

F

]
among possible choices for the sam-

pling probabilities.
Proof. First, note that

E
[
‖AB − CR‖2

F

]
=

m∑
i=1

p∑
j=1

E
[
(AB − CR)

2
ij

]
=

m∑
i=1

p∑
j=1

Var [(CR)ij ] .

Thus, from Lemma 3 it follows that

E
[
‖AB − CR‖2

F

]
=

1

c

n∑
k=1

1

pk

(∑
i

A2
ik

)(∑
j

B2
kj

)
− 1

c
‖AB‖2

F

=
1

c

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 − 1

c
‖AB‖2

F .

If the value pk =
|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| is used in this expression, then

E
[
‖AB − CR‖2

F

]
=

1

c

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣)2

− 1

c
‖AB‖2

F .

Finally, to prove that this choice for the pk’s minimizes E
[
‖AB − CR‖2

F

]
define the

function

f(p1, . . . , pn) =

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 ,
which characterizes the dependence of E

[
‖AB − CR‖2

F

]
on the pk’s. To minimize f

subject to
∑n

k=1 pk = 1, introduce the Lagrange multiplier λ and define the function

g(p1, . . . , pn) = f(p1, . . . , pn) + λ

(
n∑

k=1

pk − 1

)
.
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We then have at the minimum that

0 =
∂g

∂pi
=

−1

p2
i

∣∣A(i)
∣∣2 ∣∣B(i)

∣∣2 + λ.

Thus,

pi =

∣∣A(i)
∣∣ ∣∣B(i)

∣∣
√
λ

=

∣∣A(i)
∣∣ ∣∣B(i)

∣∣∑n
i′=1

∣∣A(i′)
∣∣ ∣∣B(i′)

∣∣ ,
where the second equality comes from solving for

√
λ in

∑n−1
k=1 pk = 1. That these prob-

abilities are a minimum follows since ∂2g
∂pi

2 > 0 ∀i such that |A(i)|2|B(i)|2 >0.

4.4. Analysis of the algorithm for nearly optimal probabilities. With
Lemma 4 and using Jensen’s inequality, upper bounds on quantities such as E

[
‖AB−

CR‖2
F

]
and E

[
‖AB − CR‖F

]
may be obtained for various sampling probabilities

{pi}ni=1. In many cases, by using a martingale argument to show that the error
is tightly concentrated around its mean, the expectations in these bounds may be
removed and the corresponding results can be shown to hold with high probability.

Rather than presenting these results in their full generality, we restrict our at-
tention to two particular sets of probabilities. We will say that the sampling prob-

abilities pk =
|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| are the optimal probabilities since they minimize

E
[
‖AB − CR‖2

F

]
, which as Lemma 4 shows is one natural measure of the error. We

will say that a set of sampling probabilities {pi}ni=1 are nearly optimal probabilities if

pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| for some positive constant β ≤ 1.

We now prove, for nearly optimal sampling probabilities, results analogous to
those of Lemma 4, and also that the corresponding results with the expectations
removed hold with high probability. Notice that if β 
= 1, then we suffer a small
β-dependent loss in accuracy.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that for some positive constant β ≤ 1

pk ≥
β
∣∣A(k)

∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ .(7)

Construct C and R with the BasicMatrixMultiplication algorithm, and let CR
be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(8)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then, with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(9)

Proof. Following reasoning similar to that of Lemma 4 and using the probabilities
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of (7), we see that

E
[
‖AB − CR‖2

F

]
≤ 1

c

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2

≤ 1

βc

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣)2

≤ 1

βc
‖A‖2

F ‖B‖2
F ,

where the last inequality follows due to the Cauchy–Schwarz inequality. Next, define
the event E2 to be

‖AB − CR‖F ≤ η√
βc

‖A‖F ‖B‖F(10)

and note that to prove the remainder of the theorem it suffices to prove that Pr [E2] ≥
1−δ. To that end, note that C and R and thus CR =

∑c
t=1

1
cpit

AitBit are formed by

randomly selecting c elements from {1, . . . , n}, independently and with replacement.
Let the sequence of elements chosen be {it}ct=1. Consider the function

F (i1, . . . , ic) = ‖AB − CR‖F .(11)

We will show that changing one it at a time does not change F too much; this will
enable us to apply a martingale inequality. To this end, consider changing one of the
it to i′t while keeping the other it’s the same. Then construct the corresponding C ′

and R′. Note that C ′ differs from C in only a single column and that R′ differs from
R in only a single row. Thus,

‖CR− C ′R′‖F =

∥∥∥∥∥A
(it)B(it)

cpit
−

A(i′t)B(i′t)

cpi′t

∥∥∥∥∥
F

(12)

≤ 1

cpit

∥∥∥A(it)B(it)

∥∥∥
F

+
1

cpi′t

∥∥∥A(i′t)B(i′t)

∥∥∥
F

(13)

=
1

cpit

∣∣A(it)
∣∣ ∣∣B(it)

∣∣+ 1

cpi′t

∣∣A(i′t)
∣∣ ∣∣B(i′t)

∣∣(14)

≤ 2

c
max
α

∣∣A(α)
∣∣ ∣∣B(α)

∣∣
pα

.(15)

Equation (12) follows by construction and (14) follows since ‖xyT ‖F = |x| |y| for
x ∈ R

n and y ∈ R
n. Thus, using the probabilities (7) and employing the Cauchy–

Schwarz inequality we see that

‖CR− C ′R′‖F ≤ 2

βc

n∑
k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣(16)

≤ 2

βc
‖A‖F ‖B‖F .(17)

Therefore, using the triangle inequality we see that

‖AB − CR‖F ≤ ‖AB − C ′R′‖F + ‖C ′R′ − CR‖F
≤ ‖AB − C ′R′‖F +

2

βc
‖A‖F ‖B‖F .(18)
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By similar reasoning, we can derive

‖AB − C ′R′‖F ≤ ‖AB − CR‖F +
2

βc
‖A‖F ‖B‖F .(19)

Define Δ = 2
βc ‖A‖F ‖B‖F ; thus,

|F (i1, . . . , ik, . . . , ic) − F (i1, . . . , i
′
k, . . . , ic)| ≤ Δ.(20)

Let γ=
√

2c log(1/δ)Δ and consider the associated Doob martingale. By the Hoeffding–
Azuma inequality [22],

Pr

[
‖AB − CR‖F ≥ 1√

βc
‖A‖F ‖B‖F + γ

]
≤ exp

(
−γ2/2cΔ2

)
= δ(21)

and the theorem follows.
An immediate consequence of Theorem 1 is that by choosing enough column-row

pairs, the error in the approximation of the matrix product can be made arbitrarily
small. In particular, if c ≥ 1/βε2, then by using Jensen’s inequality it follows that

E [ ‖AB − CR‖F ] ≤ ε ‖A‖F ‖B‖F(22)

and if, in addition, c ≥ η2/βε2, then with probability at least 1 − δ

‖AB − CR‖F ≤ ε ‖A‖F ‖B‖F .(23)

In certain applications, e.g., [11, 12], one is interested in an application of Theorem

1 to the case that B = AT , i.e., one is interested in approximating
∥∥AAT − CCT

∥∥2

F
.

In this case, sampling column-row pairs corresponds to sampling columns of A, and

nearly optimal probabilities will be those such that pk ≥ β|A(k)|2
‖A‖2

F

for some positive

β ≤ 1. By taking B = AT and applying Jensen’s inequality, we have the following
theorem as a corollary of Theorem 1.

Theorem 2. Suppose A ∈ R
m×n, c ∈ Z

+, 1 ≤ c ≤ n, and {pi}ni=1 are such

that
∑n

i=1 pi = 1 and such that pk ≥ β|A(k)|2
‖A‖2

F

for some positive constant β ≤ 1.

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Construct C (and R = CT )
with the BasicMatrixMultiplication algorithm, and let CCT be an approximation
to AAT . Then

E
[ ∥∥AAT − CCT

∥∥
F

]
≤ 1√

βc
‖A‖2

F(24)

and with probability at least 1 − δ,∥∥AAT − CCT
∥∥
F
≤ η√

βc
‖A‖2

F .(25)

5. A second matrix multiplication algorithm. In this section we describe
the ElementwiseMatrixMultiplication algorithm to approximate the product
of two matrices. First, in section 5.1, we describe the algorithm, its implementation,
and running time issues; then in section 5.2 we analyze the algorithm and bound its
error with respect to both the Frobenius and spectral norms. We will see that the
algorithm returns good approximations with respect to the spectral norm but not
with respect to the Frobenius norm.
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ElementwiseMatrixMultiplication Algorithm.

Input: A ∈ R
m×n, B ∈ R

n×p, {pij}m,n
i,j=1 such that 0 ≤ pij ≤ 1, and {qij}n,pi,j=1 such

that 0 ≤ qij ≤ 1.

Output: S ∈ R
m×n and R ∈ R

n×p.

Algorithm:
1. For i = 1 to m and j = 1 to n, independently,

(a) Set

Sij =

{
Aij/pij with probability pij ,
0 otherwise.

2. For i = 1 to n and j = 1 to p, independently,
(a) Set

Rij =

{
Bij/qij with probability qij ,
0 otherwise.

3. Return S,R.

Fig. 4. The ElementwiseMatrixMultiplication algorithm.

5.1. The algorithm and its implementation. The method to approximate
the product of two matrices that is presented in this section differs from the previous
algorithm and is inspired by [2] and [1]. In [2] the singular value decomposition of a
matrix is approximated using elementwise uniform sampling; in [1] this approach is
extended to include nonuniform sampling probabilities of a certain natural form. Since
neither of these papers applies these methods to approximate matrix multiplication,
we do so here for comparison with the BasicMatrixMultiplication algorithm.

Consider the ElementwiseMatrixMultiplication algorithm presented in Fig-
ure 4. When this algorithm is given as input two matrices A ∈ R

m×n and B ∈ R
n×p

it creates two matrices S ∈ R
m×n and R ∈ R

n×p by keeping a few elements of A and a
few elements of B, respectively, scaling in an appropriate manner those elements that
are kept, and zeroing out the remaining elements. The algorithm then returns matri-
ces S and R such that the product SR is an approximation to AB. Note that since
S and R are formed independently of each other the algorithm does not keep “corre-
sponding” elements; doing so would introduce dependence that would complicate the
analysis.

The ElementwiseMatrixMultiplication algorithm can be implemented with
the nonuniform probabilities used in this section with two passes over the data; we
leave it as an open problem whether a single pass suffices when working within the
pass-efficient framework. This algorithm differs from the BasicMatrixMultiplica-

tion algorithm in that we get an expected number of elements so we have an expected
additional space required for storage and an expected additional time required for the
associated sparse matrix multiplication. We do not provide a detailed analysis of
these random variables.

5.2. Analysis of the algorithm. In this section we present error bounds for
both ‖AB − SR‖F and ‖AB − SR‖2. While the Frobenius norm error bound for this
algorithm is rather easy to derive using very intuitive probability distributions, the
spectral norm bound is more complicated and requires some additional technicalities.
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Since whether or not (for a given i, j) Sij = 0 or Sij = Aij/pij we have that
Aij − Sij is large (and similarly for the matrix R and thus the matrix SR) it is
plausible that the ElementwiseMatrixMultiplication algorithm does not have
a good bound for E

[
‖AB − SR‖2

F

]
. This intuition is formalized in the following

lemma. Note that � and �′ are chosen such that not more than � and �′ of the
elements of the matrices A and B are retained in expectation, respectively.

Lemma 5. Suppose A ∈ R
m×n and B ∈ R

n×p, let �, �′ ∈ Z
+, and let pij =

min{1, �A2
ij/ ‖A‖2

F } and qij = min{1, �′B2
ij/ ‖B‖2

F }. Construct S and R with the
ElementwiseMatrixMultiplication algorithm, and let SR be an approximation
to AB. Then, ∀i, j,

E [(SR)ij ] = (AB)ij ,

Var [(SR)ij ] =

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

n∑
k=1

A2
ikB

2
kj

E
[
‖AB − SR‖2

F

]
≥ mpn

��′
‖A‖2

F ‖B‖2
F −

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 .(26)

Proof. Let us first fix i, j. Then, since for every k we have that Sik = Aik/pik
with probability pik and Sik = 0 with probability 1− pik, we have that E [Sik] = Aik;
similarly for Rkj , we have that E [Rkj ] = Bkj . Thus, since S and R have been
constructed independently, we have that

E [(SR)ij ] = E

[
n∑

k=1

SikRkj

]
=

n∑
k=1

E [Sik]E [Rkj ] = (AB)ij .

Since Var [(SR)ij ] = E
[
(SR)2ij

]
− E [(SR)ij ]

2
and since (SR)ij =

∑n
k=1 SikRkj we

get that

Var [(SR)ij ] =

n∑
k1=1

n∑
k2=1

E [Sik1Rk1jSik2Rk2j ] − E [(SR)ij ]
2

=

n∑
k=1

E
[
S2
ik

]
E
[
R2

kj

]
+

n∑
k1=1

∑
k2 �=k1

E [Sik1 ]E [Rk1j ]E [Sik2 ]E [Rk2j ] − (AB)2ij

=

n∑
k=1

A2
ik

pik

B2
kj

qkj
+

n∑
k1=1

∑
k2 �=k1

Aik1
Bk1jAik2

Bk2j − (AB)2ij

=

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

n∑
k=1

A2
ikB

2
kj ,

where the last line follows by adding and subtracting
∑n

k1=1

∑
k2=k1

Aik1Bk1jAik2Bk2j

from the second-to-last line.
Thus, since E

[
‖AB − SR‖2

F

]
=
∑m

i=1

∑p
j=1 Var [(SR)ij ] and since the probabil-

ities pij and qij are such that 1/pik ≥ ‖A‖2
F /�A2

ik and 1/qkj ≥ ‖B‖2
F /�′B2

kj we get



FAST MONTE CARLO ALGORITHMS FOR MATRICES I 147

that

E
[
‖AB − SR‖2

F

]
=

m∑
i=1

p∑
j=1

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

m∑
i=1

p∑
j=1

n∑
k=1

A2
ikB

2
kj

≥
m,p∑
i,j=1

n∑
k=1

‖A‖2
F ‖B‖2

F

��′
−

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 .
The lemma then follows.

Next we show that although the ElementwiseMatrixMultiplication algo-
rithm does not yield a nice error bound for the Frobenius norm, it does for the spec-
tral norm. In order to prove Theorem 4, which provides our bound on ‖AB − SR‖2,
we will use the following theorem, which follows immediately from a result that was
proved in [1] and which shows that with high probability the spectrum of a random
matrix is close to its expectation. The theorem is proved by using a generalization of
a result of Füredi and Komlós [16], combined with a more recent concentration result
of Krivelevich and Vu based on Talagrand’s inequality [21].

Theorem 3. Given an n×n matrix A, let Â be any random matrix whose entries
are independent random variables such that ∀i, j, E

[
Âij

]
= Aij, Var

[
Âij

]
≤ σ2, and

∣∣∣Âij −Aij

∣∣∣ ≤ σ
√

2n

log3 (2n)
.(27)

For any n ≥ 10, with probability at least 1 − 1/(2n),

‖A− Â‖2 < 7σ
√

2n.(28)

Prior to stating the main result of this section, we must address a technical issue
that arises in our effort to apply the above theorem in order to bound ‖AB − SR‖2.
Note that the construction of the matrices S and R by the ElementwiseMatrix-

Multiplication algorithm may be viewed as adding carefully constructed random
matrices E and D such that S = A + E and R = B + D; see [2] and [1] for a dis-
cussion. As we will see below, if we can bound ‖E‖2 and ‖D‖2, then a bound for
‖AB − SR‖2 follows easily. Since we will apply Theorem 3 in order to obtain such
bounds, we need to satisfy the range constraint (27). Sampling with respect to the
nonuniform probability distribution of Lemma 5 might violate this constraint since,
in the unlikely event that a small element is kept, the resulting entry Sij = Aij/pij
will be very large (and similarly for R). Thus, following [1], we modify our sampling
probabilities so that small elements are kept with a slightly larger probability which
is proportional to |Aij | instead of A2

ij :

pij =

⎧⎨
⎩

min{1, �A2
ij/ ‖A‖2

F } if |Aij | > ‖A‖F log3 (2n)√
2n�

,

min
{

1,
√
�|Aij | log3 (2n)√

2n‖A‖F

}
otherwise,

(29)

qij =

⎧⎨
⎩

min{1, �′B2
ij/ ‖B‖2

F } if |Bij | > ‖B‖F log3 (2n)√
2n�′

,

min
{

1,
√
�′|Bij | log3 (2n)√

2n‖B‖F

}
otherwise.

(30)

We now state and prove our main theorem of this section. In the interests of clarity
we make several simplifying assumptions in the statement of the theorem.
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Theorem 4. Suppose A ∈ R
m×n, B ∈ R

n×p, and let pij and qij be as specified

in (29) and (30) with � = �′ ≥ 1. Assume that � ≤ ‖A‖2
F /maxi,j A

2
ij and that

� ≤ ‖B‖2
F /maxi,j B

2
ij; assume also that m = n = p and that n is large enough so that

2n ≥ log6 (2n). Construct S and R with the ElementwiseMatrixMultiplication

algorithm, and let SR be an approximation to AB. Then, with probability at least
1 − 1/n,

‖AB − SR‖2 ≤
(

20

√
n

�
+

100n

�

)
‖A‖F ‖B‖F .(31)

Proof. By the assumptions on n and �, neither pij nor qij exceed 1 for any i, j.
Letting E = S −A and D = R−B, we have

SR = (A + E)(B + D) = AB + AD + EB + ED.(32)

Thus, by the triangle inequality and submultiplicitivity, we have that

‖AB − SR‖2 ≤ ‖A‖2 ‖D‖2 + ‖E‖2 ‖B‖2 + ‖E‖2 ‖D‖2 .(33)

In order to apply Theorem 3 to ‖E‖2 and ‖D‖2 we first verify that the assumptions
of the theorem are satisfied. From the proof of Lemma 5, we have that E [Sij ] = Aij .
In addition,

Var [Sij ] ≤ E
[
S2
ij

]
=

A2
ij

pij
≤ ‖A‖2

F

�

holds regardless of whether |Aij | is larger or smaller than the threshold. Similarly, we

get that E [Rij ] = Bij and that Var [Dij ] ≤ ‖B‖2
F

� . It is straightforward to show that
regardless of whether or not |Aij | is above or below the threshold and regardless of
whether or not Sij = 0 or Sij = Aij/pij we have that

|Aij − Sij | ≤
‖A‖F

√
2n√

� log3 (2n)
.(34)

Similarly, one can show that

|Bij −Rij | ≤
‖B‖F

√
2n√

� log3 (2n)
.(35)

Thus, the conditions of Theorem 3 are satisfied and with probability at least 1−1/2n
each of the following holds:

‖E‖2 ≤ 7 ‖A‖F
√

2n/
√
�,(36)

‖D‖2 ≤ 7 ‖B‖F
√

2n/
√
�.(37)

Thus, with probability at least 1 − 1/n both of these inequalities hold. Combining
the bounds (36) and (37) with (33), and since ‖·‖2 ≤ ‖·‖F , we have

‖AB − SR‖2 ≤ ‖A‖2 ‖D‖2 + ‖E‖2 ‖B‖2 + ‖E‖2 ‖D‖2

≤ 7
√

2n ‖A‖F ‖B‖F√
�

+
7
√

2n ‖A‖F ‖B‖F√
�

+
98n ‖A‖F ‖B‖F

�

≤
(
20
√
n/� + 100n/�

)
‖A‖F ‖B‖F .
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Notice that if we let � = cn in Theorem 4, then the error bound (31) becomes

‖AB − SR‖2 ≤
(

20√
c

+
100

c

)
‖A‖F ‖B‖F = O(1/

√
c) ‖A‖F ‖B‖F .

Comparison with (9) of Theorem 1 reveals that (since ‖·‖2 ≤ ‖·‖F ) both of our matrix
multiplication algorithms have, asymptotically, a similar bound with respect to the
spectral norm.

6. Discussion and conclusion. To the best of our knowledge, the only previous
randomized algorithm that approximates the product of two matrices is that of Cohen
and Lewis [7]. This algorithm is based on random walks in a graph representation
of the input matrices and attempts to identify all high-valued entries in nonnegative
matrix products in order to improve estimates (relative to exact sparse multiplication)
by spending less time on small-valued entries. Their algorithm is more complicated
than ours, it requires different graph representations of the input matrices if the
matrices are allowed to contain negative entries, it needs to store the complete input
matrices, and it is especially useful when the matrices are not sparse.

It is worth emphasizing how the BasicMatrixMultiplication algorithm be-
haves when A and B are well approximated by low-rank matrices. Since a low-rank
matrix or a matrix that is well approximated by a low-rank matrix is a matrix whose
rows and columns contain much redundant information in terms of the subspaces they
span, it is plausible that if the range of B overlaps appropriately with the domain of
A, then we can get a good approximation to AB by carefully sampling a small number
c of appropriately rescaled rank-one approximations to AB. Theorem 1 shows that if
the {pi}ni=1 are chosen judiciously, then this is the case and Figure 3 illustrates this.

We emphasize that in the case of sampling with nonuniform probabilities our
sampling can be viewed as a two-pass algorithm; in the first pass the algorithm reads
the matrix, it then decides which columns and rows to keep, and then in the second
pass it extracts these columns and rows. In certain applications, two passes through
the matrix are not possible and only one pass is allowed [14]. In these cases, we can
still perform uniform sampling; in this case, if column-row pairs are all approximately
the same size, i.e., |A(k)||B(k)| is close to its mean value (more precisely, if there exists
some positive constant β ≤ 1 such that ∀k |A(k)||B(k)| ≤ 1

βn

∑n
k′=1 |A(k′)||B(k′)|),

then the uniform probabilities are nearly optimal and we can sample uniformly with
a small β-dependent loss in accuracy.

Note that although larger columns and rows get picked more often, the scaling is
such that their weight is deemphasized in the estimator sum. One could imagine a
situation when detailed information about the elements of, e.g., A may be obtained
after a single pass but no information or no information except general bounds on the
size of the elements may be possible for B. In this case, a set of sampling probabil-
ities other than those discussed in section 4 may be appropriate. See Table 1 for a
summary of the results for different probability distributions; these results are proven
in section A.3

The ElementwiseMatrixMultiplication algorithm has been presented for
completeness and because in some applications its use may be more appropriate than
the use of the BasicMatrixMultiplication algorithm. It is worth emphasizing
that the ElementwiseMatrixMultiplication algorithm achieves its spectral norm
bound since its sampling procedure may be viewed as adding a carefully constructed
random perturbation to every element of the original matrix; see [2, 1] for a nice
discussion of these ideas.
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Table 1

Summary of results for different probability distributions.

E
[
‖AB − CR‖F

]
≤ w.h.p. ‖AB − CR‖F ≤ Comments and restrictions

pk ≥
β

∣∣A(k)
∣∣|B(k)|∑

k′

∣∣A(k′)
∣∣∣∣B(k′)

∣∣ 1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F η = 1 +

√
8
β

log
(

1
δ

)

pk ≥
β

∣∣A(k)
∣∣2

‖A‖2
F

1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F
η = 1 +

‖A‖F
‖B‖F

M
√

8
β

log
(

1
δ

)
M = maxα

|B(α)|
|A(α)|

pk ≥ β|B(k)|2
‖B‖2

F

1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F
η = 1 +

‖B‖F
‖A‖F

M
√

8
β

log
(

1
δ

)
M = maxα

|A(α)|
|B(α)|

pk ≥
β

∣∣A(k)
∣∣∑n

k′=1

∣∣A(k′)
∣∣ 1√

βc
‖A‖F

√
nM η√

βc
‖A‖F

√
nM

η = 1 +

√
8
β

log
(

1
δ

)
M = maxα

∣∣B(α)

∣∣
pk ≥ β|B(k)|∑n

k′=1

∣∣B(k′)

∣∣ 1√
βc

√
nM‖B‖F

η√
βc

√
nM‖B‖F

η = 1 +

√
8
β

log
(

1
δ

)
M = maxα

∣∣A(α)
∣∣

pk ≥
β

∣∣A(k)
∣∣|B(k)|

‖A‖F ‖B‖F
1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F η = 1 +

√
8
β

log
(

1
δ

)
pk = 1

n
See Lemma 11. See Lemma 11. See Lemma 11.

Recent work has focused on establishing lower bounds on the number of queries
a sampling algorithm is required to perform in order to approximate a given function
accurately with low probability of error; see, e.g., [4]. See also [24, 27] for recent
related work.

Appendix. Further analysis of the basic matrix multiplication algo-
rithm. In this section we provide further analysis of the BasicMatrixMultiplica-

tion algorithm. In section A.1 we consider approximating the product of more than
two matrices by a similar sampling process. Then, in section A.2 we examine element-
wise error bounds for the algorithm, and in section A.3 we consider error bounds for
probability distributions which are not nearly optimal in the sense of section 4.4.

A.1. Approximating the product of more than two matrices. In this
section we consider the task of approximating the product of three or more matrices
using the ideas of the BasicMatrixMultiplication algorithm of section 4. For
simplicity our exposition will be restricted to the case of approximating the product
ABC of three matrices. Recall that given matrices A ∈ R

m×n, B ∈ R
n×p, C ∈ R

p×q,
the product ABC may be written as

ABC =

n∑
s=1

p∑
t=1

A(s)BstC(t).(38)

One possible way of extending the ideas of section 4.1 is the following. Randomly
choose is ∈ {1, . . . , n} independently and with replacement c1 times according to a
probability distribution {pi}ni=1 and randomly choose jt ∈ {1, . . . , p} independently
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R
q C ��

C̃

���
��

��
��

��
��

��
��

��
R

p B ��
R

n A ��
R

m

R
c2

S(C,c2)

��

B̃ ��

D{qk}

�� R
c1

S(A,c1)

��

Ã

�������������������

D{pk}

��

Fig. 5. Diagram for the algorithm to approximately multiply three matrices.

and with replacement c2 times according to a probability distribution {qj}pj=1. Then
form the matrix Ã ∈ R

m×c1 with columns Ã(s) = A(is)/
√
c1pis , the matrix B̃ ∈

R
c1×c2 with elements B̃st = Bisjt/

√
c1c2pisqjt , and the matrix C̃ ∈ R

c2×q with rows
C̃(t) = C(jt)/

√
c2qjt so that

ÃB̃C̃ =

c1∑
s=1

c2∑
t=1

A(is)BisjtC(jt)

c1c2pisqjt
.

Figure 5 presents a diagram illustrating the action of the algorithm just described
to approximate the product of three matrices. One could then define sampling
matrices S(A,c1) and S(C,c2) and diagonal rescaling matrices D{pk} and D{qk} in
a manner analogous to that of section 4.1 and as indicated in Figure 5. Then

ÃB̃C̃ = AS(A,c1)D{pk}2
S(A,c1)

T
BS(C,c2)D{qk}2

S(C,c2)
T
C ≈ ABC. An intuitively

appealing aspect of this algorithm is that the product ABC is shown as C, B, and
then A operating between the high-dimensional R

q and R
m via the high-dimensional

R
p and R

n; this is approximated by ÃB̃C̃, which acts between R
q and R

m via the
low-dimensional subspaces R

c2 and R
c1 . One difficulty with this algorithm is that its

analysis is quite complicated due to the correlation in the nonindependent sampling
of the elements of the matrix B.

A second way of extending the ideas of section 4.1 is the following. Randomly
choose (is, jt) ∈ {1, . . . , n} × {1, . . . , p} independently and with replacement c times
according to a probability distribution {pkl}n,p(k,l)=1. This corresponds to sampling c

terms from the sum (38). Then define

P =

c∑
u≡(s,t)=1

1

cpkslt

A(ks)BksltC(lt),

where the summation is a single sum over the c pairs (ks, lt) ∈ {1, . . . , n}× {1, . . . , p}
chosen by the algorithm. In this second algorithm the subspace interpretation of the
first algorithm is lost but the analysis simplifies considerably. Using ideas similar to
those in section 4 we can prove the following lemma about this algorithm.

Lemma 6. Given matrices A ∈ R
m×n, B ∈ R

n×p, C ∈ R
p×q, construct an

approximation P to the product ABC by sampling as described in the second algorithm
above with probabilities {pk,l}np(k,l)=1. Then, for every i, j we have that E[(P )ij ] =

(ABC)ij and that

Var
[
(P )ij

]
=

1

c

n∑
k=1

p∑
l=1

1

pkl
A2

ikB
2
klC

2
lj −

1

c
(ABC)

2
ij .
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In addition,

E
[
‖ABC − P‖2

F

]
=

1

c

n∑
k=1

p∑
l=1

1

pkl

∣∣A(k)
∣∣2B2

kl

∣∣C(l)

∣∣2 − 1

c
‖ABC‖2

F

and the probabilities

pkl =

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣∑
k′
∑

l′

∣∣A(k′)
∣∣ |Bk′l′ |

∣∣C(l′)

∣∣
minimize E

[
‖ABC − P‖2

F

]
Proof. The proof is similar to those of Lemmas 3 and 4.
As in section 4.4 we will define probabilities {pkl} to be nearly optimal if

pkl ≥ β

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣∑
k′
∑

l′

∣∣A(k′)
∣∣ |Bk′l′ |

∣∣C(l′)

∣∣
for some β ≤ 1. If sampling is performed with these probabilities, one can show that

E
[
‖ABC − P‖2

F

]
≤ 1

cβ

∑
k

∑
l

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣,
and a similar result can be shown to hold with high probability.

Unfortunately, computing the optimal probabilities in the general case is not pass-
efficient since it would require O(np) additional space and time. This situation would
be relatively worse if one wanted to compute the product of more than three matrices,
rendering this method uncompetitive with the exact algorithm. On the other hand,
if the matrices are known to have a special structure or if the data are presented in
a more specialized format, then this algorithm may be useful. For example, if it is
known that none of the elements of B are too big, i.e., that the elements of B are such
that there exists a ξB such that ∀i, j we have that Bij ≤ ξB ‖B‖2

F /np, then there will
exist a set of probabilities that are nearly optimal that do not depend on B and that
can be computed efficiently.

A.2. Elementwise error bounds. In this section we provide elementwise error
bounds on |(AB)ij − (CR)ij | for the BasicMatrixMultiplication algorithm for
two different probability distributions. We have the following lemma.

Lemma 7. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Let M be such that |Aij | ≤ M and
|Bij | ≤ M for every appropriate i, j. Construct C and R with the BasicMatrix-

Multiplication algorithm, and let CR be an approximation to AB. If pk = 1/n for
every k, then for every δ > 0 with probability at least 1 − δ

|(AB)ij − (CR)ij | <
nM2

√
c

√
8 ln(2mp/δ) ∀i, j.(39)

If pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| for some positive constant β ≤ 1, then for every δ > 0 with

probability at least 1 − δ

|(AB)ij − (CR)ij | <
n
√
mpM2

√
βc

√
(8/β) ln(2mp/δ) ∀i, j.(40)
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Proof. Let us first consider the case of uniform sampling probabilities, i.e., when
pk = 1/n. First, fix attention on one particular (i, j) ∈ ({1, . . . ,m} , {1, . . . , p}). De-

fine X
(ij)
t =

(A(it)B(it)

cpit

)
ij

=
AiitBitj

cpit
. From Lemma 3 we see that E

[
X

(ij)
t

]
= 1

c (AB)ij .

Define Y
(ij)
t = X

(ij)
t − 1

c (AB)ij , t = 1, . . . , c, and note that the Yt’s are independent

random variables with E
[
Y

(ij)
t

]
= 0 for every t = 1, . . . , c. In addition,

∣∣∣Y (ij)
t

∣∣∣ ≤
∣∣∣∣AiitBitj

cpit

∣∣∣∣+
∣∣∣∣1c (AB)ij

∣∣∣∣
≤
∣∣∣∣AiitBitj

cpit

∣∣∣∣+ nM2

c
(41)

≤ 2nM2

c
.(42)

Inequality (42) follows since for the uniform probabilities |AiitBitj

cpit
| ≤ nM2

c . By com-

bining the upper and lower bounds provided by (42) with Hoeffding’s inequality, we
have that for any t > 0

Pr

[∣∣∣∣∣
c∑

t=1

Y
(ij)
t

∣∣∣∣∣ ≥ ct

]
≤ 2 exp

(
− 2c2t2∑c

i=1 (4nM2/c)
2

)
= 2 exp

(
− c3t2

8n2M4

)
.(43)

Define the event Eij to be |
∑c

t=1 Y
(ij)
t | ≥ ct and the event E =

⋃m
i=1

⋃p
j=1 Eij . If we

then let t = nM2 2
√

2
c3/2

√
ln (2mp/δ), then by (43) we have that Pr [Eij ] ≤ δ

mp . Thus,

(39) then follows since

Pr [E ] ≤
m∑
i=1

p∑
j=1

Pr [Eij ] ≤
∑
ij

δ/mp = δ.

When applied to the nonuniform probabilities pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| a similar line of

reasoning establishes (40). The key step is to note that when using these probabilities
we have that∣∣∣∣AiitBitj

cpit

∣∣∣∣ ≤
∣∣∣∣∣ AiitBitj

cβ
∣∣A(k)

∣∣ ∣∣B(k)

∣∣
n∑

k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣
∣∣∣∣∣ ≤

∣∣∣∣n
√
mp

cβ
M2

∣∣∣∣ .(44)

Since nM2/c ≤ n
√
mpM2/(cβ) this, when combined with (41), implies that

∣∣∣Y (ij)
t

∣∣∣ ≤ 2n
√
mpM2

cβ
,(45)

which provides the upper and lower bounds on the random variable required to apply
Hoeffding’s inequality.

When the uniform probabilities are used

‖AB − CR‖2
F =

∑
ij

|(AB)ij − (CR)ij |2 ≤ mn2pM4

c
8 log(2mp/δ)

holds with probability greater than 1− δ. The difference between this result and the
result of Theorem 1 or its variants such as Lemma 11 is that Lemma 7 guarantees that
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every element of the approximation will have small additive error, while Theorem 1
provides a tighter Frobenius norm bound but not elementwise guarantees.

It may seem counterintuitive that by sampling with respect to the optimal proba-
bilities of section 4 the bound of (40) is worse than that of (39) by a factor of

√
mp/β.

(Relatedly, when the nonuniform probabilities of Lemma 7 are used, we have that

‖AB − CR‖2
F ≤ m2n2p2M4

β2c
8 log(2mp/δ)

with probability greater than 1 − δ.) The reason for this is that the optimal prob-

abilities are optimal with respect to minimizing E
[
‖AB − CR‖2

F

]
, in which case

elements corresponding to smaller columns and rows contribute relatively little. On
the other hand, the two statements of Lemma 7 are required to hold for every i and
j. Thus (whether or not the uniform probabilities are nearly optimal) because the
optimal sampling probabilities bias toward elements corresponding to larger columns
and rows an extra factor of

√
mp is needed.

A.3. Analysis of the algorithm for nonnearly optimal probabilities.
Note that the nearly optimal probabilities (7) use information from both matrices
A and B in a particular form. In some cases, such detailed information about both
matrices may not be available. Thus, we present results for the BasicMatrixMul-

tiplication algorithm for several other sets of probabilities. See Table 1 in section
6 for a summary of these results.

In the first case, to estimate the product AB one could use the probabilities
(46) which use information from the matrix A only. In this case ‖AB − CR‖F can
still be shown to be small in expectation, and under an additional assumption the
expectation can be removed and the corresponding result can be shown to hold with
high probability.

Lemma 8. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣2
‖A‖2

F

(46)

for some positive constant β ≤ 1. Construct C and R with the BasicMatrixMul-

tiplication algorithm, and let CR be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(47)

Furthermore, let M= maxα
|B(α)|
|A(α)| , let δ∈(0, 1), and let η = 1+

‖A‖F

‖B‖F
M
√

(8/β) log(1/δ).

Then with probability at least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(48)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

Alternatively, to estimate the product AB one could use the probabilities (49)
which also use information from the matrix A only, but in a different form than the
probabilities (46). In this case, under an additional assumption ‖AB − CR‖F can
still be shown to be small both in expectation and with high probability.
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Lemma 9. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣(49)

for some positive constant β ≤ 1. Let M = maxα |B(α)|. Construct C and R with the
BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.
Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F nM2.(50)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F nM2.(51)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

The probabilities (46) and (49) depend on only the lengths of the columns of A.
Results similar to those of the previous two lemmas hold if the probabilities depend
on the rows of B rather than the columns of A; see Table 1.

Alternatively, to estimate the product of AB one could use the probabilities (52);
interestingly, although the probabilities differ from those of (7) we are able to derive
the same bounds as those of Theorem 1 without additional assumptions.

Lemma 10. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣ ∣∣B(k)

∣∣
‖A‖F ‖B‖F

(52)

for some positive constant β ≤ 1. Construct C and R with the BasicMatrixMul-

tiplication algorithm, and let CR be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(53)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(54)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

Of course one could estimate the product AB using the uniform probabilities (55).
In this case for simplicity we consider bounding ‖AB − CR‖F directly.

Lemma 11. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that

pk =
1

n
.(55)
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Construct C and R with the BasicMatrixMultiplication algorithm, and let CR
be an approximation to AB. Then

E [ ‖AB − CR‖F ] ≤
√

n

c

(
n∑

k=1

∣∣∣A(k)
∣∣∣2 ∣∣B(k)

∣∣2)1/2

.(56)

Furthermore, let δ ∈ (0, 1) and γ = n√
c

√
8 log (1/δ) maxα

∣∣A(α)
∣∣ ∣∣B(α)

∣∣. Then with

probability at least 1 − δ,

‖AB − CR‖F ≤
√

n

c

(
n∑

k=1

∣∣∣A(k)
∣∣∣2 ∣∣B(k)

∣∣2)1/2

+ γ.(57)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.
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