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Abstract

Motivation: Computational drug repositioning is an important and efficient approach towards

identifying novel treatments for diseases in drug discovery. The emergence of large-scale,

heterogeneous biological and biomedical datasets has provided an unprecedented opportunity for

developing computational drug repositioning methods. The drug repositioning problem can be

modeled as a recommendation system that recommends novel treatments based on known drug–

disease associations. The formulation under this recommendation system is matrix completion,

assuming that the hidden factors contributing to drug–disease associations are highly correlated

and thus the corresponding data matrix is low-rank. Under this assumption, the matrix completion

algorithm fills out the unknown entries in the drug–disease matrix by constructing a low-rank ma-

trix approximation, where new drug–disease associations having not been validated can be

screened.

Results: In this work, we propose a drug repositioning recommendation system (DRRS) to predict

novel drug indications by integrating related data sources and validated information of drugs and

diseases. Firstly, we construct a heterogeneous drug–disease interaction network by integrating

drug–drug, disease–disease and drug–disease networks. The heterogeneous network is repre-

sented by a large drug–disease adjacency matrix, whose entries include drug pairs, disease pairs,

known drug–disease interaction pairs and unknown drug–disease pairs. Then, we adopt a fast

Singular Value Thresholding (SVT) algorithm to complete the drug–disease adjacency matrix with

predicted scores for unknown drug–disease pairs. The comprehensive experimental results show

that DRRS improves the prediction accuracy compared with the other state-of-the-art approaches.

In addition, case studies for several selected drugs further demonstrate the practical usefulness of

the proposed method.

Availability and implementation: http://bioinformatics.csu.edu.cn/resources/softs/DrugRepositioning

/DRRS/index.html
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1 Introduction

New drug discovery is a risky, time-consuming and quite expensive

process (Chong and Sullivan, 2007). Though the last decades have

witnessed tremendous investments in drug development, the number

of new drugs approved by the US Food and Drug Administration

(FDA) is unsatisfactory. The total worldwide cost of drug research

and development has risen up to 141 billion USD; however, the

number of drug approvals per year remains low (Schuhmacher

et al., 2016). In light of these challenges, drug repositioning, which

concerns the identification and development of new therapeutic uses

for existing drugs, has emerged as a noteworthy alternative to the

traditional drug development. Currently, some repositioned drugs

have been identified successfully through serendipitous or rational

observations. However, these manual investigations show low

efficiency for the search space having massive interaction informa-

tion (for example, drug–target or drug–disease interactions)

(Mullen et al., 2016). To address this issue, systematic computa-

tional repositioning methods have attracted increasing attention

given its efficiency and scalability.

Generally, the aim of computational drug repositioning is to find

novel indications for existing drugs and apply the newly identified

drugs to the treatment of diseases other than the drugs’ originally in-

tended ones (Shim and Liu, 2014). Recently, the usage of computa-

tional drug repositioning in drug discovery has become a common

practice, where an increasing number of machine learning, network

analysis, text mining and semantic inference methods have been pro-

posed (Li et al., 2016). For instance, Gottlieb et al. (2011) proposed

a computational method PREDICT to identify potential drug indica-

tions by integrating various drug–drug and disease–disease similar-

ities used to construct classification features. Based on these

features, a logistic regression classifier was learned to score the novel

drug–disease associations. Napolitano et al. (2013) combined drug

related data to calculate drug similarities and trained a multi-class

SVM (Support Vector Machine) classifier to predict novel alterna-

tive therapeutic indications. Moreover, some existing methods

applying matrix factorization have been used to drug repositioning.

Dai et al. (2015) proposed a matrix factorization model, which has

incorporated the topological information of gene interaction

network to detect novel drug indications. Based on the known

drug–disease associations, the model is learned to predict novel drug

indications. Yang et al. (2014) constructed causal networks connect-

ing drug-target-pathway-gene-disease to compute drug–disease

association scores and learned a PMF (Probabilistic matrix factor-

ization) model based on known drug–disease associations to classify

drug–disease associations. The computed association scores and as-

sociation types are used to predict drug–disease associations.

However, these computational methods based on matrix factoriza-

tion models cannot be applied to predict novel drug indications

when drug–target and disease–gene associations are unavailable.

Moreover, network-based strategy has attracted much interest

due to the large-scale generation of high-throughput biological data,

which has enabled the construction of complex biological inter-

action networks. Wang et al. (2014) have proposed a computational

framework, TL_HGBI, to infer novel treatments for diseases based

on a heterogeneous network integrating similarity and association

data about diseases, drugs and drug targets. Martı́nez et al. (2015)

have developed a network-based prioritization method named

DrugNet to predict new therapeutic indications for drugs and novel

treatments for diseases. This method identified novel drug–disease

associations by propagating information in a heterogeneous net-

work which is constructed by using information about diseases,

drugs and targets. Luo et al. (2016) proposed a computational

method to find novel indications for existing drugs by applying com-

prehensive similarity measures and Bi-Random Walk algorithm.

According to previous studies, the computational drug repositioning

method, which applies random walk on the heterogeneous network

integrating various biological data, has demonstrated certain success

in computational drug repositioning.

Repositioning computational drugs can also be thought of

constructing a recommendation system that recommends the

top-ranked diseases for given drugs. Typically, a recommendation

system is a class of applications that involve predicting users

responses based on their preferences. The recommendation system

approach narrows what could become a complex, difficult decision

to just a few recommendations, which has attracted a lot of atten-

tion in many applications. The most well-known example is how the

Google search algorithm recommends the best related websites to

view when a few keywords (features) are supplied. Another well-

known example is the recommendation of the most likely purchase

goods from Amazon based on unique customer behaviors. Recently,

recommendation system technologies have been applied to drug–tar-

get interaction prediction or drug repositioning. For example, Wang

et al. (2015) presented a recommendation system based drug repos-

itioning approach to infer novel drug indications and side effects

simultaneously. Inspired by the recent success of the recommenda-

tion system approach, we hereby design a drug–disease recommen-

dation system to predict the most likely indications for given drugs.

From mathematical point of view, the process of random walk

on the heterogeneous network is equivalent to that of approximat-

ing the eigenvector associated with the largest eigenvalue of its

transition matrix. Nevertheless, unless the largest eigenvalue is abso-

lutely dominating, the other dominant eigenvectors also play non-

negligible roles. The formulation of drug–disease recommendation

system is based on matrix completion, which is designed to fill out

the unknown entries in the association matrix according to its eigen-

space with respect to all dominant eigenvalues. Assuming that the

underlying factors contributing to drug–disease associations are

highly correlated and thus the number of underlying independent

factors is much smaller than the existing number of diseases or

drugs, the fundamental idea of matrix completion is to construct a

low-rank matrix to approximate the drug–disease association

matrix. In fact, matrix completion methods have recently started to

attract interest in bioinformatics and biomedical applications

(Kapur et al., 2016; Natarajan and Dhillon, 2014).

In this work, we construct a heterogeneous network by integrat-

ing individual networks based on drug similarities, disease sim-

ilarities and verified drug–disease associations. Then, we design a

drug repositioning recommendation system (DRRS) based on the

Singular Value Thresholding (SVT) algorithm (Cai et al., 2010) to

complete the association matrix of the heterogeneous network.

A recycling rank-revealing randomized singular value decompos-

ition algorithm (R4SVD) (Li and Yu, 2017) is employed to fast and

adaptively approximate the dominant singular values and their

associated singular vectors so that the recommendation system is

scalable to handle large adjacency matrices generated from

large-scale drug–disease networks. DRRS is compared with several

state-of-the-art repositioning methods with respect to prediction

performance. The experiment results demonstrate the effectiveness

of DRRS on discovering novel drug indications, including the drugs

without previously known associations. In case studies, the

top-ranked diseases for several selected drugs are examined. Many

top-ranked, novel drug–disease associations are strongly supported

by the public databases, which further confirm the effectiveness of
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our approach. The main contribution of this paper involves: (i) our

proposed method performed matrix factorization on a matrix gener-

ated from the heterogeneous network containing drug similarity,

disease similarity and drug–disease association information. The ad-

vantage of this approach is justified in theory by comparing with the

popularly used random walk methods. The effectiveness of this

approach has also been shown in our results on different datasets;

(ii) we propose an automatic scheme that can be used to determine

the appropriate rank for the complete matrix.

2 Materials and methods

In this study, we propose a novel drug repositioning recommenda-

tion system approach DRRS to infer potential drug indications.

First, we give a brief description of the used datasets and con-

struct a heterogeneous network by integrating multi-source

data. Then, based on the known drug similarity, disease similarity

and drug–disease association data, matrix completion algorithm is

utilized to recover the missing associations in heterogeneous

network.

2.1 Datasets
The gold standard datasets used for inferring novel drug indications

is obtained from Gottlieb et al. (2011), and is collected from mul-

tiple data sources. This dataset includes 593 drugs, 313 diseases and

1933 validated drug–disease associations totally. Drugs are ex-

tracted from DrugBank database (Wishart et al., 2006) which is a

comprehensive database containing extensive information about

drugs and their targets. Diseases are collected from human pheno-

types defined in the Online Mendelian Inheritance in Man (OMIM)

database (Hamosh et al., 2002) which is a public resource providing

information about human genes and diseases. The numbers of drugs,

diseases, targets and all the interactions used in this study are shown

in Table 1.

Here, the similarities between drugs are calculated by the

Chemical Development Kit (CDK) (Steinbeck et al., 2003) based

on SMILES (Weininger, 1988) chemical structures and the

pairwise drug similarity is represented as the Tanimoto score of their

2D chemical fingerprints. The similarities between diseases are

obtained from MimMiner (Van Driel et al., 2006), which meas-

ures the degree of pairwise disease similarity by the text mining

analysis of their medical descriptions information in the OMIM

database.

2.2 Construction of the heterogeneous network
Currently, most matrix completion methods used in prediction ap-

plications conduct prediction by simply completing the known asso-

ciation matrix. Previous studies have shown that the integration of

heterogeneous, multi-source data can successfully lead to prediction

accuracy improvements. Hence, we integrate drug similarity, disease

similarity and drug–disease association information to construct a

heterogeneous network by incorporating heterogeneous data and

then predict novel drug indications by completing its adjacency

matrix.

Correspondingly, we construct a heterogeneous network com-

posed of three sub-networks, namely drug–drug network, disease–

disease network and drug–disease network. For drug–drug network,

let R ¼ fdr1; dr2; . . . ;drmg denotes m drugs and each edge

connecting two drugs is weighted by the pairwise chemical

structures similarity value. Similarly, for disease–disease network,

let D ¼ fds1;ds2; . . . ;dsng denotes n diseases and each edge

connecting two diseases is weighted by the pairwise phenotype simi-

larity value. The drug–disease network is modeled as a bipartite

graph GðR;D;EÞ, where EðGÞ � R�D; EðGÞ ¼ feijg contains

edges between drug dri and disease dsj. The weight of eij is initially

set to 1 if there exist a known association between drug dri and dis-

ease dsj, otherwise 0.

Finally, the heterogeneous network is constructed by connecting

drug–drug network and disease–disease network via drug–disease

interaction network, as shown in Figure 1. The adjacency matrix A

of the heterogeneous network is defined by (1).

A ¼
ARR ARD

AT
RD ADD

" #
: (1)

In matrix A, the diagonal submatrices ARR and ADD are the adja-

cency matrices of drug network and disease network, respectively.

Both ARR and ADD are dense. The off-diagonal submatrix ARD is the

adjacency matrix of drug–disease network and ADR ¼ AT
RD, where

AT
RD denotes the transpose of ARD. Due to the fact that the connec-

tivities in each individual biological networks are bidirectional and

their weights are positive, the adjacency matrix A of the heteroge-

neous network is symmetric and semi-positive definite. Hence, the

eigenvalues of the adjacency matrix are real, positive and are equal

to the singular values. Moreover, the left singular vectors of A are

the same as the right singular vectors, which are also equal to A’s

eigenvectors. The unknown entries are only presented in the

off-diagonal submatrices ARD and ADR, representing the unknown

associations to be predicted. After all, the goal of the drug–disease

association prediction problem is cast as filling out the missing

entries in the adjacency matrix A.

2.3 Prediction using low-rank matrix completion
Based on the premise that similar drugs tend to treat similar disease,

the hidden factors that govern the drug–disease associations are highly

correlated, which results in an also highly correlated data matrix. Our

drug–disease recommendation system model is based on constructing

an r-rank matrix A� to approximate the ðmþ nÞ � ðmþ nÞ adjacency

matrix A of the drug–disease heterogeneous network described in

Section 2.2, where r� mþ n. We denote X as a set of indices of all

known elements in A. Clearly, X contains the indices of all elements

in ARR and ADD, including 0 s, as well as the known associations in

ARD and ADR. The construction of A� tries to minimize the rank of

A�, i.e.

min rankðA�Þ

s:t:PXðA�Þ ¼ PXðAÞ:
(2)

It is important to notice that if A is composed by only ARD instead

of the one from the heterogeneous network, matrix completion by

rank minimization will not lead to meaningful results. This is due to

the fact that all of the known drug–disease association samples are

positive in drug-repositioning. Filling out ARD will lead to an opti-

mal solution for the rank minimization problem, i.e. a matrix of all

one’s with rank 1.

Unfortunately, this rank minimization problem is known to be NP-

hard (Natarajan, 1995) and thus it is impractical for drug–disease

association prediction problems involving large number of diseases and

drugs. Here we adopt a relaxation form proposed by Candès and

Recht (2009) via minimizing the sum of the singular values of A�,

which is known as the nuclear norm of A�. Correspondingly, the ma-

trix completion problem is remodeled as a proximal optimization

problem (Cai et al., 2010) such as

1906 H.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/11/1904/4820334 by O
ld D

om
inion U

niversity user on 07 August 2020



minsjjA�jj� þ
1

2
jjA�jj2F

s:t:PX A�ð Þ ¼ PX Að Þ;
(3)

where k:k� denotes the nuclear norm and s is a singular value threshold

parameter. The solution of the proximal problem is a good approxima-

tion to that of the nuclear norm minimization when s is large.

Nevertheless, if s is too large, convergence of the optimization process

will become very slow. In DRRS, we set s ¼ kPXðAÞkFðmþ nÞ=
ffiffiffiffiffiffiffi
jXj

p
to balance the approximation accuracy and convergence speed. Candès

and Recht (2009) have also showed that under certain conditions, the

solution obtained by optimizing the nuclear norm is equivalent to the

one by rank minimization. The matrix completion program by

optimizing the nuclear norm can be addressed by using the singular

value thresholding (SVT) algorithm (Cai et al., 2010).

Starting from Yð0Þ ¼ ds=ðdjjPXðAÞjjÞedPXðAÞ, SVT reformulates

the Uzawa’s algorithm (Arrow et al., 1958) or linearized Bregman it-

eration (Yin et al., 2008) by generating a series of matrices ðXðiþ1Þ;

Yðiþ1ÞÞ via

Xðiþ1Þ ¼ DsðYðiÞÞ

Yðiþ1Þ ¼ YðiÞ þ dPXðA�Xðiþ1ÞÞ;

(
(4)

where d is the iteration step size set to ðmþ nÞ=
ffiffiffiffiffiffiffi
jXj

p
as suggested by

Li and Yu (2017) and the SVT operator Dsð�Þ is a soft thresholding

operator such that

DsðYðiÞÞ ¼
XrðiÞj
�s

j¼1

ðrðiÞj � sÞuðiÞj v
ðiÞT
j ; (5)

where rj’s include singular values that are larger than s, while uj and

vj are the corresponding left and right singular vectors, respectively.

During the SVT process of matrix completion, estimating the singu-

lar values of YðiÞ greater than s to compute Dsð�Þ is required at each

iteration step. This can be straightforwardly obtained by computing

full Singular Value Decompostion (SVD) on YðiÞ and then shrinking it

by selecting the singular values greater than s and their corresponding

singular vectors. However, numerically computing the full SVD of an

adjacency matrix from a large heterogeneous network is often compu-

tationally costly as well as memory intensive. In fact, during SVT

iterations, Dsð�Þ only concerns the singular values in YðiÞ that are

greater than s. This allows us to apply fast SVD algorithms that focus

on approximating the dominant singular values of interest to enhance

the computational efficiency of the matrix completion algorithm.

A rank-revealing randomized SVD algorithm (R3SVD) (Ji et al., 2016)

has been proposed to fast approximate the SVT operator by projecting

YðiÞ onto a small Gaussian matrix and applying power iterations.

R3SVD builds up a low-rank QB decomposition incrementally based

on orthogonal Gaussian projection and then derives the low-rank

SVD. Extending R3SVD to a recycling rank-revealing randomized SVD

(R4SVD) algorithm (Li and Yu, 2017) by taking advantage of the sin-

gular vectors obtained from the previous iterations further improves

the computational efficiency of the SVT process. Here, R4SVD

algorithm is incorporated in DRRS for fast computation of Dsð�Þ.
The fast implementation of SVT algorithm using R4SVD, so-called

SVT-R4SVD, performs matrix completion in our DRRS method.

2.4 Determining the optimal rank
Our recommendation system for drug repositioning includes two

phases. The first phase is to determine the appropriate rank value r in

the completed matrix that yields the optimal prediction performance.

Rank r of the completed matrix is a critical parameter in matrix com-

pletion—an underestimated r will lower prediction accuracy while an

overestimated r may lead to overfitting as well as unnecessary computa-

tional costs. However, the appropriate value of r is unknown before-

hand in the drug repositioning problem. Here, we use an approach

based on validation to determine the appropriate value of r. First of all,

we randomly designate 10% of the known drug–disease associations as

a validation set. Then, we monitor the Area Under Curve (AUC, see

Section 3.1) value for the validation set during the SVT-R4SVD process

where r is gradually increasing in general. The r value is gradually

increasing, although not always strictly, because SVT is a convex

optimization method—during the SVT process, the approximation

error jjPXðA�Þ � PXðAÞjj is decreasing gradually and therefore the rank

r of the completed matrix A� generally has to increase accordingly to

satisfy the approximation error. The rank r with respect to the best

AUC value is regarded as the optimal rank bestr and will be selected as

the target rank for the next phase. In the second phase, we rerun the

SVT-R4SVD program on the whole known drug–disease association

dataset until the target rank is reached. The corresponding completed

drug–disease association matrix A�RD is then retrieved and the recom-

mendations are made by sorting the predicted entry values.

Our two-phase recommendation system is illustrated in

Algorithm 1. Function SVT-R4SVD(�) carries out one SVT iteration,

whose implementation details can be found in (Li and Yu, 2017).

Function AUC(�) computes the AUC value for the validation set gen-

erated in the first phase. The drug–disease association information is

considered to be more important in prediction, and therefore simi-

larity matrix is multiplied by a weight coefficient less than 1. We set

the coefficient to 0.8 in this study.

2.5 Comparison with random walk algorithms
The random walk method (Berger et al., 2010; Köhler et al., 2008;

Li and Patra, 2010) has been popularly used as a prediction model

for inferencing and ranking associations among the biological net-

works. It simulates a random walker starting from a set of randomly

selected seed nodes and then calculates the ranking scores for all the

nodes as the stationary distribution, representing the probability of

being reached by the random walker when equilibrium is reached.

A random walk iteration is typically described as

Table 1. Statistics of the gold standard dataset used in this study

Dataset Drugs Diseases Interactions Sparsitya

593 313 1 933 1.041–2

aThe sparsity is defined as the ratio of the number of known interactions to

the number of all possible interactions.

Fig. 1. The heterogeneous drug–disease network and its adjacency matrix
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pi ¼ ð1� cÞPTpi�1 þ cp0; (6)

where p0 is the initial probability vector, c is the random walk re-

start probability, and P is the transition matrix transformed from

the affinity matrix of the heterogeneous network.

The mathematical foundation of the random walk model is the

power iteration, i.e. applying the high power of the transition matrix

P on the initial vector. It is well known that the dominant eigenvalue

of the transition matrix k1 is 1 while the magnitudes of the rest

eigenvalues are less than 1. During power iterations, the high power

of the transition matrix allows the dominant eigenvalue to remain 1

while the rest decade to 0. Eventually, the stationary distribution

vector at equilibrium is equivalent to the dominant eigenvector of

the transition matrix. More precisely, the random walk model can

be thought as completing a rank-1 matrix while the unknown asso-

ciations are predicted to fit the top dominant eigenvector of the tran-

sition matrix. In contrast, the matrix completion model takes all

dominant eigenvalues into account and is cast to fit the unknown

associations with respect to all eigenvectors corresponding to the

dominant eigenvalues. Hence, in theory, the matrix completion

model should yield better accuracy than random walk but with

the tradeoff of more computational time. Nevertheless, in drug

repositioning, the prediction accuracy is of most importance while

the computational cost problem can be addressed by advance of

algorithms and computer architectures.

3 Experiments and results

In this section, we systematically evaluate the performance of DRRS

using the golden standard datasets. First, the evaluation metrics used

in this study are introduced. Then, we compare DRRS with several

state-of-the-art algorithms in terms of prioritizing candidate diseases

for a given drug of interest. Next, case studies are conducted to fur-

ther illustrate the practical usefulness of DRRS. Finally, we perform

prediction on the other two collected datasets to further verify the

effectiveness of DRRS.

3.1 Evaluation metrics
To systematically evaluate the ability of DRRS in identifying candi-

date diseases for a specific drug, ten-fold cross-validation experi-

ments are conducted. In the golden datasets, there are 1933 known

drug–disease associations and the others having not been verified

are considered as candidate associations. All known associations are

randomly divided into ten partitions that are roughly equal in size.

Each partition is taken in turn as the test set, while the remaining

nine partitions serve as the training set.

After performing matrix completion based on the training set,

for each drug, the test associations are ranked together with the can-

didate associations and are sorted in descending order according to

their predicted values assigned by the matrix completion method.

For each specific ranking threshold, true positive (TP), false negative

(FN), false positive (FP) and true negative (TN) are calculated based

on the ranking results. A test association is considered as a correctly

identified positive sample if it has higher rank than the given thresh-

old. A candidate association is considered as a correctly identified

negative sample if it has lower rank than the given threshold. Here,

TP and TN represent the number of positive samples and negative

samples identified correctly, respectively. FP and FN denote the

number of positive samples and negative samples identified incor-

rectly, respectively. By varying the rank threshold, True Positive

Rate (TPR), False Positive Rate (FPR) and Precision can be calcu-

lated to construct the Receiver Operating Characteristic (ROC)

curve and the Precision-Recall curve. For the ROC curve, FPR and

TPR are plotted on the x- and y-axes, respectively. For PR curve,

Recall is plotted on the x-axis and Precision is plotted on the y-axis

(Davis and Goadrich, 2006). The area under ROC curve (AUC)

value and precision are utilized to evaluate the overall performance

of the prediction methods. To obtain convincing results, ten-fold

cross validation is repeated ten times and the average value is re-

ported as the final result. Strictly, the ROC curve and PR are not

measuring exactly the precisions or recalls of the predictions, instead

of ranking the known associations on top of the unknowns.

Nevertheless, due to the fact that the true associations in reality is

scarce compared to the total number of unknowns, measuring the

properties of the ROC and PR while treating the unknown as the

true negatives is still meaningful.

Moreover, comprehensive prediction experiments using all

known associations as training set are conducted to evaluate DRRS.

Here, each unknown drug–disease association is assigned a pre-

dicted score according to the completed matrix by DRRS. Then,

10%
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selecting several drugs as the examples, we analyze the top-ranked

candidate diseases for each selected drug by searching evidences

from public databases.

3.2 Comparison with other methods
To assess the performance of DRRS, we compare it with four state-

of-the-art methods: MBiRW (Luo et al., 2016), DrugNet (Martı́nez

et al., 2015), HGBI (Wang et al., 2013) and KBMF (Gönen et al.,

2013). MBiRW utilizes comprehensive similarity measures and Bi-

Random Walk algorithm to identify potential novel indications for a

given drug. DrugNet is a generic network-based drug repositioning

method, which propagates information between networks and can

be utilized to perform both drug–disease and disease-drug prioritiza-

tion on drug–disease network or drug–target -disease network.

HGBI is introduced based on the guilt-by-association principle and

an intuitive interpretation of information flow on the heterogeneous

graph. Although HGBI is originally developed for drug–target asso-

ciation prediction, it can be applied in predicting candidate diseases

for drugs. The parameters used in MBiRW, HGBI and DrugNet are

determined according to their literatures. KBMF is a kernelized

Bayesian matrix factorization method, which can work with mul-

tiple data side information sources and can be applied in recommen-

dation systems, and the subspace dimensionality parameter R used

in KBMF is set to 40, which performs best in the cross validation

test.

The overall performance of all methods is evaluated by applying

ten-fold cross-validation specified in Section 3.1. The experiment

results in terms of ROC curves and PR curves are depicted in

Figure 2.

As shown in the experiment results, our proposed DRRS method

outperforms the other competitive methods in terms of AUC and

best precision values. More Specifically, DRRS achieves AUC value

of 0.93, while MBiRW, HGBI, DrugNet and KBMF obtain inferior

results of 0.917, 0.829, 0.778 and 0.915, respectively. The PR

curves show that DRRS achieves the best precision with 0.378, indi-

cating that it can successfully prioritize 37.8% true drug–disease as-

sociations as the ones with the highest rank. KBMF has similar

performance with the best precision 0.376.

In one fold of the ten-fold cross validation, the prediction results

of test set are analyzed. There are 194 drug–disease associations in

the test set, and these associations involve 155 drugs. After matrix

completion, for each drug, all of its test associations and candidate

associations are ranked in descending order, whose results are shown

in Figure 3. DRRS has prioritized 72.7% test associations in top-10

rankings. Furthermore, the test associations of 71 (71/155 	 45.8%)

drugs have been ranked at top 1 by DRRS.

Moreover, the running times of all methods on the golden data-

sets in one ten-fold cross validation run are compared in

Supplementary Table S1. The results show that DRRS is faster than

matrix completion method KBMF and takes less than 3 min.

3.3 Predicting indications for new drugs
DRRS can also be used for drugs without previously known disease

associations. We analyze the performance of all methods for drugs

which have only one known disease association in the golden data-

sets. In this case, for one given drug, the known associated disease is

removed from the datasets, and the drug will have no association in-

formation during the process of prediction. Therefore, the test on

these drugs is used to evaluate the ability of the method to predict

associations for new drugs that have no known association with any

disease.

There are 171 drugs which have only one known associated dis-

ease in the golden datasets. After prediction, the results in terms of

ROC curves as well as the measures of the number and the percent-

age of drugs with maximum precision value 1.0 are reported in

Figure 4a and b, respectively. The maximum precision value 1.0

means that the test disease is ranked successfully as number one

out of all candidate diseases associated with the specific drug. One

can find that DRRS has achieved superior performance over the

other methods. For example, DRRS achieves AUC value of 0.824,

while MBiRW, HGBI, DrugNet and KBMF obtain inferior AUC

values of 0.818, 0.746, 0.759 and 0.806, respectively. Moreover,

48 (48/171 	 28.07%) drugs are predicted with maximum preci-

sion value 1.0 in DRRS. In comparison, for MBiRW, HGBI,

DrugNet and KBMF, there are 40 (23.39%), 17 (9.94%), 25

(14.62%) and 41 (23.98%) drugs predicted with maximum preci-

sion value 1.0, respectively.
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Fig. 2. Prediction results of different methods in identifying potential diseases

for drugs. (a) ROC curves of prediction results obtained by applying DRRS

and other competitive methods. (b) PR curves of identifying candidate

diseases for drugs
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Fig. 3. (a) Prediction results in one fold of ten-fold cross-validation. The rank

results of test associations based on their predicted scores by DRRS. 141

associations (orange) ranked in top 10, 32 (blue) ranked in top 10–50 and 21

(black) ranked over 50. (b) The number and the percentage of drugs correctly

predicted with respect to different rank cutoffs (Color version of this figure is

available at Bioinformatics online.)
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Fig. 4. (a) ROC curves of prediction results obtained by applying DRRS and

other methods. (b) The number and the percentage of drugs with maximum

precision value 1.0 predicted by all methods
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3.4 Comprehensive prediction for novel drug–disease

associations
After confirming the prediction ability of DRRS by cross validation

experiments, we conducted a comprehensive prediction of novel as-

sociations between all drugs and diseases. In the inference process,

all known drug–disease associations in the gold standard dataset are

used as the training set and the remaining drug–disease pairs are re-

garded as the set of candidate drug–disease associations. DRRS can

predict the potential disease associations for all drugs simultan-

eously. By applying DRRS, all candidate diseases for a specific drug

are ranked according to their predicted values assigned by DRRS.

We have conducted case studies to verify whether the predicted

top-ranked diseases are true or not according to two public

biological databases: KEGG (Kanehisa et al., 2014) and CTD

(Davis et al., 2013). KEGG and CTD have been constantly updated

to include newly verified drug–disease associations and provide a

foundation for our validation. We examined the most potential

indications for each of the 593 drugs. The predicted results by all

methods are summarized in Table 2. One can observe that 155 of

top-5 and 397 of top-20 predicted novel drug–disease associations

by DRRS have been annotated in KEGG and CTD, respectively,

which are more than the other prediction methods.

We choose several drugs as examples and list the verified infor-

mation of the top-5 candidate diseases for each selected drug in

Supplementary Tables S2–S5. We find several novel drug–disease as-

sociations of the top-ranked predictions that have been annotated in

KEGG or CTD database. Zoledronic acid has been predicted to treat

for Breast cancer, Osteoporosis, RCC (Renal cell carcinoma, non-

papillary) and Prostate cancer, as confirmed in public database.

Furthermore, DRRS predicts other novel treatments including:

Risperidone for OCD (Obsessive-compulsive disorder) and PAND1

(Panic disorder 1); Prednisolone for Autoimmune Disease, Asthma;

Paclitaxel for Prostate Cancer and Multiple Myeloma. These novel

treatments have also been confirmed in CTD or KEGG database.

As a result, the confirmations of top-ranked predictions in CTD

and KEGG databases support the practical application of DRRS on

discovering novel indications for drugs. More importantly, the other

top-ranked predictions that are not yet reported may also exist and

deserve further scientific exploration by related experiments.

3.5 Validation on the other datasets
The robustness of DRRS is further validated to perform prediction on

two other datasets: Cdataset and DNdataset, which have been used in

our previous research (Luo et al., 2016). Cdataset includes 663 drugs

registered in DrugBank, 409 diseases listed in OMIM database, and

2353 verified drug–disease associations. DNdataset contains 4516

diseases annotated by Disease Ontology (DO) terms, 1490 drugs

registered in DrugBank and 1008 known drug–disease associations

derived from DrugBank. The numbers of drugs, diseases and inter-

actions included in the two datasets are shown in Table 3.

Firstly, we conduct ten times ten-fold cross-validation to validate

the prediction accuracy of our proposed method on Cdataset and

DNdataset. The results of applying different methods in terms of

ROC curves and PR curves are depicted in Figures 5 and 6, respect-

ively. DRRS yields the best prediction accuracy in comparison with

the other methods on Cdataset. DRRS achieves an AUC value of

0.947 while MBiRW, HGBI, DrugNet and KBMF obtain inferior re-

sults with 0.933, 0.858, 0.804 and 0.928, respectively. Moreover,

the maximum precision achieved by DRRS is 0.402, which is similar

to that of KBMF and higher than other methods. On DNdatasets,

the AUC value obtained by DRRS is 0.935, which is lower than that

obtained by MBiRW and DrugNet. This may be due to the fact that

the known drug–disease associations in DNdataset is much sparser

than gold standard dataset and Cdataset. However, in terms of pre-

cision measure of the PR curves that is more important in practice,

DRRS obtains the maximum precision of 0.348, which is higher

than that obtained by the second best method MBiRW (0.321).

In summary, DRRS demonstrates high prediction accuracy on differ-

ent datasets. Moreover, the running times of all methods on

Cdatasets and DNdataset are recorded in Supplementary Table S1,

which shows DRRS is faster than KBMF, particularly for handling

large datasets. It should be noted that, in one ten-fold cross valid-

ation, KBMF on DNdatasets is so slow to perform ten times ten-fold

cross-validation in acceptable time, and then the explicit results on

DNdatasets have not been obtained and reported in our study.

Moreover, the experiments of predicting indications for new

drugs are also conducted on the two datasets, and results are re-

ported in Figures 7 and 8, respectively. There are 177 drugs and 347

drugs with only one associated disease in Cdatasets and DNdatasets,

respectively. The test on these drugs is used to evaluate the perform-

ance of all methods in predicting candidate indications for new

drugs. From the experiment results, we can clearly see that DRRS

outperforms other competing methods. On Cdatasets, DRRS

achieves AUC value of 0.824, while MBiRW, HGBI, DrugNet and

KBMF obtain inferior results with 0.804, 0.732, 0.754 and 0.798,

respectively. In addition, 45 (45/177 	 25.42%) drugs have

achieved maximum precision value 1.0. For MBiRW, HGBI,

DrugNet and KBMF, there are 41 (23.16%), 19(10.73%),

23(12.99%) and 33(18.64%) drugs with maximum precision value

1.0, respectively. On DNdatasets, DRRS achieves AUC value of

0.943, which is slightly worse than MBiRW and DrugNet. The num-

ber of drugs with maximum precision value 1.0 is 139, which is

equal to that of applying MBiRW. For HGBI and DrugNet, there

are 80 (23.05%) and 84 (24.21%) drugs with maximum precision

value 1.0, respectively. All these results further demonstrate the ef-

fectiveness of our proposed method in predicting indications for

new drugs.

4 Conclusion

In this study, we propose using recommendation system approach to

address the problem of drug repositioning. A novel computational

method for drug repositioning, so-called DRRS, is developed to

identify novel disease indications for given drugs. In DRRS, a het-

erogeneous drug–disease network is constructed by integrating

drug–drug network, disease–disease network and drug–disease asso-

ciation network. The proposed method formulates the prediction of

Table 2. The number of verified novel drug–disease associations as

top-5 and top-20 for the 593 drugs

DRRS MBiRW DrugNet HGBI KBMF

Top 5 155 153 23 76 145

Top 20 397 364 203 231 354

Table 3. Statistics of Cdataset and DNdataset

Drugs Diseases Interactions Sparsity

Cdataset 409 663 2532 9.337–3

DNdataset 1490 4516 1008 1.498–4
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potential drug–disease association as a matrix completion problem

based on the association matrix of the heterogeneous drug–disease

network. Then, the SVT-R4SVD algorithm is adopted to identify

novel drug–disease associations having not been validated yet by fill-

ing out the unknown entries in the drug–disease association matrix.

Theoretically, DRRS is superior to the existing drug repositioning

methods based on random walk algorithm because all dominant

eigenvalues and their associated eigenvectors of the adjacency matrix

are taken into account. Moreover, DRRS has the ability of handling

large datasets by using recycling rank-revealing randomized SVD al-

gorithms to fast approximate SVD operations in SVT iterations.

Comprehensive experiments including ten-fold cross-validation and

case studies have been conducted to validate the performance of the

proposed method on identifying novel indications for existing drugs.

Promising results in the experiments demonstrate the effectiveness of

DRRS, which is consistent with our theoretical analysis. However,

the experimental results based on the three datasets indicate that the

prediction capability of DRRS may be affected by sparsity of the

datasets and similarity measures, as shown in DNdataset. In future

studies, collecting and incorporating more relevant association data

from more databases and literature may expand the application

scope of our approach. In addition, the performance of DRRS can be

further enhanced by improving the matrix completion algorithm it-

self or incorporating more effective drug and disease features.
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other competitive methods on Cdatasets. (b) The number and percent of

drugs with maximum precision value 1.0 obtained by all methods
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