
Bioinformatics, YYYY, 0–0 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 

Manuscript Category 

 

Subject Section 

CLPred: A sequence-based protein crystallization pre-
dictor using BLSTM neural network 
Wenjing Xuan1,2, Ning Liu1, Neng Huang1, Yaohang Li3,*, Jianxin Wang1,2,* 

1School of Computer Science and Engineering, Central South University, Changsha, 410083, China  

2Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China  

3Department of Computer Science, Old Dominion University, Norfolk, 23529, Virginia, United States 

*To whom correspondence should be addressed.  

Abstract 
Motivation: Determining the structures of proteins is a critical step to understand their biological functions. 
Crystallography-based X-ray diffraction technique is the main method for experimental protein structure 
determination. However, the underlying crystallization process, which needs multiple time-consuming and 
costly experimental steps, has a high attrition rate. To overcome this issue, a series of in-silico methods 
have been developed with the primary aim of selecting the protein sequences that are promising to be crys-
tallized. However, the predictive performance of the current methods is modest.  
Results: We propose a deep learning model, so-called CLPred, which uses a bidirectional recurrent neural 
network with long short-term memory (BLSTM) to capture the long-range interaction patterns between k-
mers amino acids to predict protein crystallizability. Using sequence only information, CLPred outperforms 
the existing deep-learning predictors and a vast majority of sequence-based diffraction-quality crystals pre-
dictors on three independent test sets. The results highlight the effectiveness of BLSTM in capturing non-
local, long-range inter-peptide interaction patterns to distinguish proteins that can result in diffraction-
quality crystals from those that cannot. CLPred has been steadily improved over the previous window-
based neural networks, which is able to predict crystallization propensity with high accuracy. CLPred can 
also be improved significantly if it incorporates additional features from pre-extracted evolutional, struc-
tural, and physicochemical characteristics. The correctness of CLPred predictions is further validated by 
the case studies of Sox transcription factor family member proteins and Zika virus non-structural proteins. 
Availability: https://github.com/xuanwenjing/CLPred 
Contact: jxwang@mail.csu.edu.cn; yaohang@cs.odu.edu 

 

 

1 Introduction  

Protein crystallography is increasingly favored by the majority of re-

searchers because protein structure analysis is the basis of protein func-

tional research (Bethel and Lieberman, 2014), disease treatment (Xue et 

al., 2013), and drug design (Cordeiro and Speck-Planche, 2012; Chen 

and Yu, 2013). At present, about 80%~90% of the known protein three-

dimensional structures are obtained using X-ray diffraction (XRD) anal-

ysis technology. XRD determines the three-dimensional coordinates of 

heavy atoms in protein molecules within certain resolution by measuring 

the spatial distribution of electron density in protein crystals. To deter-

mine the 3D structures of proteins by XRD, forming protein crystals 

suitable for structural analysis is crucial. The experimental process of 

obtaining protein crystals consists of multiple costly and time-consuming 

steps, including selection, cloning, expression, purification, and crystalli-

zation. Over 60% of the structure determination costs are consumed by 

unsuccessful attempts (Service, 2005; Kurgan and Mizianty, 2009). Only 

~2-10% of protein targets produce high-resolution protein structures 

(Slabinski et al., 2007) and ~4.6% of targets produce diffraction-quality 

crystals (Jahandideh et al., 2014). Crystallization is characterized by a 

significant rate of attrition and is among the most complex but poorly 

understood problems in structural biology (Kurgan and Mizianty, 2009), 

which provides motivation for further research of this field. Researchers 

consider the intrinsic factor that affects the success rate of protein crys-

tallization is the crystallinity of the protein itself (Sánchez-Puig et al., 

2012). If there is a prediction method that can predict the crystallinity of 

a protein with satisfactory accuracy, it will enable rapid in-silico screen-

ing target proteins that are predicted to have lower crystallization pro-

pensity, and consequently, trial-and-error settings and costs of protein 
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structure analysis will be significantly reduced. Several investigations 

suggested that the features derived from protein sequences could be used 

for predicting crystallization propensity (Canaves et al., 2004; Goh et al., 

2004). Therefore, it is of a great need to develop highly accurate in-silico 

methods to distinguish proteins that can lead to diffraction-quality crys-

tals from those that cannot, based on their sequences and characteristics 

before crystallization experiments. 

In recent years, a series of prediction models and statistical methods 

for protein crystallization propensity, which use sequence-derived or 

secondary structural properties, have been developed. CrystalP2 (Kurgan 

et al., 2009) breaks the limitation of its predecessor version CrystalP 

(Chen et al., 2007) to predict only short-chain proteins. It is a kernel-

based method that considers a large number of input features including 

composition and collocation of amino acids (AAs), pI, and hydrophobi-

city. PPCpred (Mizianty and Kurgan, 2011), based on a Support Vector 

Machine (SVM) model, is the first one by integrating sequence-derived 

features with structural features to predict protein production, purifica-

tion, crystallization, and production of diffraction-quality crystals as the 

four-stop states. Inspired by PPCpred, a two-layer SVM predictor 

PredPPCrys (Wang et al., 2014) is developed by using a set of compre-

hensive and multifaceted sequence-derived features, which has better 

prediction performance than the single-layer SVM. XtalPred–RF 

(Jahandideh, et al., 2014) improves XtalPred (Slabinski et al., 2007) by 

using a simple statistical analysis of the physicochemical features of a 

protein and then applying a random forest model to select additional 

features, such as predicted surface ruggedness, hydrophobicity, side-

chain entropy of surface residues, and amino acid composition of the 

predicted protein surface. TargetCrys (Hu et al., 2016) is a two-layer 

SVM predictor that takes advantage of multi-view protein features. Crysf 

(Wang et al., 2018) exploits the UniProt-derived functional annotations 

to predict the crystallization propensity of proteins, but its performance 

is limited by the proteins available in UniProt. fDETECT (Meng et al., 

2017) employs the logistic regression model to predict four-stop states 

with the advantages of less computational time and more accuracy. The 

majority of these tools perform a two-stage classification using a pletho-

ra of sequence-based features: i). performing feature selection and engi-

neering using additional tools; and ii). feeding the selected features to the 

machine learning algorithms for classification. These computational 

methods and tools not only lead to performance improvement, but also 

promote the understanding of protein crystallization. 

In recent years, deep learning makes significant contributions to the 

field of bioinformatics. Recent work (Elbasir et al., 2019) shows that 

using deep learning to extract features often achieves better results com-

pared to its closest machine learning competitors. The majority of these 

deep learning algorithms rely on features extracted from raw sequences. 

The study (Elbasir et al., 2019) builds a convolutional neural network 

(CNN) (LeCun et al., 1998) to extract features such as frequency sets of 

amino acid k-mers and k-mers information. Studies in protein secondary 

structure show that the types of neighboring residues play a predominant 

role in the secondary structure conformation that a residue adopts. In 

particular, residues in contacting parallel or antiparallel β-sheets are 

connected by hydrogen bonds in alternative positions. The hydrogen 

bonds between residues at positions i and i+3, i and i+4, and i and i+5 

lead to the formation of 3-10 helices, α-helices, and π-helices, respective-

ly (Li et al., 2011). Certain k-mers form structural keywords that can 

effectively distinguish between major protein folds (Elhefnawy et al., 

2019). CNN can often effectively capture such local motif patterns be-

tween interactions of k-mers, but have difficulty in learning high-order, 

long-range interactions of k-mers, which are essential to form stable 

spatial structures. Mining the long-range peptide-peptide interactions in 

proteins (i.e., non-local, remote interactions between k-mers) is critical to 

solve the riddle of protein crystallization propensity prediction.  

In this study, we build a deep learning network to extract global inter-

action patterns, improving over the traditional window-based neural 

network. CNN is a feed-forward neural network, which can effectively 

capture non-linear spatial information in image classification and other 

computer vision problems (Szegedy et al., 2015). Moreover, it has also 

achieved promising results in many natural language processing (NLP) 

tasks. CNN is often used to capture local patterns, but have difficulty in 

learning long-range interactions information. In contrast, recurrent neural 

network (RNN) is usually effective in solving this problem. Long Short-

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is a special 

RNN designed to address vanishing gradient problem, so that the net-

work is able to learn over hundreds of time steps. LSTM has a designed 

memory sub-architecture called ‘memory cell’ to store non-decaying 

information, which is realized by volume-conserving mappings con-

structed through a linear unit with a weight one self-recurrent connec-

tion. It performs well in machine translation (Sutskever et al., 2014) and 

speech recognition (Graves and Jaitly, 2014) as well as the prediction of 

protein secondary structure based on protein sequence (Sønderby and 

Winther, 2014).  

In this paper, we propose CLPred, a deep learning framework protein 

crystallization prediction only based on sequence information. It first 

takes a raw protein sequence as input and converts the amino acids into 

word vector representation through a word embedding layer. Then the 

word vectors are passed to a CNN layer whose goal is to capture the 

high-frequency k-mers features. Finally, the k-mers features are supplied 

to an LSTM layer, which uses feed-forward neural networks for concat-

enation of predictions from the forward and backward networks in the 

bidirectional model to capture the long-range interactions information 

between k-mers amino acids and generate predictions. The key amino 

acids and tripeptides influencing protein crystallization are obtained by 

analyzing the feature vectors. CLPred can be improved significantly if it 

incorporates additional features. In addition, the correctness of our 

CLPred predictions is further validated by the case studies of Sox tran-

scription factor family member proteins and Zika virus non-structural 

proteins. 

Table 1. Statistics for training and testing sets. 

Dataset 
No.of 

crystallizable 

No.of 

uncrystallizable 
Total 

Training set (Elbasiret al., 2019) 4420 22401 26821 

DC_final  (Elbasiret al., 2019) 891 896 1787 

SP_final  (Elbasiret al., 2020) 148 89 237 

TR_final (Elbasiret al., 2020) 374 638 1012 

2 Materials and methods 

2.1 Data preparation 

We use four data sets in this work, including a training set and three test 

sets. The training set and one of the test sets are obtained from 

DeepCrystal (Elbasir et al., 2019). It was originally generated by (Wang 

et al., 2014), including five categories: diffraction-quality crystal, protein 

cloning failure, protein material production failure, purification failure, 

and crystallization failure. In Elbasir et al. (2019), diffraction-quality 

crystal is treated as a positive class and the remaining four are combined 

as a single negative class. Then it exploits the CD-HIT (Fu et al., 2012) 
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method to remove sequences from the training set which have over 25% 

sequence identity with the test set. For sequences with length less than 

800, zero padding is applied to make all input sequences have equal 

lengths of 800. Finally, the data set is randomly divided into two disjoint 

parts: a training set with 26,821 sequences (4,420 crystallizable and 

22,401 non-crystallizable) and a test set with 1,787 sequences (891 crys-

tallizable and 896 non-crystallizable). We also remove sequences from 

the training set with over 25% sequence identity to Sox9, Sox17, and 

Zika proteins for our case studies. We name the test set 'DC_final' since 

it is obtained from DeepCrystal. 

In addition, we adopt two other independent test sets named 'SP_final' 

and 'TR_final' from BCrystal (Elbasir et al., 2020) for further verifica-

tion. These two test sets are first extracted from 'SP_test_nr' and 

'TR_test_nr' (Wang et al., 2018), which have 604 and 2,521 protein 

sequences, respectively. Since 'SP_test_nr' and 'TR_test_nr' are derived 

from TargetTrack (Kouranov et al., 2006), they may overlap with the 

training set. Elbasir et al. (2020) use CD-HIT method to remove se-

quences from 'SP_test_nr' and 'TR_test_nr' with over 25% sequence 

identity to the training set. Sequences with length over 800 are also re-

moved. The post-processed 'SP_test_nr' and 'TR_test_nr' datasets are 

named 'SP_final' and 'TR_final', respectively. Moreover, we remove the 

N-terminal hexaHis tag (MGHHHHHHSH) and the C-terminal 

LEHHHHHH tag presented in some sequences. These tags are not part 

of the original protein sequences, but are added artificially to ease purifi-

cation (Gräslund et al., 2008). Detailed statistics information of the above 

four data sets is listed in Table 1.  

2.2 Model architecture 

The protein crystallization prediction is a binary classification problem. 

For an input protein sequence, the corresponding crystallization score in 

range [0, 1] is predicted. As shown in Fig. 1, CLPred obtains the raw 

sequence from input, transforms k-mers amino acids into word vector 

representation through the embedding layer, then respectively extracts 

high-frequency k-mers features and long-range interaction features 

through CNN and BLSTM layers, and thus completes end-to-end protein 

diffraction-quality crystals prediction. Our model architecture including 

features embedding and various layers are described next. 

The embedding layer in CLPred transforms the discrete amino acid 

sequence encoding into a dense, continuous vector representation. Com-

pared to the one-hot representation, which is sparse, the embedding layer 

has the advantage of dimension reduction while preserving the important 

physicochemical properties of amino acids in a protein sequence (Vang 

and Xie, 2017). In the embedding layer, the input of a protein sequence 

is encoded as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐿), 𝑥𝑖 ∈ {0, 1, … , 21}, where 1 to 20 repre-

sent the types of amino acids in alphabet order, gaps are filled with 0s, 

ambiguous or unknown amino acids are denoted as 21, and 𝐿 = 800 is 

the fixed length. The embedding algorithm learns a feature matrix, which 

is denoted by 𝑊𝑒 ∈ ℝ22×50, where 22 is the number of input types and 

50 is the embedding dimension. The matrix represents the dense repre-

sentation of each amino acid. 𝑊𝑒  is initialized randomly and trained 

along with the whole network. By looking up 𝑊𝑒 , the embedding layer 

outputs a feature map 𝐹𝑒 ∈ ℝ𝐿×50. 

 

Fig. 1. The architecture of CLPred. (a). The overall workflow of CLPred. (b). The architecture of the CNN module. (c) BLSTM module. The discrete raw sequence is transformed into a 

dense, continuous vector through feature embedding and then fed into the CNN layer with multi-scale convolution kernels to capture local amino acid k-mers features. The extracted 

characteristic map of the CNN layer is passed to BLSTM concatenating the forward and backward information to capture the long-range interaction characteristics between k-mers. Finally, 

all the BLSTM outputs are passed to the fully connected layers to produce protein crystal prediction scores. 
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After the embedding layer, the protein sequence is encoded into a 

dense, continuous vector representation 𝐹𝑒  and fed to the CNN layer. 

Inspired by previous work (Elbasir et al., 2019), we construct a multi-

layer multi-scale one-dimensional convolution module but with certain 

adjustments. Our convolution module consists of two CNN layers. The 

first CNN layer contains 8 kernels as shown in Fig. 1(b). The variational 

size of the convolution filter is designed to capture k-mers amino acid 

fragments, where 𝑘 ranges from 2 (a dipeptide) to 9 (a nonapeptide). The 

second layer is composed of 3 kernels, which is represented as 

{𝐾𝑗
𝑛}𝑛=1,2,3,𝑗=5,9,13, where n is the nth kernels and 𝑗 is the corresponding 

kernel size. The kernel size is equal to the size of a convolutional win-

dow across j characters and the parameters are tuned according to train-

ing and validation. An intermediate feature map 𝐹𝑚
𝑖  in CNN layer with 

respect to the ith kernel is extracted as 

𝐹𝑚
𝑖  =  𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝐹𝑒, 𝐾

𝑖)), 

where ReLU is the rectified linear unit activation function and 

Conv denotes the convolution operation (Nair and Hinton, 2010; 

Krizhevsky et al., 2012; LeCun et al., 2015).  

After obtaining an intermediate convolution feature map 𝐹𝑚
𝑖 , average 

pooling operation is used to down-sample the latent representation by 

taking the average value over the sub-regions of the CNN layer outputs, 

which is helpful to maintain the integrity of information and facilitate the 

subsequent extraction of global features. After average pooling, the 

outputs from all the kernels are concatenated for another average pooling 

operation to generate the feature map 𝐹𝑐 for the next layer. The overall 

generation of the feature map 𝐹𝑐 is formulated as follows: 

𝐹𝑐 =  𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝑚
𝑖 ))), 

where AvgPooling and Concat are the average pooling and the concat-

enation operations, respectively. 

A multi-layer Bidirectional LSTM (BLSTM) module is designed fol-

lowing the CNN and pooling layers, as shown in Fig. 1(c). CLPred has 3 

BLSTM layers. Each direction in the BLSTM consists of 200 time step 

nodes while each time step is composed of 128 hidden units. Fully con-

nected neurons in the network are activated by ReLU. We adopt 0.5 

dropout rates to prevent overfitting and co-adaptation (Hinton et al., 

2012). The BLSTM layer ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗: ℎ𝑡

⃖⃗ ⃗⃗ ] concatenates the forward LSTM 

unit ℎ𝑡
⃗⃗  ⃗ and backward LSTM unit ℎ𝑡

⃖⃗ ⃗⃗  to obtain the characteristic represen-

tation of the long-range interaction information between the amino acids 

k-mers.  

The output of the LSTM layer is flattened to a one-dimensional array 

and then fed into a fully connected layer with 256 hidden neurons using 

a ReLU activation function. Finally, the prediction score is generated by 

a fully connected output layer with a softmax activation function: 

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

𝑒𝑧1 + 𝑒𝑧2
,  

where 𝜎(𝑧)𝑗 is the probability value of the jth element. 

2.3 Model training 

We use 10-fold cross-validation to train 10 models, respectively. The 

protein sequences are randomly divided into ten disjoint parts. Alterna-

tively, nine parts serve the purpose of training and the rest is used for 

validation. The final results are reported by taking advantage of the ten 

models. The Adam (Adaptive moment estimation) optimizer (Kingma 

and Ba, 2014) is adopted for model training. Validation sets are used to 

allow early stop during training to prevent the network from overfitting. 

It is important to note that there are approximately five times more 

uncrystallizable proteins than the crystallizable proteins in our training 

set, which leads to an imbalance training problem. To address this issue, 

in the training of each fold, we randomly down sample all negative se-

quences to the number approximately the same as the positive ones. The 

negative sequence down sampling step is repeated in each epoch.  

CLPred is implemented using Google's open source TensorFlow li-

brary (Abadi et al., 2016). To speed up the training, we use the GPU 

version of TensorFlow to train on the Nvidia Titan X GPU. 

2.4 Evaluation strategies 

We use multiple evaluation indicators including the area under the curve 

(AUC), accuracy (ACC), Recall (REC), Precision (PRE), F-score, NPV, 

and Matthews correlation coefficient (MCC) (Matthews, 1975) as the 

measures to evaluate the predictive performances of the protein crystalli-

zation predictors. The AUC value quantifies the area under the receiver 

operating characteristic curve (ROC) by plotting the true-positive rates 

against the false-positive rates. Matthews Correlation Coefficient (MCC) 

takes true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) into account. The evaluation indicators used in the paper 

are summarized as follows: 

MCC =
(TP × TN − FP × FN)

√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
 

ACC =
(TP + TN)

(TP + TN + FP + FN)
 

REC =
TP

(TP + FN)
, PRE =

TP

(TP + FP)
 

F − score =
2 ∗ REC ∗ PRE

(REC + PRE)
 

NPV =
TN

TN + FN
 

3 Results and Discussions 

3.1 Performance of the CLPred on three benchmark data sets 

We evaluate the predictive performances of five sequence-based protein 

crystallization predictors, including DETECT, TargetCrys, PPCPred, 

CrystalP2, and DeepCrystal. The prediction results on DC_final, 

SP_final, and TR_final are shown in Tables 2, 3, and 4, respectively. 

One can find that CLPred outperforms the predictors when performance 

is measured by Accuracy, AUC, Recall, F-score, NPV, and MCC. When 

measured by prediction precision, CLPred is slightly inferior to 

DeepCrystal, fDETECT, and DeepCrystal/fDETECT in DC_final, 

SP_final, and TR_final, respectively. However, the gains of CLPred 

measured by the other metrics are more significant. ROC curves for the 

five predictors of the three different test sets are shown in Fig. 2. 

Table 2. Performance comparison of the available predictors evaluated 

on the DC_final data set. 

Method Accuracy AUC Precision Recall F-score NPV MCC 

fDETECT 0.650 0.782 0.841 0.367 0.597 0.597 0.360 

TargetCrys 0.628 0.638 0.620 0.653 0.636 0.636 0.256 

PPCPred 0.672 0.754 0.740 0.528 0.616 0.635 0.359 

CrystalP2 0.586 0.607 0.570 0.696 0.627 0.612 0.178 

DeepCrystal 0.799 0.915 0.885 0.685 0.772 0.744 0.613 

CLPred 0.851 0.928 0.849 0.852 0.850 0.852 0.700 

Note: Bold represents best results 
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Table 3. Performance comparison of the available predictors evaluated 

on the SP_final data set. 

Method Accuracy AUC Precision Recall F-score NPV MCC 

fDETECT 0.616 0.837 0.913 0.426 0.581 0.494 0.382 

TargetCrys 0.608 0.642 0.727 0.595 0.654 0.483 0.217 

PPCPred 0.666 0.784 0.863 0.554 0.675 0.535 0.403 

CrystalP2 0.654 0.697 0.711 0.750 0.730 0.543 0.249 

DeepCrystal 0.683 0.866 0.910 0.547 0.684 0.547 0.457 

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599 

Table 4. Performance comparison of the available predictors evaluated 

on the TR_final data set. 

Method Accuracy AUC Precision Recall F-score NPV MCC 

fDETECT 0.750 0.848 0.823 0.411 0.548 0.733 0.447 

TargetCrys 0.634 0.693 0.503 0.788 0.614 0.814 0.325 

PPCPred 0.748 0.819 0.677 0.606 0.640 0.782 0.448 

CrystalP2 0.581 0.673 0.460 0.775 0.577 0.78 0.241 

DeepCrystal 0.803 0.914 0.838 0.580 0.686 0.792 0.569 

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690 

 

Fig. 2. ROC curves for the five predictors of the three different test sets. (a) ROC curve for DC_final, (b) ROC curve for SP_final data set and (c) ROC curve for TR_final dataset. 

The AUC values of the five predictors are shown in the figure legend. 

3.2 Model analysis 

The advantage of using deep learning for protein crystallization is that 

the neural networks can have multiple layers, each of which learns to 

detect and select hierarchical features of a sequence. This starts from 

simple features, such as local k-mers conformations and properties, and 

gradually increases in complexity to features, such as long-range, high-

order k-mers interactions, that uniquely characterize a protein. Here, we 

project the feature vectors derived from each layer in the CLPred model 

to a two-dimensional feature space via t-SNE (Maaten and Hinton, 2008), 

principle component analysis (PCA), and UMAP (McInnes et al., 2018), 

and visualize the overall process of protein crystallization classification 

in Fig. 3. We extract five features vectors from the embedding layer, the 

pooling layer after the first CNN layer, the pooling layer after the second 

CNN layer, the BLSTM layer, and the fully connected layer. As shown 

in Fig. 3(a-e), one can observe that, as the layers deepen in CLPred, the 

feature vectors learned become gradually more effective in distinguish-

ing crystallizable proteins from the non-crystallizable ones. In particular, 

the features from the embedding layer mainly characterize the local 

features of k-mers, which do not contribute much in separating the two 

classes. However, as the CNN, pooling, and BLSTM layers derive and 

select more complex features representing high-order, global k-mers 

interactions, the crystallizable proteins and non-crystallizable proteins 

become more separable. 

In Table 5, we compare different CLPred architectures with different 

hyperparameters and layers. Our current architecture with two convolu-

tion layers, one BLSTM layer, and one fully-connected layer yields the 

optimal prediction capability. Adding additional convolution layers or 

fully connected layers not only increases the computational cost, but also 

downgrades the prediction performance.  

Table 5. Performance comparison of different CLPred architectures on 

the DC_final data set for 10-fold cross-validation. 

Method Accuracy 

E 0.752 

E+MSCNN_8 0.799 

E+MSCNN_8+MSCNN_3 0.821 

E+MSCNN_8+MSCNN_3+BLSTM 0.845 

E+MSCNN_8+MSCNN_3+BLSTM+FC_256 0.850 

E+MSCNN_8+MSCNN_3+BLSTM+CNN_3+ 

CNN_3+CNN_3 
0.847 

E+MSCNN_8+MSCNN_3+BLSTM+CNN_3+ 

CNN_3+CNN_3+FC_256 
0.849 

E+MSCNN_8+MSCNN_3+BLSTM+CNN_3+ 

CNN_3+CNN_3+FC_1024+FC_256 
0.848 

E: embedding layer, MSCNN_8: multi-scale convolution layer, the convolution 

kernel size of each scale is {2, 3, 4, 5, 6, 7, 8, 9}, MSCNN_3: multi-scale convolu-

tion layer, the convolution kernel size of each scale is {5, 9, 13}, BLSTM: three-

layer bidirectional long short-term memory neural network, CNN_3: convolution 

layer, whose convolution kernel size is 3, followed by average pooling with a 

sliding window of length 5 and step length 1, FC_1024: fully connected layer with 

1024 neurons, FC_256: fully connected layer with 256 neurons. 
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Fig. 3. The feature vectors of the three test sets in the five hidden layers are visual-

ized after dimensionality reduction by t-SNE, PCA and UMAP. The red circle repre-

sents the non-crystallizable sequence and the blue circle represents the crystallizable ones. 

(a) feature vectors in the embedding layer. (b) feature vectors of the first average pooling 

layer. (c) feature vectors of the second pooling layer. (d) feature vectors of the BLSTM 

layer. (e) feature vectors from the final fully connected layer.  

Table 6. The numbers of amino acids corresponding to the top five and 

ten activation values across all samples. 

Amino 

acid 

Top 5 

(rank) 

Top 10 

(rank) 

Amino 

acid 

Top 5 

(rank) 

Top 10 

(rank) 

R-Arg 84316(1) 153966(1) T-Thr 11844(11) 26653(11) 

I-Ile 83155(2) 151492(2) L-Leu 9204(14) 22481(12) 

Q-Gln 41350(3) 77743(3) M-Met 10465(12) 22344(13) 

G-Gly 22039(6) 49354(4) N-Asn 9198(15) 20732(14) 

S-Ser 22097(5) 46728(5) E-Glu 7807(17) 19164(15) 

V-Val 19970(7) 44854(6) H-His 8736(16) 19037(16) 

C-Cys 22760(4) 40599(7) W-Trp 9279(13) 18640(17) 

Y-Tyr 18295(8) 36675(8) K-Lys 6057(18) 14612(18) 

F-Phe 15533(9) 32412(9) D-Asp 3972(19) 9989(19) 

P-Pro 12957(10) 29158(10) A-Ala 1152(20) 3487(20) 

Table 7. The numbers of tripeptides corresponding to the top five and 

ten activation values across all samples. 

Tripeptides Top 10 Tripeptides Top 5 

RRR 1812 III 1399 

III 1733 RRR 1383 

IIS 1279 IIS 848 

RII 1141 RII 833 

RRI 1055 RRI 695 

IIG 978 QRR 627 

RVR 943 RIR 620 

LII 938 RVR 613 

RIR 926 RQR 609 

IIF 887 IIR 582 

IFI 868 IFI 573 

RQR 848 IIF 571 

IIV 841 RRQ 570 

QRR 828 QII 556 

SII 825 IIG 536 

IIR 823 LII 518 

RRV 811 IRR 503 

FII 792 RRV 489 

QII 791 RSR 487 

IRR 790 SII 481 

3.3 Key amino acids and tripeptides related to protein crystal-

lization 

We take the 800x64 feature map generated by the first multi-scale con-

volution, average the data of the second dimension, and normalize them 

to [0, 1].  Then, each sequence is represented by a vector of length 800 

and each value in this vector is the activation value corresponding to the 

amino acid in the sequence. The larger the activation values of amino 

acid, the greater its contribution to the classification results. According to 

the activation values, we summarize the total numbers of amino acids in 

Table 6. The top seven amino acids that mostly contribute to protein 

crystallization are R(Arg), I(Ile), Q(Gln), G(Gly), V(Vla), S(Ser) and 

C(Cys). This is generally consistent with the results presented in Char-

oenkwan et al. (2013) while our results indicate that R(Arg) and I(Ile) 

are also important to protein crystallization.  

In addition to the contribution of an individual amino acid, the feature 

vector extracted from the CNN layer with a kernel size of 3 allows us to 

gain insight in more specific contributions of tripeptides. By applying 

similar counting as single amino acids, the top-ranked triplets are derived 

and shown in Table 7. It is interesting to note that most of these tripep-

tides include R(Arg) and/or I(Ile). This indicates that the tripeptides 

heavily involved R(Arg) and/or I(Ile) play an important role in protein 

crystallization process. Their mechanism deserves further computational 

and experimental studies. 

3.4 Effectiveness of BLSTM 

The BLSTM layer is a crucial component in CLPred for capturing the 

high-order, long-range k-mers interactions. In order to demonstrate the 

effectiveness of BLSTM, we compare the prediction performance of 

CLPred with a CLPred version by replacing the BLSTM layer with a 

CNN layer. We name this CLPred_noBLSTM. Notice that 

CLPred_noBLSTM has a similar architecture as DeepCrystal. The 10-

fold cross-validation results of CLPred, CLPred_noBLSTM, and 

DeepCrystal on DC_final, SP_final, and TR_final are shown in Table 8, 



W.Xuan et al. 

 

respectively. One can find that CLPred_noBLSTM and DeepCrystal 

differ only 0.1%~2% for most of the metrics, but CLPred with BLSTM 

is significantly higher in comparison. This confirms that the feature 

representation learned by BLSTM plays an important role in effectively 

predicting which sequences can produce diffraction-quality crystals. 

Table 8. Verify the effectiveness of the BLSTM on three benchmark 

data sets (Bold represents best results). 

Model ACC AUC PRE REC F-score NPV MCC 

DC_final 

DeepCrystal 0.799 0.915 0.885 0.685 0.772 0.744 0.613 

CLPred_noBLSTM 0.815 0.911 0.862 0.750 0.802 0.780 0.636 

CLPred 0.851 0.928 0.849 0.852 0.85 0.852 0.700 

SP_final 

DeepCrystal 0.683 0.866 0.910 0.547 0.684 0.547 0.457 

CLPred_noBLSTM 0.722 0.879 0.890 0.628 0.738 0.586 0.493 

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599 

TR_final 

DeepCrystal 0.803 0.914 0.838 0.580 0.686 0.792 0.569 

CLPred_noBLSTM 0.816 0.907 0.796 0.676 0.731 0.826 0.597 

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690 

Table 9. Performance comparison between CLPred, BCrystal, and 

CLPred_AF,  which combines the last layer features of CLPred with 641 

additional features. 

Method ACC AUC PRE REC F-score NPV MCC 

DC_final 

CLPred 0.851 0.928 0.849 0.852 0.850 0.852 0.700 

BCrystal 0.954 0.979 0.938 0.973 0.955 0.972 0.910 

CLPred_AF 0.957 0.987 0.945 0.970 0.957 0.969 0.914 

TR_final 

CLPred 0.854 0.930 0.787 0.829 0.807 0.896 0.690 

BCrystal 0.964 0.987 0.931 0.976 0.953 0.985 0.925 

CLPred_AF 0.968 0.993 0.945 0.971 0.958 0.982 0.933 

SP_final 

CLPred 0.801 0.887 0.885 0.783 0.832 0.698 0.599 

BCrystal 0.903 0.948 0.888 0.966 0.926 0.934 0.793 

CLPred_AF 0.911 0.971 0.904 0.960 0.931 0.925 0.810 

3.5 Additional features other than sequence 

Crystallization prediction can be further improved when additional fea-

tures, such as evolutionary information and predicted protein properties 

such as secondary structure, flexibility, structural motif, solvent accessi-

bility, and disulfide bond, are incorporated. Recently, BCrystal (Elbasir 

et al., 2020) uses pre-extracted evolutional, structural, and physicochem-

ical characteristics as additional features and employs XGBoost (Chen 

and Guestrin, 2016) to predict protein crystallization propensity, which 

has shown significant performance enhancement. These features can also 

be used in the CLPred framework. Table 9 shows the performance com-

parison between CLPred, BCrystal, and CLPred_AF, which combines 

the last layer features of CLPred with 641 additional features, including 

8-state secondary structure (SS), fraction of exposed residues (FER), 

disorder, and hydrophobicity. These features are obtained from Elbasir et 

al. (2020). One can find that, when these additional features are incorpo-

rated, the performance of CLPred_AF is also significantly improved 

compared to CLPred and is at least comparable to BCrystal. Neverthe-

less, CLPred, as predictor using sequence-only features, is still of practi-

cal use, since it does not rely on the accuracy of other feature prediction 

tools and is not biased to the databases of deriving additional features.  

3.6 Analysis the impact of sequence identity cutoff 

In data preprocessing, most studies remove sequences with over 25% 

sequence identity in the training set (Wang et al. 2014; Wang et al. 2018; 

Elbasir et al. 2019). While 25% cutoff may still lead to homologues with 

recognizable alignments, we hereby compare the performance of CLPred 

models trained with lower sequence identity cutoffs. As shown in Table 

10, the prediction results on the test sets for datasets under 15%, 20%, 

and 25% sequence identity cutoffs are rather consistent, although lower-

ing sequence identity cutoffs results in training sets with reduced sizes. 

This indicates that 25% is a reasonable sequence identity cutoff to 

benchmark CLPred and compare it with other crystallization prediction 

methods. 

Table 10. Compare the performance of CLPred models in test sets with 

different cutoff sequence identity. 

Cutoff ACC AUC PRE REC F-score NPV MCC 

DC_final 

25% 0.851 0.928 0.849 0.852 0.850 0.852 0.700 

20% 0.850 0.927 0.864 0.829 0.847 0.837 0.700 

15% 0.843 0.926 0.863 0.814 0.837 0.825 0.687 

SP_final 

25% 0.801 0.887 0.885 0.783 0.832 0.698 0.599 

20% 0.793 0.888 0.909 0.743 0.817 0.672 0.600 

15% 0.785 0.890 0.900 0.736 0.810 0.664 0.582 

TR_final 

25% 0.854 0.930 0.787 0.829 0.807 0.896 0.690 

20% 0.852 0.924 0.808 0.787 0.797 0.877 0.680 

15% 0.852 0.927 0.815 0.778 0.796 0.873 0.681 

4 Cases analysis 

4.1 Sox transcription factors analysis 

Sox proteins are sequence-specific transcription factors that regulate 

several key developmental processes. It contains a highly conserved 

high-mobility group (HMG) domain of ~80 amino acids, known for 

binding and bending the DNA (Vivekanandan et al., 2015). Sox17 and 

Sox9 are members of the Sox transcription factor family. Sox17 is in-

volved in endodermal differentiation during early mammalian develop-

ment. Sox9 is a fundamental sex-determining gene involved in the de-

velopment of various vital organs, such as testicles, kidneys, heart, and 

brain, and skeletal development. We use CLPred to predict several Sox 

proteins such as the full-length Sox17, full-length Sox9, Sox17 HMG 

domain, Sox9 HMG domain, and Sox17 mutant (EK) HMG domain 

collected by Elbasir et al. (2019) and compare with the other sequence-

based protein crystal predictors. The results are listed in Table 11. Re-

cent studies have shown that Sox9 HMG, Sox17 HMG and Sox17EK 

HMG can produce diffraction-quality crystals (Palasingam et al., 2009; 

Vivekanandan et al., 2015; Elbasir et al., 2019). In addition, there is no 

evidence to show that full-length sequences of Sox9 and Sox17 can 

produce diffraction-quality crystals. The results in Table 11 show that 

CLPred and DeepCrystal are the only two methods that can correctly 



CLPred 

 

identify Sox9 HMG, Sox17 HMG, and Sox17EK HMG as the ones that 

can produce diffraction-quality crystals. It is worthy to note that the 

score of CLPred is much higher than the other predictors. For those 

having no evidence of producing diffraction-quality crystals, all se-

quence-based protein crystallization tools, including CLPred, make the 

same predictions which are uncrystallizable. This indicates that both full-

length sequences of Sox9 and Sox17 are unlikely to produce diffraction-

quality crystals in industrial production. 

Table 11. Prediction scores of the CLPred and other predictors for some 

Sox transcription factor family protein. 

 Sox9 

Full Length 

Sox9 

HMG 

Sox17 

Full Length 

Sox17 

HMG 

Sox17 

EK HMG 

CLPred 0.155 0.886 0.235 0.858 0.872 

DeepCrystal 0.315 0.676 0.430 0.643 0.633 

fDETECT 0.070 0.432 0.075 0.462 0.418 

TargetCrys 0.032 0.045 0.037 0.029 0.031 

PPCPred 0.039 0.658 0.089 0.462 0.523 

CrystalP2 0.327 0.459 0.470 0.436 0.402 

4.2 Zika virus proteins analysis 

Zika virus is a plus single-stranded RNA virus, a member of the fla-

vivirus genus of the Flaviviridae, and its genome encodes three structural 

proteins (nucleocapsid protein C, membrane protein M, and envelope 

protein E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, 

NS4A, NS4B, and NS5). We have collected some crystallizable Zika 

protein sequences, including full-length NS1 (Brown et al., 2016), C-

terminal fragment of NS1 (Song et al., 2016), unlinked NS2B-NS3 pro-

tease in complex with a compound fragment (Zhang et al., 2016), NS2B-

NS3 protease in complex with a boronate inhibitor (Lei et al., 2016), and 

NS5 methyltransferase in complex with GTP and SAH (Zhang et al., 

2017). We have also tested some other non-structural proteins, where no 

evidence shows that they can produce diffraction-quality crystals so far, 

like the full-length protein sequences of NS2A, NS2B, NS4A, and NS4B. 

Determining the structures of these important non-structural proteins will 

lay a significant foundation to understand and overcome the Zika virus.  

Table 12. Prediction scores of the CLPred and other predictors for some 

Zika virus non-structural proteins 

Protein CLPred DeepCrystal fDETECT TargetCrys PPCPred CrystalP2 

NS1 FL 0.997 0.472 0.157 0.084 0.233 0.57 

NS1
① 0.717 0.667 0.224 0.030 0.257 0.534 

NS2B-NS3
② 0.686 0.680 0.456 0.137 0.320 0.645 

NS2B-NS3
③
 0.827 0.808 0.925 0.563 0.961 0.581 

NS5
④ 0.865 0.494 0.274 0.030 0.215 0.375 

NS2A FL 0.001 0.140 0.629 0.075 0.307 0.454 

NS2B FL 0.636 0.626 0.594 0.145 0.585 0.577 

NS4A FL 0.338 0.425 0.536 0.123 0.364 0.701 

NS4B FL 0.028 0.066 0.015 0.097 0.302 0.468 

NS1
①
：C-terminal fragment of NS1. NS2B-NS3

②
：NS2B-NS3 protease in 

complex with a boronate inhibitor. S2B-NS3
③：Unlinked NS2B-NS3 protease 

from Zika virus in complex with a compound fragment. NS5
④
：NS5 methyltrans-

ferase in complex with GTP and SAH. FL: Full Length 

We use CLPred to predict these proteins and compare them with the 

sequence-based protein crystal predictors. The results are provided in 

Table 12. As shown in Table 12, CLPred is the only model that 100% 

correctly identifies the non-structural Zika virus proteins which can 

produce diffraction-quality crystals. For non-structural full-length pro-

teins NS2A, NS2B, and NS4A with uncertain labels, crystallization 

propensity predicted by CLPred is consistent with the predictions gener-

ated by most of the other predictors. For full-length NS4B, the predicted 

score of CLPred is 0.028, which is also consistent with other predictors. 

In addition, we observe that full-length NS2B is predicted with relatively 

high confidence by CLPred and four other tools, which deserves further 

investigation by the Zika virus research community. 

5 Conclusions and Future Work 

To avoid time-consuming and expensive experimentations with proteins 

that are not likely to result in resolvable crystallized structures, the selec-

tion of targets for structure determination is one of the greatest challeng-

es in structural genomics experiments (Varga et al., 2017). In this study, 

we propose CLPred, a sequence-based deep learning framework. Using 

only information from sequence, CLPred employs a BLSTM in its deep 

learning architecture to capture the high-order, long-range interaction 

patterns between k-mers, which makes up the deficiency of the previous 

work using CNN. It has been steadily improved over the previous win-

dow-based neural networks and is able to predict the crystallization 

propensity with higher accuracy. This performance enhancement is due 

to the ability of BLSTM to recognize non-local interactions, as using the 

local interaction features has already reached its limit in traditional neu-

ral networks. Cross-validation and independent tests on three benchmark 

data sets and ablation study have confirmed the efficacy of BLSTM in 

protein crystallization prediction where non-local interactions are crucial. 

By analyzing the feature vectors derived from various layers in CLPred 

architecture, we have found the key amino acids and tripeptides mostly 

contributing to protein crystallization. By combining the last layer fea-

tures of CLPred with 641 additional features, we obtain the improving 

performance, which is at least comparable to that of BCrystal. Finally, 

the correctness of our CLPred predictions is further validated by the case 

studies of Sox transcription factor family member proteins and Zika 

virus non-structural proteins. Our future work will be analyzing and 

interpreting the patterns learned in CLPred via deep learning and under-

standing the fundamentals governing protein crystallization.  

CLPred is freely available and downloadable at GitHub: 

https://github.com/xuanwenjing/CLPred. 
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