
Basic Arrays

Chris Wild & Steven Zeil

May 28, 2013

Contents

1 Description 2

2 Example 2

3 Tips 3

4 String Literals 3
4.1 Description . 3
4.2 Example . 4
4.3 Tips . 5

5 Common Errors Using Arrays 5

1

Basic Arrays

1 Description

• Arrays are convenient for naming and using a collection of objects of the same type.

For example, if you wanted to find the biggest of three integers you could name each integer indi-
vidually, but if you wanted to store and find the biggest of a thousand integers, naming each integer
is inconvenient to say the least.

• All the objects in an array must be of the same type (e.g. integers, floats, user defined objects, or
even arrays themselves)

• An array has a fixed size which must be known at the time the array is defined.

• Each array has a unique name and each element in the array has a unique position.

• The position is designated by an integer expression called the array index.

• The positions in an array start at the integer 0 (the first element is at position 0) and goes to the
size of the array−1.

Thus an array with 3 elements has positions 0,1 and 2

• To name an element in an array, use the array name followed by the position enclosed in square
brackets (“[” and “]”)

2 Example

int someArray [3] ; / / t h i s i s an array of three i n t e g e r s .
someArray [0] = 567; / / s e t the f i r s t element in the array

/ / to the i n t e g e r constant "567" ;
int someInteger = 4 ; / / t h i s i s NOT an array − j u s t a plain

/ / i n t e g e r with i n i t i a l value "4"
someArray [1] = someInteger ; / / s e t s the second element in the

/ / array to the value "4"
/ / At t h i s point the value of the third element of the
/ / array (someArray [2]) i s undefined

f l o a t aVector [1 0 0] ; / / a vector of 100 f l o a t i n g point
/ / numbers , indexed from 0 to 99

aVector [9 9] = 3 . 4 ; / / s e t s the value of the l a s t element to 3.4

char aString [2 0] ; / / an array of characters i s also known as a s t r i n g
aString [9] = ’ z ’ ; / / s e t s the 10th character to ’ z ’

CS333 2 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 2 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.2):%0A%0A[enter your message]

Basic Arrays

3 Tips

• Counting from 0 instead of 1 is strange at first and is the cause of errors.

• Why count from 0? think about this - how many single digits numbers are there in the decimal
system?

Answer: 10, the digits 0 through 9.

If you start counting at 1 the last number would be "10" which requires two digits (thus more
memory) then if you started counting at 0 and went to 9 for the 10th digit

0 is the first digit, 9 is the 10th digit

• The size of an array must be a constant (so that the compiler can known how much memory to
allocate), however it can be any (practical) value. It is recommended that you define an integer
constant and use that to define your arrays. - This allows the size of the array to change easily
by changing the value of the constant. You will see more examples of this later on which better
motivate the recommendation.

const int SIZE_OF_SOME_ARRAY = 3 ;
int someArray [SIZE_OF_SOME_ARRAY] ; / / def ines an array of three elements

• Arrays are prone to several limitations and can be the source of errors in logic if misused. For more
details check here

4 String Literals

4.1 Description

• When we write a "string" inside quotes, it is called a string literal, e.g.,

" This i s a s t r i n g l i t e r a l "

Oddly enough, this is not a std::string. String literals are actually done as null-terminated char-
acter arrays.

– "character arrays", because they are simply arrays of char

– "null-terminated", meaning that the final character in the string is an ASCII NUL character
(the char of value zero). This character is "invisible" when printed, so it does not affect the
visible appearance of the string. But when our code finds that zero value in the array, it knows
that it has reached the end of the string.

CS333 3 � �

file:commonerrors.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 3 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.3):%0A%0A[enter your message]

Basic Arrays

• Strings that have been stored into a null-terminated aray are variously referred to as char arrays
and C-strings. (The latter refers to the fact that this style of storage for strings is inherited from
C++’s "parent" language, C.)

Sadly, lots of people (including programmers and textbook authors who should know better) get
pretty lax on this point, and frequently use the term "string" ambiguously to refer to both std::string
and C-strings.

• A string literal is of type "const char *".

(We have not yet introduced the * types in C++. For now it’s enough to know that char* is pretty
much the same as char[] and the "const" means that you can look at the individual characters
inside a string literal, but you aren’t allowed to change them.)

• You can input and output C-strings using the standard insertion “«” and extraction “»” operators
on cin and cout.

• When outputting a C-string, the insertion operator stops at the null termination character

• When inputting a C-string, the extraction operator stops at the first whitespace character (e.g.
blank, tab, new line)

• To include a double quote in a string literal put a backslash character ’\’ before the double quote.
This is called escaping the character.

• Other escape sequences include:

character desired escape sequence description
" \" double quote
\ \\ backslash
null character \0 Used as null termination character
tab \t tab character
new line \n new line character

4.2 Example

char name[4] = "Pam" ; / / need 4 characters − don ’ t f o r g e t the
/ / null termination character i m p l i c i t at
/ / the end of a s t r i n g l i t e r a l

name[0] = ’ S ’ ; / / changes name to "Sam"
cout << name; / / pr in ts out the s t r i n g "Sam"

char anotherName [6] ; / / unused array

CS333 4 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 4 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.4):%0A%0A[enter your message]

Basic Arrays

anotherName [0] = name[0] ; / / copies the character ’ S ’ to anotherName
anotherName [1] = name[1] ; / / copies the character ’ a ’ to anotherName
anotherName [2] = name[2] ; / / copies the character ’m’ to anotherName
anotherName [3] = name[3] ; / / copies the character ’ \ 0 ’ (the null

/ / termination character) to anotherName
cout << anotherName ; / / pr in ts out the s t r i n g "Sam"
cin >> name; / / reads character up to the f i r s t

/ / white space , puts in name and adds null termination character
/ / / / NOTE: assumes user types l e s s than 4 characters − otherwise
/ / w i l l overflow the array and lead to p o s s i b l e programming e r r o r s .
/ / / / This i s one of the reasons to avoid character arrays and to use
/ / the " s t r i n g " c l a s s .

4.3 Tips

• As a general rule, use C-strings/character arrays when you want to type a specific string within
your code and to use it without modification. When you want to change strings, modify them, or
pull pieces out of them, use a std::string.

• Remember to allocate an extra space for the null character when defining char arrays that hold
null terminated strings

• There is an older C string library (“<cstring>”) for operating on character arrays to perform com-
mon string manipulation operations

• Input of C-strings is tricky because the compiler and run time system does not check to see if there
is enough room for the input.

5 Common Errors Using Arrays

• There are several cases where array variables behave differently than regular C++ variables. For
instance:

– You cannot use an array in an assignment statement (you can use an array element though)

– You cannot return an array as the return value of a function (you can return a pointer to an
array)

• The size of an array is not an inherent property of it. When you pass an array to a function, the
function in general has no idea how long it is.

– This is why C-strings (which are char arrays) are typically null terminated. The null termina-
tion character is one way to know where the string ends.

• Null termination does not work for other kinds of arrays. "0" is a "real" value typically used for
purposes other than signaling the end of the array.

CS333 5 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 5 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.5):%0A%0A[enter your message]

Basic Arrays

• Because the compiler and C++ run-time system do not know the size of an array, it is possible to
attempt to access an element which is not in the array (by using an incorrect index value.).

Accessing elements outside the array can lead to unpredictable results and is a serious error in
logic.

• When reading in an array, it is possible to overwrite memory that does not belong to the array.

Example: Common Errors

/ / the following statements are not allowed and w i l l cause compiler e r r o r s

int a [1 0] , b [1 0] ;

a = b ; / / cannot assign an e n t i r e array − visual c++ g i v e s l e f t operand not a l−value
a [3] = b [3] ; / / t h i s i s OK

int [] myFunction () ; / / cannot return an e n t i r e array
int * myFunction () ; / / t h i s i s OK

CS333 6 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 6 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.6):%0A%0A[enter your message]

Basic Arrays

Example: Errors in Reading Arrays

/ / Examples in reading input
char someString [1 1] ; / / holds up to 10 characters plus the null character

cin >> someString ; / / reads next bunch of non−whitespace characters into somestring
/ / i n s e r t s null character are end
/ / assumes that t h i s w i l l be 10 or l e s s characters

cin . g e t l i n e (someString , 1 1) ; / / reads at most 10 characters or unti l
/ / end of l i n e

/ / i n s e r t s null character at end
/ / i f the l i n e contains 9 or l e s s characters , the new l i n e
/ / character i s removed
/ / i f the l i n e contains more than 9 characters , the extra
/ / characters (i f any) and the newline are kept .

cin . get (someString , 1 1) ; / / reads at most 10 characters or unti l end of l i n e
/ / i n s e r t s null character at end
/ / Unlike g e t l i n e above , the new l i n e character i s never removed .

cin . get (someString , 1 1 , ’ # ’) ; / / reads at most 10 characters or unti l
/ / the character ’ # ’ i s found

/ / to handle g e t t i n g one l i n e of input , even i f i t i s too long
/ / ignoring the extra characters (i f any)

cin . get (someString , 1 1) ;
cin . ignore (200 , ’ \n ’) ; / / ignore up to 200 characters but stop at

/ / the f i r s t newline i s l e s s than 200
/ / assumes that there w i l l be l e s s than 200 characters
/ / extra on t h i s l i n e .

CS333 7 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Basic Arrays, p. 7 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/basicarrays/basicarrays-printable.pdf%23page.7):%0A%0A[enter your message]

	Description
	Example
	Tips
	String Literals
	Description
	Example
	Tips

	Common Errors Using Arrays

