
Black-Box Testing

Steven Zeil

September 15, 2013

Contents

1 Testing 2
1.1 Defintitions . 2
1.2 Choosing Test Data . 3

2 Black Box Testing 4
2.1 Representative Inputs . 4
2.2 Functional Coverage . 5
2.3 Boundary Values Testing . 9
2.4 Special Values Testing . 12

3 Illegal Inputs 15

4 Some General Guidelines for Testing 18

1

Black-Box Testing

1 Testing

In this lesson, we explore how to do a thorough job of testing your programs.
If you’ve ever submitted a programming assignment that you thought was Ok and then been sur-

prised to receive a poor grade for it, then it’s a pretty good bet that the instructor had done a more rigor-
ous job of testing your code than you had.

In the professional world, testing and debugging typically take far more time than actually writing the
code. They may amount to as much as half the total development time with the requirements analysis,
design, and coding taking up the remainder.

As a professional, it will be a mark of your professionalism and a factor in your company’s reputation
to catch bugs before the software is released. As a student, it’s a matter of self-interest to do a good job of
testing your code if you hope to get good grades.

Why do we test?

• To detect flaws in the software

– (but what if we don’t find any?)

• To gain confidence as to whether or not the system is usable

. .

1.1 Defintitions

Testing and Debugging

• Testing is the act of executing a program with selected data to uncover bugs.

• As opposed to debugging, which is the process of finding the faulty code responsible for failed tests.

. .
In practical terms, we don’t start debugging until we know that something is wrong. How do we find

out that something is wrong? Hopefully, we failed one of our own tests. If that’s not how we found out,
it’s probably because someone using our software reported a bug. That, of course, makes us look bad.

And if someone else reported the bug, then before we can start debugging we have to figure out how
to reproduce the bug, which means we are right back to testing, trying to find test data that reveal the
bug so that we can figure out what’s causing it.

CS333 2 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 2 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.2):%0A%0A[enter your message]

Black-Box Testing

Failures, Faults, and Errors

• A failure is an execution of a program on which incorrect output was obtained.

• A fault is a defect in the code that could lead to failures.

• An error refers to either

– A defect in the output produced by a program

– A mistake made by the software developer that resulted in a fault.

. .

Test Cases and Suites

• A test case is a description of a set of test inputs developed for a particular objective.

– Could be so detailed as to give the actual input data, but often simply describes the desired
input data.

• A test suite is a collection of test cases.

. .

1.2 Choosing Test Data

Strategies for Choosing Tests
Testing traditionally can be conducted in three styles

• Black-Box testing

– Try to choose "smart" tests based on the requirements, without looking at the code.

• White-Box testing

– Try to choose "smart" tests based on the structure of the code, with minimal reference to the
requirements.

• Random testing

– Try to use directed random selection to choose tests that are "representative" of how the pro-
gram will be used.

CS333 3 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 3 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.3):%0A%0A[enter your message]

Black-Box Testing

. .
We’ll discuss the black-box testing of these today and white-box later this semester.
Random testing is not used as often. It sometimes is useful as a way check against unwarranted

assumptions by the developers and testers (“Oh, I never thought of even trying that!”). But its primary
use is in large projects where statistics collected during random testing are plugged into models that are
used to predict how reliable the software will be if released in its current state or how much longer we
will need to test before we reach a desired level of reliability.

2 Black Box Testing

Black-Box Techniques
There are a number of well-known BB strategies.

• Representative Inputs

• Functional Coverage

• Boundary-Values Testing

• Special-Values Testing

A good test BB suite will include all of these.
In fact, these should become second nature to most programmers.

. .

2.1 Representative Inputs

Representative Inputs
Choose at least one test that is a "typical" input to the system when in real use.

• This may require some study of how people will use the system.

– If you are replacing an existing system, or automating a task that people have been doing
manually, you may be able to collect “real” inputs.

. .

Example: the Auction Program
What would we use as “typical” or “representative” inputs to our auction program?

. .
Well, the auction program description contains some sample input, and that’s certainly worth using,

but it’s really not clear how representative that’s intended to be.
But there’s also mention of existing auction systems, so we might try to collect some sample sessions

from some of those.

CS333 4 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 4 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.4):%0A%0A[enter your message]

Black-Box Testing

Test Specifications
Software development projects manage testing via a couple of standard documents:

• A test plan is a document describing what will be tested, who will do it, and the procedures they
will follow.

• A test case specification or test specification describes the test cases for an item to be tested.

• These are often confused with one another.

– Test plans are for management.

– Test specs are for the software developers.

. .
We’ll demonstrate the development of a test specification document, following (roughly) the format

of the IEEE 829 Standard for Software and System Test Documentation.

Starting the Auction Program Test Spec

1. Module Overview
The auction program resolves bids received at an online auction site.

1.1 Inputs Three files, one describing the items up for bid on a single day, another describing
the registered bidders, a third describing bids received.
1.2 Outputs List of auction winners, written to standard output.
2. Test Data

Representative Input

1. At least one typical input as described in the requirements document.

That last item is our first test case.
. .

2.2 Functional Coverage

This is a bit of a misnomer. the “function” in “Functional Coverage” has nothing to do with the idea of a
C++ function. Instead it really pertains more to “functionality”.

If you look though most program requirements, you’ll see that the program is probably supposed to
carry out a variety of different behaviors under various circumstances. Sometimes these behaviors are
described in terms of input conditions:

CS333 5 � �

http://dx.doi.org/10.1109%2FIEEESTD.2008.4578383
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 5 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.5):%0A%0A[enter your message]

Black-Box Testing

For any input x, if x ≥ 0, return x but if x < 0, return −x.

Here we have clearly drawn a distinction between different behaviors depending upon the input values.
In other cases, distinct behaviors are most easily identified by looking at the output requirements:

This program reads a file name from the input. It should print a single line of output

filename file-size-in-kilobytes

if the file exists but should print

filename does not exist.

if the file cannot be found.

Here we can tell from the distinct output specifications that we have two separate behaviors going on.
Now, from a purely theoretical point of view, distinct behaviors must have both distinct input pattern

and distinct output patterns. I could just as easily argue that, in the above example, the two behaviors
are associated with the input cases of “the input named an existing file” and “the input named a non-
existent file”. But sometimes the people writing the requirements will find it easier to focus on the input
conditions and sometimes on the output cases. As a tester (and coder), you have to roll with whatever
they give you.

Sometimes, a behavior may be described in purely internal terms:

Apply the formula

x = x - (x*x - N) / 2

up to 1000 times until x changes by no more than ±0.001. If, after 1000 iterations, x is still
changing by more than that, abort the program with message

Calculation does not converge.

In this case, if x is not an input but some value computer internally, it might be quite difficult to figure
out what inputs would lead to this “does not converge” behavior. Nonetheless, as a tester, you will want
to try to do so.

Functional Coverage
Choose at least one test that covers each distinct "behavior" described in the requirements.

• Different functions performed by the program

• Different types or ranges of input that get treated or described separately.

CS333 6 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 6 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.6):%0A%0A[enter your message]

Black-Box Testing

• Different types or ranges of output that get treated or described separately.

. .
Don’t make the common mistake of that different parts of a program’s calculations or outputs are

distinct behaviors. For example, given a requirement

This program reads a file name from the input.
It should print that file name.
If the file exists, it should then print the size of the file (in kilobytes), on the same line.
If the file does not exist, it should print “ does not exist.” on the same line as the file name.

We only have two distinct behaviors here, not three. The printing of the file name is not a distinct behav-
ior from the behavior of printing the file size or the “does not exist” message. It’s simply a component of
the behavior in each of the other two cases. How do we know? Because there is no distinct set of inputs
on which file names are (and are not) printed.

Example: Auction Functional Coverage
Question: What are the distinct behaviors associated with the auction program?

• Look particularly at the discussion of how bids are handled and

• at the possible outputs for each auction

. .

CS333 7 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 7 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.7):%0A%0A[enter your message]

Black-Box Testing

• Bids can be

– on time or late

– above reserve or not

– more than a bidder can afford or not

• Output can be

– Announcement of a winner

– no winner for an item

Continuing the Auction Program Test Specification

2. Test Data
Representative Input

1. At least one typical input as described in the requirements document.

Functional Coverage

2. Highest bid for some item qualifies to win.

3. Highest bid for some item is too late but otherwise qualifies to win.

4. Highest bid for some item is below the reserve price but otherwise qualifies to win.

5. Highest bid for some item is above the bidder’s account balance but otherwise qualifies
to win.

6. No qualifying bids received for some item

. .
Note: many test cases can be satisfied by a single set of test input run. That’s OK, as long as they don’t

intuitively interfere.
For example, by packing lots of auctions into one set of input files, we might well be able to cover all

of the above cases with one test run.
Now whether or not that’s a good idea is another matter. If you carry it to an extreme, you wind up

with tests that are hard to check. And if something goes wrong and you have to start debugging, you
won’t be happy if you have to wade through 99 correctly handled behaviors to get the buggy number 100.

CS333 8 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 8 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.8):%0A%0A[enter your message]

Black-Box Testing

2.3 Boundary Values Testing

Boundary Values Testing
A.k.a., Extremal Values Testing
Choose as test data the largest and the smallest values for each input and for each "functional behav-

ior" range
. .

Seeking Boundaries

• A common mistake is to simply look at the input data and to try to choose the largest and smallest
inputs possible.

– Nothing wrong with using that data

– But it shortchanges the test set quite a bit.

• Instead, seek the boundaries of the functional test cases that you specified earlier.

. .

Sample Boundary Tests
Suppose that we are testing an implementation of the absolute value function abs(x)

• Distinct behaviors for x ≥ 0 and x < 0

– So, during functional coverage, we might use tests x = 12 and x =−1015

• But boundary value testing would suggest that we look at

– An extremely large x and x = 0: the boundaries of the x ≥ 0 behavior

– An extremely large negative number and x =−1: the boundaries of the x < 0 behavior

. .
The test cases 0 and −1 are useful because they give us a chance of detecting common errors like

using the wrong relational operator.
Notice that, if we have done a thorough job of listing the functional cases for a program, then we

will get the “largest and smallest possible inputs” cases automatically when we list out the largest and
smallest cases for each distinct behavior.

CS333 9 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 9 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.9):%0A%0A[enter your message]

Black-Box Testing

Example: Auction Extremal Values
We had functional cases

• Highest bid for some item qualifies to win.

• Highest bid for some item is too late but otherwise qualifies to win.

Concentrating on the time input, we would focus on the boundary between being on time and too late:

• Bids can be

– exactly on time

– one second late

. .

Example: Auction Extremal Values (cont.
We also have some explicit limits on the legal inputs, e.g.:

• #items is non-negative

• auction end time: hours is 00..23, minutes is 00..59, seconds is 00..59

This leads to some additional boundary cases:

• #items of zero

• auction ending at midnight (00:00:00)

• auction ending one second before midnight (23:59:59)

. .

Continuing the Auction Program Test Specification

2. Test Data
Representative Input

1. At least one typical input as described in the requirements document.

Functional Coverage

2. Highest bid for some item qualifies to win.

3. Highest bid for some item is too late but otherwise qualifies to win.

CS333 10 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auction/auction-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 10 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.10):%0A%0A[enter your message]

Black-Box Testing

4. Highest bid for some item is below the reserve price but otherwise qualifies to win.

5. Highest bid for some item is above the bidder’s account balance but otherwise qualifies
to win.

6. No qualifying bids received for some item

Boundary Values

7. Winning bid arrives at same second as auction ends

8. Winning bid arrives one second after auction ends

9. Winning Bid exactly matches reserve price

10. Winning Bid one cent below reserve price

11. Winning Bid exactly matches bidder’s account balance

12. Winning Bid one cent above bidder’s account balance

13. Number of items is zero

14. Number of items is large

15. Reserve price is zero

16. Reserve price is large

17. Auction end time 00:00:00

18. Auction end time 23:59:59

19. # bidders is zero

20. # bidders is large

21. bidder with account balance zero

22. bidder with large account balance

23. # bids is zero

24. # bids is large

25. amount of bid is zero

26. amount of bid is large

CS333 11 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 11 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.11):%0A%0A[enter your message]

Black-Box Testing

27. bid at time 00:00:00

28. bid at time 23:59:59

. .

2.4 Special Values Testing

Special Values Testing
Choose as test data those certain data values that just tend to cause trouble. Programmers eventually

develop a sense for these. They include

• For integers: -1, 0, 1

• For floating point numbers: -e, 0, +e, where "e" is a very small number

• For strings: the empty string, strings containing only blanks, strings containing no alphabetic char-
acters

. .

What is Special?

• As we move to other data structures, we may develop a suspicion of other special values, e.g.,

– For times of the day: midnight, noon

– For containers of data: an empty container

Special values and Boundary values often overlap. That’s OK.
. .

One of my favorite stories about bugs that (should have) been caught by boundary and special values
testing comes from early testing of the software controllers for the F-16 jet fighter. During fight simula-
tions (thankfully!), one pilot decided to fly the simulated plane across the equator. A sign error in han-
dling southern latitudes caused the control software to decide that the plane was upside down, and to
attempt to roll the plane over to compensate.

Example: Auction Special Cases

...
Special Values

CS333 12 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 12 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.12):%0A%0A[enter your message]

Black-Box Testing

29. Number of items is zero

30. Number of items is one

31. Item name has no alphabetic characters

32. Item reserve price is zero

33. Auction ends at midnight

34. Auction ends at noon

35. Number of bidders is zero

36. Number of bidders is one

37. Bidder’s balance is zero

38. Bidder’s name has no alphabetic characters

39. Number of bids is zero

40. Number of bids is one

41. Amount bid is zero

42. Time of bid is midnight

43. Time of bid is noon

. .

Completed Test Specification
After eliminating duplicates from the preceding list,

Test Specification Auction Program
1. Module Overview

The auction program resolves bids received at an online auction site.
1.1 Inputs Three files, one describing the items up for bid on a single day, another de-

scribing the registered bidders, a third describing bids received.
1.2 Outputs List of auction winners, written to standard output.

2. Test Data
Representative Input

CS333 13 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 13 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.13):%0A%0A[enter your message]

Black-Box Testing

1. At least one typical input as described in the requirements document.

Functional Coverage

2. Highest bid for some item qualifies to win.

3. Highest bid for some item is too late but otherwise qualifies to win.

4. Highest bid for some item is below the reserve price but otherwise qualifies to win.

5. Highest bid for some item is above the bidder’s account balance but otherwise qualifies
to win.

6. No qualifying bids received for some item

Boundary Values

7. Winning bid arrives at same second as auction ends

8. Winning bid arrives one second after auction ends

9. Winning Bid exactly matches reserve price

10. Winning Bid one cent below reserve price

11. Winning Bid exactly matches bidder’s account balance

12. Winning Bid one cent above bidder’s account balance

13. Number of items is zero

14. Number of items is large

15. Reserve price is zero

16. Reserve price is large

17. Auction end time 00:00:00

18. Auction end time 23:59:59

19. # bidders is zero

20. # bidders is large

21. bidder with account balance zero

22. bidder with large account balance

CS333 14 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Public/auctionProgram/auctionProgram-printable.pdf
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 14 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.14):%0A%0A[enter your message]

Black-Box Testing

23. # bids is zero

24. # bids is large

25. amount of bid is zero

26. amount of bid is large

27. bid at time 00:00:00

28. bid at time 23:59:59

Special Values

29. Number of items is one

30. Item name has no alphabetic characters

31. Auction ends at noon

32. Number of bidders is one

33. Bidder’s name has no alphabetic characters

34. Number of bids is one

35. Time of bid is noon

. .

3 Illegal Inputs

Illegal Inputs
Earlier, we observed that the input requirement:

#items is non-negative

led to a boundary value test case:

• #items of zero

I did not add a test case

• #items is −1

Why not?
. .

CS333 15 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 15 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.15):%0A%0A[enter your message]

Black-Box Testing

Illegal Inputs
If we have an input requirement

#items is non-negative

then the input #items == -1 is illegal.

• You cannot test a program on illegal inputs.

Notice that I did not say “should not”. I said “cannot”. It can’t be done.

Therefore. . .

• Trying to test a program on illegal inputs is just a waste of time and effort.

. .
You may have been told something differently by other teachers or read something different else-

where.
I don’t care.
They are either wrong, or you misunderstood what they were talking about.
There are people who make statements like “a good program never crashes” or “a good program

should always behave sensibly on any input”. Setting aside the fact that the first is impossible and the
second relies on a definition of “sensible” that no two people will ever agree upon, these kinds of state-
ments are really aimed at how to write a good requirements statement for programs. They have nothing
at all to do with how we code programs or how we test them.

Why CAN’T we test illegal inputs?

• A test is useless if you can’t tell whether the program passes or fail is.

• By definition, a program can do anything on an illegal input.

– It could print an error message and abort

– It could print an error message and try to keep running

– It could pop up a menu asking the operator what it should do.

– It could send email to all of your friends complaining about the lousy input that you tried to
force it to process.

– It could contact the nearest SAC base and call in an airstrike on your keyboard.

On an illegal test input, no matter the program actually does, it passes the test by definition.
. .

CS333 16 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 16 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.16):%0A%0A[enter your message]

Black-Box Testing

Illegal versus Unusual Inputs
Don’t confuse illegal inputs with unusual inputs

• If I ask you to write a function mySqrt(double x) that

computes the square root of any non-negative x

then negative inputs are illegal.

– The function has no specified behavior in that case. Any program that calls this function must
make sure it never supplies negative input values.

• If I ask you to write a function mySqrt(double x) that

computes the square root of any non-negative x but returns -1.0 when given a negative x

then negative inputs are not illegal.

– We might expect them to be rare, but the behavior of the function is fully specified in that
case,

– so it’s perfectly OK for programs to call the function with negative numbers.

. .

How do you test a program on. . .

• . . . an illegal input?

– You can’t. Whatever the program does is correct behavior for that program.

• . . . an unusual input?

– Check to be sure that it does whatever the requirements document says.

– Such tests should emerge naturally from functional coverage

* Each “kind” of unusual input is a distinct behavior.

. .

CS333 17 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 17 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.17):%0A%0A[enter your message]

Black-Box Testing

4 Some General Guidelines for Testing

Choosing the Test Data
Within the limits of the test case specification,

• Choose the simplest inputs you can

– Easy to come up with the input

– Easy to show it satisfies the test case

– Easy to figure out what the correct output is supposed to be

– Easy to see if the output actually is correct

. .

Choosing the Test Data (cont.)

• OK to overlap test cases on the same input set

– as long as they don’t interfere with or "hide" one another

– but usually better to have lots of simple tests than a few large ones

• KISS!

– Because we all get a little bit "stupid" after staring at the screen for hours

. .

Conducting Tests

• Get out of the habit of typing all your tests by hand

– Discourages people from running more than a few tests

– Makes it hard to repeat tests

• Alternatives:

– redirection (CS252, but also possible in Windows)

– copy-and-paste from text file into running program

– redesign program to allow file names in command line

Many of these are covered in the earlier Labs.
. .

CS333 18 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Black-Box Testing, p. 18 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/bbtesting/bbtesting-printable.pdf%23page.18):%0A%0A[enter your message]

	Testing
	Defintitions
	Choosing Test Data

	Black Box Testing
	Representative Inputs
	Functional Coverage
	Boundary Values Testing
	Special Values Testing

	Illegal Inputs
	Some General Guidelines for Testing

