
Functions

Chris Wild & Steven Zeil

May 25, 2013

Contents

1 Functions 2

2 Example 4

3 Tips 4

4 Overloading 6

1

Functions

The basic C++ language is relatively primitive. Its basic data types (integers, reals and characters) and
operations on them (addition, subtraction, etc). are limited.

To build complex programs one needs to combine these primitive elements into larger building
blocks. Then we compose the entire program from a combination of these building blocks.

In C++, functions are building blocks composed of groups of related statements.
Later in this course, we will look at modules, which are building blocks made from a combination of

functions, variables, and data types. Eventually, we will see that the C++ class is a good way to implement
most modules.

It’s even possible to go further. (Think back to our discussion in the orientation about scaling up to
larger and larger projects.) We can combine classes into larger building blocks called namespaces, but
we won’t get there in this course.

1 Functions

A function is a packaging of C++ statements into a unit which called as needed from elsewhere in the
program.

• Every C++ program has at least one function - it is called main.

• The same function can be called many times in the same or even different programs. Thus func-
tions are reusable pieces of program.

• The job that a function does usually abstracts some part of the problem and thus becomes a con-
venient building block for programming complex systems.

• Functions extend the things that a C++ program can do. Many commonly used functions are
placed in libraries and accessed through their header files (e.g."#include <iostream>" accesses
the common and useful functions for doing I/O).

• The identification of "good" functions (and classes) is a critical part of the art of programming.
Good functions lead to programs that are easier to write and maintain. Bad functions lead to pro-
grams which are difficult to understand and thus prone to failures.

• Functions are program modules which are called by other parts of the program. Functions and
their calling programs communicate information in various ways.

– Parameters are data objects which are exchanged between the calling program and the func-
tion.

* Input parameters are data objects which are passed from the calling program to the func-
tion.

* Output parameters are data objects which are passed from the function to the calling
program.

CS333 2 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 2 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.2):%0A%0A[enter your message]

Functions

* It is possible for a single parameter to be passed both ways, in which case it is simulta-
neously an input and an output parameter.

– The return value is a single data object which is returned as the value of the function.

• Global variables are variables which can be accessed by both the function and the calling program.
Since the setting of global variables and their use can be difficult to determine when examining
the function call, their use is tricky and is general discouraged as bad programming practice. Such
data should be passed via parameters instead.

– In some cases, this will result in an uncomfortably large number of parameters. Later we will
look at structured data which can be used to group data items together and at classes, which
can also pass data to member functions via data members.

• A function has the following parts

name: any valid c++ identifier.

return value type: any data type or class name. void is used to denote that this function does not
return a value.

parameter list: an ordered list giving the types of the parameters.

body: a compound statement, inside { }, containing the program statements that implement the
function.

• A function prototype consists of the return-type function-name and parameter-list.

– We write a function’s prototype into our code to declare the function. This gives the compiler
enough information to set up calls to that function without knowing all the details of the
function (the statements that make up its body).

For example,

void foo () ; / / declaration of foo
int bar (int i) ; / / declaration of bar

These declarations tell the compiler (and you!) that these functions exist, what names you
can use to invoke them, how many parameters they take and what the data types of those
parameters are, and what kind of data these functions will return.

That’s pretty much all that you need to know in order to write a legal call to these functions
and for the compiler to compile that call. Of course, it doesn’t tell you what those functions
actually do, but that’s a separate issue.

– This is very important because it allows functions to be defined separately and put into li-
braries for common use.

– Header files consist mainly of function prototypes (including member functions of classes).

CS333 3 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 3 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.3):%0A%0A[enter your message]

Functions

• A function signature consists of the function-name and parameter-list.

A function signature is used by the compiler for handling function overload.

• A function definition consists of all the elements of a function: name, return type, parameter list,
and body.

For example,

void foo () ; / / declaration of foo

/ / d e f i n i t i o n of foo :
void foo ()
{

cout << " Listen ! " << endl ;
int i = bar (4 2) ;

}

– Because a function definition contains all the information expected in a declaration, all defi-
nitions are also declarations.

2 Example

/ / define a function that squares an i n t e g e r number − a simple example to i l l u s t r a t e the concepts
/ / function " square " takes on input parameter c al l e d " x " and returns the square of x
int square (int x)
{

return x * x ;
}

• the function prototype of this function is

int square (int) ; / / naming the input paramter i s optional

• the function signature is

/ / square (int)

3 Tips

• A function prototype must end in a semi-colon (’;’). It’s absence is a common programming error

• A function definition must NOT contain a semi-colon (’;’) after the parameter-list. Otherwise the
compiler will confuse it with a function prototype. Instead a function definition is followed by a
compound statement containing the function body. It is actually the function body which defines
the function.

CS333 4 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 4 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.4):%0A%0A[enter your message]

Functions

• Every function prototype should have a corresponding function definition elsewhere in the pro-
gram, possibly in a separate program file or library.

• The signatures and return types MUST agree between a prototype and definition. If not, the com-
piler and loader will not be able to find the function definition and will report undefined function.

• If you are placing functions that call one another into the same file, you have a choice of whether
to declare and define the low level (called) or the high level (calling) functions first. It is matter of
preference really.

– However, you must declare a function before calling it from another.

For example, given two functions foo and bar, such that foo calls bar, this is legal:

void bar () / / declaration and d e f i n i t i o n of bar .
{

cout << " I think I hear someone c a l l i n g me. " << endl ;
}

void foo () / / declaration and d e f i n i t i o n of foo .
{

cout << " Listen ! " << endl ;
bar () ; / / Notice that bar () has already been declared

}

and so is this

void foo () ; / / declaration of foo
void bar () ; / / declaration of bar

void bar () / / d e f i n i t i o n of bar .
{

cout << " I think I hear someone c a l l i n g me. " << endl ;
}

void foo () / / d e f i n i t i o n of foo .
{

cout << " Listen ! " << endl ;
bar () ; / / Notice that bar () has already been declared

}

and this

void foo () ; / / declaration of foo
void bar () ; / / declaration of bar

void foo () / / d e f i n i t i o n of foo .

CS333 5 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 5 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.5):%0A%0A[enter your message]

Functions

{
cout << " Listen ! " << endl ;
bar () ; / / Notice that bar () has already been declared

}

void bar () / / d e f i n i t i o n of bar .
{

cout << " I think I hear someone c a l l i n g me. " << endl ;
}

But this is not legal:

void foo () / / declaration and d e f i n i t i o n of foo .
{

cout << " Listen ! " << endl ;
bar () ; / / Oops ! bar () has not y e t been declared .

}

void bar () / / declaration and d e f i n i t i o n of bar .
{

cout << " I think I hear someone c a l l i n g me. " << endl ;
}

4 Overloading

• Overloading a function means using the same function name for two or more different function
definitions.

• A common example is the "+" operator (which is an infix function), which can be used to add
integers or floating points numbers

Another common example would be the I/O functions "<<" and ">>", which can handle a variety
of data types.

Of course, those are operators. Later we’ll learn that they really are just funny-looking functions,
but we can do overloading with ordinary functions as well:

void bar ()
{

cout << " I think I hear someone c a l l i n g me. " << endl ;
}

int bar (int i) / / bar i s now overloaded
{

return i * i ;
}

CS333 6 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 6 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.6):%0A%0A[enter your message]

Functions

void foo ()
{

cout << " Listen ! " << endl ;
bar () ;
int k = bar (1 2) ;
cout << k << " : that ’ s j u s t gross ! " << endl ;

}

• So how does the compiler tell the difference? By the number and type of the parameters to the
function. As long as the number or type of the parameters are different, there is no problem.

• Basically if you can tell from the function prototype (without the parameter names), they are dif-
ferent

CS333 7 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Functions, p. 7 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/functions/functions-printable.pdf%23page.7):%0A%0A[enter your message]

	Functions
	Example
	Tips
	Overloading

