
Pointers and References

Steven Zeil

October 2, 2013

Contents

1 References 2

2 Pointers 8
2.1 Working with Pointers . 8

2.1.1 Memory and C++ Programs . 11
2.1.2 Allocating Data . 15

2.2 Pointers Can Be Dangerous . 17

3 The Secret World of Pointers 19
3.1 Pointers and Arrays . 19
3.2 Pointer and Strings . 22
3.3 Pointers and Member Functions . 23

1

Pointers and References

In this lesson, we examine the data types that C++ provides for storing addresses of data.
These are important because they

• Allow access to objects created "on the fly" (dynamic storage allocation)

• Permit access to "large" objects without copying

• Allow selective access to parts of large structure

Indirection

• Pointers and references allow us to add a layer of “indirection” to our data.

• Instead of giving an answer directly, we give the location where the answer can be found.

. .
It’s rather like answering a question about, say, the meaning of the word “Ragnarok” by pointing to a

nearby dictionary instead of explaining it directly.
In our code, sometimes we will employ this indirection for efficiency. In other cases we use it for

flexibility or to simplify our code.
A pointer or reference is the "name" or "address" of an object NOT the object itself.
Most variables have names assigned to them by the programmer at the time the program is writ-

ten (e.g. "int numberOfCourses;"). Every variable in a program has an machine address where that
variable is stored in the main memory of the computer. Think of this as the "machine’s name" for the
variable.

Every variable in a program has a value which is the data stored in the variable’s address.

1 References

References
Reference types are introduced by the use of “&” in a type expression.

• Reference types hold the address of an already existing data value

Example

double z [1 0 0 0] ;
...

int k = i + 200* j ;
double& zk = z [k] ;

zk holds the address of z[k].

. .

CS333 2 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 2 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.2):%0A%0A[enter your message]

Pointers and References

Initializing References

When reference variables are declared, they must be imme-
diately initialized to the location of some existing data value,
e.g.,

double& zk = z [k] ; / / zk get address of z [k]

One initialized, a reference cannot be reset to point to a dif-
ferent location

1.0

3.5

2.1

0

17.5

4.0

z

zk

. .

Accessing data Via References

CS333 3 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 3 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.3):%0A%0A[enter your message]

Pointers and References

1.0

3.5

2.1

0

17.5

4.0

z

zk

One initialized, we can use the reference much like any ordinary variable:

double& zk = z [k] ; / / zk get address of z [k]
cout << zk ; / / a c c e s s e s data stored

/ / at that location

. .

Assignment and References
Subsequent assignments to a reference variable will store new values at that location, but will not

change the location.

double& zk = z [k] ; / / zk get address of z [k]
zk = 1 . 0 ; / / changes the value of z [k]
++k ;
zk = 2 . 0 ; / / changes the value of z [k−1]

. .

Example: working with indirection
Question: What would the output of the following code be?

int a = 1 ;
int b = a ;
cout << a << " " << b << endl ;
a = 2 ;
cout << a << " " << b << endl ;
b = 3 ;
cout << a << " " << b << endl ;

. .

CS333 4 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 4 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.4):%0A%0A[enter your message]

Pointers and References

Answer:

1 1
2 1
2 3

a and b are distinct variables. A change to one has no effect on the other.
. .

Example: working with indirection (cont.)
Let’s make a one-character change. . .
Question: What would the output of the following code be?

int a = 1 ;
int& b = a ;
cout << a << " " << b << endl ;
a = 2 ;
cout << a << " " << b << endl ;
b = 3 ;
cout << a << " " << b << endl ;

. .

CS333 5 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 5 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.5):%0A%0A[enter your message]

Pointers and References

Answer:

1 1
2 2
3 3

a and b are “synonyms” for the same data value. A change to one can be seen via the other.
. .

References and Loops
Once initialized, a reference cannot be reset to a different location.

• However, if we declare a reference within a loop body:

for (int i = 0 ; i < 100; ++ i)
{

int k = longAndComplicatedCalculation (i) ;
double& zk = z [k] ;
doSomethingWith (zk) ;

}

Then each time around the loop we are initializing a different reference variable

– Variables that are declared inside a { } are destroyed when we reach the closing }.

– So, each time around the loop, zk refers to a different element of the array.

. .
The above example suggests one reason why we may use references – to avoid repeating long and

complicated calculations to select array elements or struct members.

Const References
When we modify a reference type by pre-pending “const”:

• We are allowed to look at the data value whose address is stored in the reference.

• But we cannot alter the data value via that reference

Money price (24 , 9 5) ;
Money& sal eP ri ce = price ;
const Money& oldPrice = price ;
price . d o l l a r s = 25; / / OK
sal eP ri ce . d o l l a r s = 26; / / OK
oldPrice . cents = 0 ; / / i l l e g a l , cannot change value

• Note that both of the legal assignments would affect the values seen in all three variables.

. .

CS333 6 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 6 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.6):%0A%0A[enter your message]

Pointers and References

References and Functions
You’ve seen lots of functions using reference parameters

void foo (Money& m, const Time& t) ;

• We’ve explained in the past that this was “pass by reference”, a special parameter passing mecha-
nism.

• In fact, as far as the compiler is concerned, there is no special parameter passing mechanism.

– This is still “pass by copy”.

– But the type of data being copied and passed are references

– All the “special” behavior associated with reference parameters stems from the normal prop-
erties of references

* Passes addresses instead of actual data

* Allows alteration of data back in the caller. . .

* Unless the reference type is marked const, in which case we can “look but not touch”.

. .

References and Functions (returns)
References are also sometimes used as return types

const Money& getAmountBid (Bid& b)
{

return b . amountBid ;
}

...
cout << getAmountBid (myBid) . d o l l a r s ;

Slight improvement in efficiency – the Money value does not need to be copied.
. .

References and Functions (returns) cont.

Money& getAmountBid (Bid& b)
{

return b . amountBid ;
}

...
getAmountBid (myBid) . d o l l a r s = 0 ;

. .

CS333 7 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 7 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.7):%0A%0A[enter your message]

Pointers and References

2 Pointers

Pointers
Pointers, like references, store the location or address of data.

• Pointers relax many of the restrictions on references

– Pointers need not be initialized when declared (a bad idea)

– When initialized, they need not hold an address of existing data

* can be null instead

– After initialization, they can be reassigned to refer to a different data element.

• But pointers lose some of the convenience of references:

– Require special syntax to access the data referred to by a pointer

. .

2.1 Working with Pointers

Declaring Pointer Variables
A pointer declared like this

double *p ;

contains, essentially, random bits.
To be useful, it must be initialized

double *p = . . .

or, later, re-assigned

p = . . .

. .

Initializing Pointer Variables
Where do new pointer values come from?

• Pointers can be given the addresses stored in other pointers:

int * q = . . .
...

int * p = q ;

– But that doesn’t really answer the question. It just defers it.

CS333 8 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 8 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.8):%0A%0A[enter your message]

Pointers and References

• Pointers can be assigned the address of an existing data value via the & operator:

int a = 23;
int *p = &a ;

– But this is rare, dangerous, and generally frowned upon

• Pointers can be given the address of newly allocated data:

int *p = new int ;
int *pa = new int [1 0 0] ;

• Pointers can be set to null, a special value indicating that it does not point to any real data.

There are multiple ways to do this:

– “0” is a null pointer

int *p = 0 ;

* That’s not zero. It’s a null pointer.

– NULL is a special symbol declared in <cstdlib>

#include <cstdl ib >
...

int * p = NULL;

– Coming soon, courtesy of the new C++11 standard

int *p = nu l lptr ;

. .
NULL is actually a bit of a problem. Not only do you have to include a special header to get it, but

there are some rare circumstances where passing it to functions that take a pointer as parameter will not
compile properly. Hence the new standard introduced a better-behaved universal null pointer constant.

This won’t be available, however, until compilers take the C++11 features out of their beta status.

Dereferencing a Pointer
Accessing data whose address is stored in a pointer is called dereferencing the pointer.

• The unary operator * provides access to the data whose location is stored in a pointer:

Money *p = new Money(100 , 2 5) ;
...

Money m = *p ; / / * g e t s the whole data element

*p = Money(0 , 1 5) ; / / and we can s t o r e there

. .

CS333 9 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 9 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.9):%0A%0A[enter your message]

Pointers and References

Dereferencing and Structs

• The operator -> provides access to struct members via a pointer:

Money *p = new Money(100 , 2 5) ;
...

int totalCents = 100*p−>d o l l a r s + p−>cents ;
p−>d o l l a r s = 0 ;

– These two statements are equivalent:

p−>d o l l a r s = 0 ;
(*p) . d o l l a r s = 0 ;

. .

Assignment and Pointers
Subsequent assignments to a pointer variable will change the location it points to.

double* zk = &(z [k]) ; / / zk get address of z [k]

* zk = 1 . 0 ; / / changes the value of z [k]
zk = &(z [k + 1]) ;
zk = 2 . 0 ; / / changes the value of z [k+1]

. .

Example: working with pointers
Question: What would the output of the following code be?

int a = 1 ;
int b = 2 ;
int * pa = &a ;
int * pb = &b ;
cout << a << " " << *pa << " " << b << endl ;
a = 3 ;
cout << a << " " << *pa << " " << b << endl ;

*pb = 4 ;
cout << a << " " << *pa << " " << b << endl ;
pa = pb ;
cout << a << " " << *pa << " " << b << endl ;

. .

CS333 10 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 10 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.10):%0A%0A[enter your message]

Pointers and References

Answer:

1 1 2
3 3 2
3 3 4
3 4 4

. .

Const Pointers
When we modify a pointer type by pre-pending “const”:

• We are allowed to look at the data value whose address is stored in the reference.

• But we cannot alter the data value via that reference

Money price (24 , 9 5) ;
Money* sal eP ri ce = &price ;
const Money* oldPrice = s ale Pri ce ;
price . d o l l a r s = 25; / / OK
salePrice−>d o l l a r s = 26; / / OK
oldPrice−>cents = 0 ; / / i l l e g a l , cannot change value

• Same as the affect of const on references

. .

2.1.1 Memory and C++ Programs

Where is data Stored?
The memory of a running C++ program is divided into three main areas:

• The static area holds variables that have a single fixed address for the lifetime of the execution.

– Variables declared outside of any enclosing { } or marked as static.

• The runtime stack (a.k.a. activation stack or automatic storage) has a block of storage for each
function that has been called but from which we have not yet returned.

– All copy parameters and local variables for the function are stored in that block.

– The block is created when we enter the function body

– and destroyed when we leave the body.

• The heap is a programmer-controlled “scratch pad” where we can store variables

– But the programmer has the responsibility for managing data stored there

. .

CS333 11 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 11 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.11):%0A%0A[enter your message]

Pointers and References

How Functions Work

int foo (int a , int b)
{

return a+b−1;
}

would compile into a block of code equivalent to

stack [1] = stack [3] + stack [2] − 1 ;
jump to address in stack [0]

. .

The Runtime Stack

• the “stack” is the runtime stack (a.k.a. the activation stack) used to track function calls at the system
level,

• stack[0] is the top value on the stack,

• stack[1] the value just under that one, and so on.

. .

An Example of Function Activation
Suppose that we were executing this code, and had just come to the call to resolveAuction within

main.

#include "time . h"

void resolveAuction (Item item)
{

...
int h = item . auctionEndsAt . getTime () ;
...

}

int main (int argc , char ** argv)
{

...
resolveAuction (item) ;
...

}

CS333 12 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 12 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.12):%0A%0A[enter your message]

Pointers and References

The runtime stack (a.ka., the activation stack) would, at this point in time,
contain a single activation record for the main function, as that is the only
function currently executing:

When main calls resolveAuction, a new record is added to
the stack with space for all the data required for this new
function call.

CS333 13 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 13 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.13):%0A%0A[enter your message]

Pointers and References

When resolveAuction calls getTime, another new record is added to
the stack with space for all the data required for that new function call.

But once getHours returns (to resolveAuction), that activation
record is removed from the stack. resolveAuction is once again the
active function.

CS333 14 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 14 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.14):%0A%0A[enter your message]

Pointers and References

And when resolveAuction returns, its record is likewise removed from the
stack.

. .

2.1.2 Allocating Data

Example of Overall Memory layout

CS333 15 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 15 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.15):%0A%0A[enter your message]

Pointers and References

Boston

N.Y.
Wash DC

"Boston"

"airline.exe"

Activation Stack Heap

Static Area

argc: 3

argv:

main()

itinerary()

hubs:

Boston

N.Y.

"N.Y."

from: Boston

to: N.Y.

. .

Allocating Data on the Heap
We allocate data with new and remove it with delete:

int *p = new int ;
int *pa = new int [1 0 0] ;

...
delete p ;
delete [] pa ;

CS333 16 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 16 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.16):%0A%0A[enter your message]

Pointers and References

Note the slightly different forms for arrays versus single instances.
. .

Dynamic Allocation
Programmers often distinguish between “dynamic” and “static” activities:

• Something is “dynamic” if it happens at run-time, under control of the program.

• Something is static if it happens at compile-time and/or is controlled by the compiler.

int *p = new int ;
int *pa = new int [1 0 0] ;

Allocation of data via new is called dynamic allocation of data.
. .

Dynamically allocated memory is controlled through the two operators new and delete

• The new operator allocates sufficient memory to store one or more objects of the specified type.

– The type of the object to be allocated follows the new operator

– Memory is allocated from the heap.

• The delete operator returns the memory allocated to an object back to the memory pool to be
reused.

Summary: Pointers versus References

References Pointers
Type Declaration & *
Initialization must be initialized optional

points to existing data may be null
Dereferencing automatic *, ->
Management automatic new, delete
Dangerous? minimal very

. .

2.2 Pointers Can Be Dangerous

Because pointers provide access a memory location and because data and executable code exist in mem-
ory together, misuses of pointers can lead to both bizarre effects and very subtle errors.

CS333 17 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 17 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.17):%0A%0A[enter your message]

Pointers and References

Potential Problems with Pointers

• uninitialized pointers,

• memory leaks and

• dangling pointers.

. .

Uninitialized pointers

• Uninitialized pointer pose a significant thread.

– the value stored in an uninitialized pointer could be randomly pointing anywhere in memory.

– Storing a value using an uninitialized pointer has the potential to overwrite anything in your
program, including your program itself

• Your best defense:

Never write a declaration like

Money* p ;

Always give your pointers an initial value

Money* p = 0 ;

– Null if you can’t make it point to a real data value.

. .

Memory Leaks
A memory leak occurs when all pointers to a value allocated on the heap has been lost, e.g.,

int i s q r t (int i)
{

int * work = new int ;

*work = i ;
while ((* work) * (* work) > i)
−− (* work) ;

return *work ;
}

• When we return from this function the local variable work is lost.

CS333 18 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 18 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.18):%0A%0A[enter your message]

Pointers and References

– But that has the only copy of the address of the int that we allocated on the heap.

• Each call to this function will leak a bit of memory.

. .
Over time, memory leaks can cause programs to slow down and, eventually, crash.
Worse, a leaky program may come to take up so much of a systems memory that it interferes with the

operation of other programs on the same system.

Dangling Pointers
Dangling pointers refer to a pointer which was pointing at an object that has been deleted.

int * p = new int ;
int * q = p ;

...
delete p ;

• The pointer q still has the address of the object even though the memory for that object has been
returned to the system.

• If the memory allocated to the deleted object is re-used for another purpose,

– The value visible via q may appear to “spontaneously” change

– Storing a value via q may corrupt that other data

. .

3 The Secret World of Pointers

3.1 Pointers and Arrays

What’s in a Name? (of an array)

int a [1 0 0] ;
double b[1 0 0 0] ;

• You know what expressions like a[i] and b[2] do

• But what about just “a” or “b”?

. .

CS333 19 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 19 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.19):%0A%0A[enter your message]

Pointers and References

Arrays are Pointers

int a [1 0 0] ;
double b[1 0 0 0] ;

• Arrays are really pointers

– a has type *int

– b has type *double

• They point to the first ([0]) element.

. .
You may have observed examples of passing arrays to functions as parameters. They are usually

passed as pointers. That’s possible because of the fact that arrays really are pointers.

Pointer Arithmetic

• You can add integers to pointers

#include <iostream>

using namespace std;

int main()

{

int *i = new int;

double *d = new double;

cout << "i " << i << " d " << d << endl;

i = i + 1;

++d;

cout << "i " << i << " d " << d << endl;

return 0;

}

> g++ pointerArith . cpp
> . / a . out
i 0x1eea010 d 0x1eea030
i 0x1eea014 d 0x1eea038
>

– Actually adds to the address the number of bytes required to store one data value of the type
pointed to

. .

CS333 20 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 20 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.20):%0A%0A[enter your message]

Pointers and References

Pointer Arithmetic 2

• You can subtract pointers from one another

#include <iostream>

using namespace std;

int main()

{

int array[5];

int* p = &(array[0]);

int* q = &(array[3]);

cout << "p " << p;

cout << " q " << q;

cout << " q-p " << (q-p);

cout << endl;

}

> g++ pointerArith2 . cpp
> . / a . out
p 0 x7fff2065c380 q 0 x7fff2065c38c q−p 3
>

– Computes how many element-sized blocks away from wach other the two addresses are

. .

OK, Why do Pointer Arithmetic?
Pointer arithmetic is actually illegal and pretty much useless except when the addresses are all within

a single array.

double b[1 0 0 0] ;

• b is a pointer to the start of the array

• b[i] is simply a convenient shorthand for *(b+i)

. .

CS333 21 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 21 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.21):%0A%0A[enter your message]

Pointers and References

Pointers, Arrays, and Functions
This is why, when arrays are passed to functions, they are generally passed as pointers:

double sumOverArray (double* a , int n)
{

double s = 0 . 0 ;
for (int i = 0 ; i < n ; ++ i)

s += a [i] ;
return s ;

}

. .
We’ll have more on this shortly when we look at dynamically allocated arrays.

3.2 Pointer and Strings

Not all strings are created equal.

• In C++’s parent language, C, there is no std::string

• Strings were stored in character arrays

– End of a string was indicated by a byte containing the ASCII character NUL (value 0)

• Less than satisfactory

– NUL is actually a useful character in some contexts

– Many string operations were needlessly slow

• C++ retains the C string operations for backwards compatibility.

. .

String Literals
The most common place where strings and character arrays meet is in string literals.

• "abc" does not have type std::string

• Its data type is actually const char*

– And it actually takes up 4 characters, not 3

• The std::string type provides a constructor

s t r i n g (const char * charArray) ;

for building new strings from character arrays.

. .

CS333 22 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 22 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.22):%0A%0A[enter your message]

Pointers and References

main
The main function in C++ programs has the prototype

int main (int argc , char ** argv)

• argc is the number of command line parameters.

• argv holds the command line parameters.

Question: Why are there two asterisks in char**?
. .

The first ’*’ indicates that each parameter is a C-style character array (passed, as is common for ar-
rays, as a pointer).

The second ’*’ indicates that this is an array of those character arrays (again, passed as a pointer),
because there can be multiple command line parameters.

3.3 Pointers and Member Functions

Hide the Parameter
Remember that when we convert standalone functions to member functions, one parameter be-

comes implicit:

struct Money {
...

} ;
Money add (Money l e f t , Money r i g h t) ;

becomes

struct Money {
...
Money add (Money r i g h t) ;

} ;

. .

Revealing the Hidden Parameter
That parameter really does exist

• Its name is “this”

• Its data type, for any struct S, is S*

struct Money {
smvdots
Money add (/ * Money* this , * / Money r i g h t) ;

} ;

. .

CS333 23 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 23 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.23):%0A%0A[enter your message]

Pointers and References

Using this
Sometimes we need to make explicit reference to the implicit parameter.
Suppose that we had

Money Money : : add (Money r i g h t)
{

Money r e s u l t ;
r e s u l t . d o l l a r s = d o l l a r s + r i g h t . d o l l a r s ;
r e s u l t . cents = cents + r i g h t . cents ;
return r e s u l t ;

}

and wanted to add some debugging output. . .
. .

Explicit this

Money Money : : add (Money r i g h t)
{

cerr << " Entering Money : : add , adding "
<< * t h i s
<< " to " << r i g h t << endl ;

Money r e s u l t ;
r e s u l t . d o l l a r s = d o l l a r s + r i g h t . d o l l a r s ;
r e s u l t . cents = cents + r i g h t . cents ;
return r e s u l t ;

}

There’s really no other way to pass the whole “left” value to another function or operator.
. .

The need to explicitly refer to this is unusual, but not all that rare.

CS333 24 � �

https://secweb.cs.odu.edu/%7Ezeil/cs333/f13/Directory/topics.html
https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//sendEmail.html?subject=CS333: [enter a descriptive subject]&body=In regards to Pointers and References, p. 24 (https://secweb.cs.odu.edu/%7Ezeil/cs333/f13//Public/pointersAndRefs/pointersAndRefs-printable.pdf%23page.24):%0A%0A[enter your message]

	References
	Pointers
	Working with Pointers
	Memory and C++ Programs
	Allocating Data

	Pointers Can Be Dangerous

	The Secret World of Pointers
	Pointers and Arrays
	Pointer and Strings
	Pointers and Member Functions

