Combining Models

Steven J Zeil
Old Dominion Univ.
Fall 2010

Combining Models

- **TANSTAAFL**: There is no algorithm that is always the most accurate
- Generate a group of base-learners which combine to give higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity trumps accuracy

Approaches

- **Multi-expert** combinations: base learners work in parallel
 - global: all learners generate an output and all are used
 - local: input is examined and used to select learners to be used
- **Multi-stage** combinations: base learners applied in order of increasing complexity
 - later ones trained/tested only on instances where earlier ones were inaccurate

Voting

- Learners emit posterior probs (or other similarly normalized outputs)
- Linear combination
 $$y = \sum_{j=1}^{L} w_j d_j, \ w_j \geq 0 \land \sum_{j=1}^{L} w_j = 1$$
 Weights can be based on relative accuracy.
- Other combination rules: median, minimum, maximum, product
Error-Correcting Output Codes

- K classes, L learners
- Code a matrix W in terms of which classes are discriminated by which learners

$$W = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

- Columns are the discrimination implemented by a learner
- Rows denote condition for identifying a class

Seeking Robustness

- K classes, L learners
- Suppose $K = L$

$$W = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & 1 & -1 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

- A mistake by any one learner can lead to misclassification
- Solution: Let $L > K$ and increase the Hamming distance between rows
- Then vote based on W:

$$y_i = \sum_{j=1}^{L} w_{ij} d_j$$

and choose class with highest y_i

Bagging

- Generate L training sets (sample with replacement) and train one base-learner with each
- Use voting (average or median with regression)
- Can improve results from unstable algorithms

Boosting

- Train next learner on the mistakes of the previous ones
- 3 weak learners.
 - Train L_1 on 1/3 of the training set
 - Train L_2 on inputs from the second 1/3 of the training set that are misclassified by L_1
 - Train L_3 on inputs from the final 1/3 of the training set that are misclassified by L_1 and L_2
- During operation, present inputs to L_1 and L_2. If they agree, accepts. If they disagree, use output from L_3
AdaBoost

- Adaptive boosting - works on a smaller training set
- **Training:**
 - Associate a prob 1/N with each training input
 - Draw a sample of the training set according to those probabilities
 - Train a learner and test on entire training set
 - Decrease the probabilities of any correctly classified inputs
 - Repeat until total error is acceptable
- **Operation:** voting with weights inversely proportional to error rate during testing

Mixture of Experts

Voting with weights a function of the input

Stacking

$f()$ is another learner
- Must be trained on a separate set than that used for the base learners

Cascading

Use d_i only if preceding ones are not confident