Combining Models

Steven J Zeil

Old Dominion Univ.

Fall 2010
Combining Models

- TANSTAAFL: There is no algorithm that is always the most accurate
- Generate a group of base-learners which combine to give higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity trumps accuracy
Approaches

- *Multi-expert* combinations: base learners work in parallel
Approaches

- *Multi-expert* combinations: base learners work in parallel
 - global: all learners generate an output and all are used
Approaches

- **Multi-expert combinations**: base learners work in parallel
 - global: all learners generate an output and all are used
 - local: input is examined and used to select learners to be used
Approaches

- **Multi-expert** combinations: base learners work in parallel
 - global: all learners generate an output and all are used
 - local: input is examined and used to select learners to be used

- **Multi-stage** combinations: base learners applied in order of increasing complexity
Approaches

- **Multi-expert** combinations: base learners work in parallel
 - global: all learners generate an output and all are used
 - local: input is examined and used to select learners to be used

- **Multi-stage** combinations: base learners applied in order of increasing complexity
 - later ones trained/tested only on instances where earlier ones were inaccurate
Learners emit posterior probs (or other similarly normalized outputs)

Linear combination

\[y = \sum_{j=1}^{L} w_j d_j, \quad w_j \geq 0 \land \sum_{j=1}^{L} w_j \]

Weights can be based on relative accuracy.

Other combination rules: median, minimum, maximum, product
Error-Correcting Output Codes

- K classes, L learners
- Code a matrix W in terms of which classes are discriminated by which learners

$$W = \begin{bmatrix}
+1 & -1 & -1 & -1 \\
-1 & +1 & -1 & -1 \\
-1 & -1 & =1 & -1 \\
-1 & -1 & -1 & +1 \\
\end{bmatrix}$$

$$W = \begin{bmatrix}
+1 & +1 & +1 & 0 & 0 & 0 \\
-1 & 0 & 0 & +1 & +1 & 0 \\
0 & -1 & 0 & -1 & 0 & +1 \\
0 & 0 & -1 & 0 & -1 & -1 \\
\end{bmatrix}$$

- Columns are the discrimination implemented by a learner
- Rows denote condition for identifying a class
Seeking Robustness

- K classes, L learners
- Suppose K = L

\[W = \begin{bmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & =1 & 1 \\ -1 & -1 & -1 & +1 \end{bmatrix} \]

- A mistake by any one learner can lead to misclassification
- Solution: Let L > K and increase the Hamming distance between rows
- Then vote based on W:

\[y_i = \sum_{j=1}^{L} w_{ij} d_j \]

and choose class with highest \(y_i \)
Bagging

- Generate L training sets (sample with replacement) and train one base-learner with each
- Use voting (average or median with regression)
- Can improve results from unstable algorithms
Boosting

- Train next learner on the mistakes of the previous ones
- 3 weak learners.
 - Train L_1 on 1/3 of the training set
 - Train L_2 on inputs from the second 1/3 of the training set that are misclassified by L_1
 - Train L_3 on inputs from the final 1/3 of the training set that are misclassified by L_1 and L_2
- During operation, present inputs to L_1 and L_2. If they agree, accepts. If they disagree, use output from L_3
AdaBoost

- Adaptive boosting - works on a smaller training set
- Training:
 - Associate a prob $1/N$ with each training input
 - Draw a sample of the training set according to those probabilities
 - Train a learner and test on entire training set
 - Decrease the probabilities of any correctly classified inputs
 - Repeat until total error is acceptable
- Operation: voting with weights inversely proportional to error rate during testing
Mixture of Experts

Voting with weights a function of the input
Stacking

$f()$ is another learner
- Must be trained on a separate set than that used for the base learners
Cascading

Use d_j only if preceding ones are not confident.