Software Reliability and System reliability

Steven J Zeil

Old Dominion Univ.

Spring 2012
Software Reliability and System Reliability

1. Introduction

2. Dependability

3. Failure Behavior of an X-ware System
 - Atomic
 - Reliability
 - Failure Rates and Hazard Functions
 - Reliability and the Hazard Rate
 - Discrete, Independent Failures
 - Systems made up of components
 - The Single Interpreter
 - Multiple Interpreters
Outline

1. Introduction

2. Dependability

3. Failure Behavior of an X-ware System
 - Atomic
 - Reliability
 - Failure Rates and Hazard Functions
 - Reliability and the Hazard Rate
 - Discrete, Independent Failures
 - Systems made up of components
 - The Single Interpreter
 - Multiple Interpreters
“by using deliberately simple mathematics, the classical reliability theory can be extended in order to be interpreted from both hardware and software viewpoints”
Outline

1. Introduction

2. Dependability

3. Failure Behavior of an X-ware System
 - Atomic
 - Reliability
 - Failure Rates and Hazard Functions
 - Reliability and the Hazard Rate
 - Discrete, Independent Failures
 - Systems made up of components
 - The Single Interpreter
 - Multiple Interpreters
Basic Definitions

Dependability is defined as the trustworthiness of a computer system such that reliance can justifiably be placed on the service it delivers.

Attributes:

- availability
- reliability
- safety
- confidentiality
- integrity
- maintainability
Impairments and Means

Impairments:
- faults
- failures
- errors

Means
- fault preventions
- fault removal
- fault tolerance
- fault forecasting
Failure Classification

- Domain
 - Value
 - Timing
- Perception
 - Consistent
 - Inconsistent
- Consequences
 - benign . . . catastrophic
Outline

1 Introduction

2 Dependability

3 Failure Behavior of an X-ware System
 - Atomic
 - Reliability
 - Failure Rates and Hazard Functions
 - Reliability and the Hazard Rate
 - Discrete, Independent Failures
 - Systems made up of components
 - The Single Interpreter
 - Multiple Interpreters
Time to Failure

The key random variable is the time to failure, T. Denote the probability that the time to failure T is in some interval $(t, t + \Delta t)$ as

$$P(t \leq T \leq t + \Delta t)$$

Given the cdf $F(T)$ and pdf $f(T)$,

$$P(t \leq T \leq t + \Delta t) = F(t + \Delta t) - F(t) \approx f(t)\Delta t$$
Reliability Function

\[F(t) = P(0 \leq T \leq t) = \int_0^t f(x) \, dx \]

The *reliability function* is the probability of success at time \(t \) (i.e., the prob. that the time to failure exceeds \(t \))

\[R(t) = P(T > t) = 1 - F(t) = \int_t^\infty f(x) \, dx \]
The *failure rate* is the probability that a failure per unit time occurs in the interval \([t, t + \Delta t]\), given that a failure has not occurred before \(t\).

\[
\text{Failure rate} \equiv \frac{P(t \leq T < t + \Delta t \mid T > t)}{\Delta t} = \frac{P(t \leq T < t + \Delta t)}{(\Delta t)P(T > t)} = \frac{F(t + \Delta t) - F(t)}{(\Delta t)R(t)}
\]

- measurable
- easier to understand than the prob. density function
Hazard Rate

The hazard rate is defined as the limit of the failure rate as the interval Δt approaches zero.

$$z(t) = \lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{(\Delta t)R(t)} = \frac{f(t)}{R(t)}$$

The hazard rate is an instantaneous rate of failure at time t, given that the system survives up to t. $z(t)dt$ represents the probability that a system of age t will fail in the small interval t to $t + dt$.
Converting

\[z(t) = \frac{f(t)}{R(t)} = \frac{dF(t)}{dt} \frac{1}{R(t)} \]

\[\frac{dF(t)}{dt} = - \frac{R(t)}{dt} \]

Combining gives

\[\frac{dR(t)}{R(t)} = -z(t)dt \]

Integrate both sides w.r.t. \(t \):

\[\ln R(t) = - \int_0^t z(x)dx + c \]
Integrating

\[\ln R(t) = - \int_0^t z(x) \, dx + c \]

Because \(R(0) = 1 \), \(c = 0 \)

Exponentiate both sides:

\[R(t) = \exp \left[- \int_0^t z(x) \, dx \right] \]
Relating Reliability to Failure Rate

\[R(t) = \exp \left[- \int_0^t z(x) \, dx \right] \]

or, differentiating

\[f(t) = z(t) \exp \left[- \int_0^t z(x) \, dx \right] \]
Single failure

Suppose we measure time in terms of \# of discrete inputs. Let p be the prob of failure on a given test input given that no prior failure has occurred on prior inputs. If all *failure domain* inputs are independent

$$R(k) = (1 - p)^k$$

Let t_e be time required to execute one test case.

$$t = kt_e$$
Now, assume that there is a finite limit for p/t_e as t_e becomes vanishingly small

$$\lambda = \lim_{t_e \to 0} \frac{p}{t_e}$$

$$R(t) = \lim_{t_e \to 0} (1 - p(t_e))^{t/t_e} = \exp(-\lambda t)$$

which is the exponential distribution
Markov Chain Model

Better known approach is dismissed in one paragraph

- pipelines?
- Markov approach
 - We should look at one of these later
Hierarchical Structures

Systems can be decomposed into subsystems forming a hierarchy of

- function calls
Hierarchical Structures

Systems can be decomposed into subsystems forming a hierarchy of

- function calls
 - Might not be a tree
Hierarchical Structures

Systems can be decomposed into subsystems forming a hierarchy of

- function calls
 - Might not be a tree
 - might not form clean layers
Hierarchical Structures

Systems can be decomposed into subsystems forming a hierarchy of

- function calls
 - Might not be a tree
 - might not form clean layers

- levels of abstraction
 Here called “interpreters”
Consider an application built on C components (e.g., ADTs)

- Each component C_i has a failure rate λ_i
- The entire collection of components can be in any of S valid states.
 - Presumably each component has some number of discrete states, so S is the power set of all component states.
- Add an $S + 1^{\text{st}}$ state to represent a failure state.
 - This state is an absorber/terminal state
Component States

[i+—— alert@+¡]

- Can components be well modeled by discrete states?
- Can failures be modeled as a state change?
 e.g., Consider a numeric calculation that is supposed to be within ± 0.01 of an ideal solution but that is ± 0.1 for selected input values. Is that a state of simply a function of the inputs?
- In the example above, what are the implications of the failure state being terminal
 - if the interpreter fails because of the error?
 - if the interpreter recovers from the error?
State Transitions

The collection of components has its own set of transition properties

- γ_j is prob that a component in state j stays in state j
- $1/\gamma_j$ is *mean sojourn time* in state j
- q_{jk} \equiv prob that system in state j will make a transition to state k

$$\sum_{k=1}^{S} q_{jk} = 1$$
System Failure Rate

"A system failure is caused by the failure of any of its components. The system failure rate ξ_j in state j is thus the sum of the failure rates of the components under execution in this state, denoted by

$$\xi_j = \sum_{i=1}^{C} \delta_{ij} \lambda_i$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } C_i \text{ is currently in state } j \\ 0 & \text{ow} \end{cases}$$
Can We Just Add Up Failure Rates?

- A very common practice
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2.
 Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2.
 Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
 - If the $\lambda_i \ll 1$, then $\lambda_1 \lambda_2 \ll \lambda_i$
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2.
 Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
 - If the $\lambda_i \ll 1$, then $\lambda_1 \lambda_2 \ll \lambda_i$
 - and why would we even bother with systems where the failure rate was not very small?
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2.
 Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
 - If the $\lambda_i \ll 1$, then $\lambda_1 \lambda_2 \ll \lambda_i$
 - and why would we even bother with systems where the failure rate was not very small?
- On the other hand, if we are dealing with long time periods and/or require extreme reliability, these can add multiplies of many orders of magnitude that bring $\lambda_1 \lambda_2$. back into significance
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2. Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
 - If the $\lambda_i \ll 1$, then $\lambda_1 \lambda_2 \ll \lambda_i$
 - and why would we even bother with systems where the failure rate was not very small?
- On the other hand, if we are dealing with long time periods and/or require extreme reliability, these can add multiples of many orders of magnitude that bring $\lambda_1 \lambda_2$ back into significance
- And there is substantial evidence that failures are not independent.
Can We Just Add Up Failure Rates?

- A very common practice
- Suppose two components fail independently with rate λ_1 and λ_2. Then the rate of coincident failure would be $\lambda_1 \lambda_2$.
 - If the $\lambda_i \ll 1$, then $\lambda_1 \lambda_2 \ll \lambda_i$
 - and why would we even bother with systems where the failure rate was not very small?
- On the other hand, if we are dealing with long time periods and/or require extreme reliability, these can add multiplies of many orders of magnitude that bring $\lambda_1 \lambda_2$. back into significance
- And there is substantial evidence that failures are not independent
- it is also known that faults can hide or magnify one another
Continuing: Transition into Failure

Model the execution process as

\[A' = \begin{bmatrix} -\gamma_1 & q_{12}\gamma_1 & q_{13}\gamma_1 & \cdots & q_{1S}\gamma_1 \\ q_{21}\gamma_2 & -\gamma_2 & q_{23}\gamma_2 & \cdots & q_{2S}\gamma_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{S1}\gamma_S & q_{S2}\gamma_S & q_{S3}\gamma_S & \cdots & -\gamma_S \end{bmatrix} \]

and the error process as

\[A'' = \begin{bmatrix} -\xi_1 & 0 & 0 & \cdots & 0 \\ 0 & -\xi_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -\xi_S \end{bmatrix} \]

The total transition process is

\[A = A' + A'' \]
Small Failure Rates

“A natural assumption is that the failure rates are small with respect to the rates governing the transitions from the execution process or, equivalently, that a large number of transitions resulting from the execution process will take place before the occurrence of a failure — a system that would not satisfy this assumption would be of little interest in practice. This assumption is expressed as follows: \(\gamma_j \gg \xi_j \)

- I’m not sure I believe this either.
 - Counter-evidence: Hoppa, Mitchell
System Failure Rate

$$\lambda(t) \equiv \lim_{dt \to 0} \frac{1}{dt} P\{\text{first failure occurs between } t \text{ and } t + dt\}$$

Let $P_j(t)$ be the probability that the system is in state j

$$\lambda(t) = \frac{\sum_{j=1}^{S} \xi_j P_j(t)}{\sum_{j=1}^{S} P_j(t)}$$
Equilibrium

If $\gamma_j \gg \xi_j$, then we execute a long time before failure. So, ignoring failures, we can solve for the equilibrium probabilities $\vec{\alpha}$

$$\vec{\alpha} \cdot A' = \vec{0}$$

So $P_j(t)$ converges to $\vec{\alpha}_j$, and

$$\lambda(t) = \frac{\sum_{j=1}^{S} \xi_j P_j(t)}{\sum_{j=1}^{S} P_j(t)} = \sum_{j=1}^{S} \vec{\alpha}_j \xi_j$$
Component Execution Time

\[\lambda(t) = \sum_{j=1}^{S} \bar{\alpha}_j \xi_j \]

\[= \sum_{j=1}^{S} \bar{\alpha}_j \sum_{i=1}^{C} \delta_{ij} \lambda_i \]

\[= \sum_{i=1}^{C} \lambda_i \sum_{j=1}^{S} \delta_{ij} \bar{\alpha}_j \]

Let \(\pi_i = \sum_{j=1}^{S} \delta_{ij} \bar{\alpha}_j \) (average portion of time when component \(i \) is executing)

\[0 \leq \sum_{i=1}^{C} \pi_i \leq C \]
System Failure Rate

\[\lambda(t) = \sum_{i=1}^{C} \lambda_i \sum_{j=1}^{S} \delta_{ij} \alpha_j \]

\[= \sum_{i=1}^{C} \lambda_i \pi_i \]

So the failure rate of the entire system becomes the weighted average of the failure rate of its components, weighted by the relative time spent executing each component.
Multiple Interpreters

Although the text goes on to derive this case separately, I fail to see anything in the above discussion that actually depends on the number of layers of abstraction. The “interpreter” was, I presume, just one of the C components.

- If not, the derivation completely neglected the possibility of a failure of the top-level application even when the lower-components were OK.