## Index

**A**

**antisymmetric relation**

**arc **

**atomic formula**

**axiom **

**B**

**basis **

**basis clause **

**basis step **

**belong to (a set) **

**big-oh **

**big-omega **

**big-theta **

**binary relation**

**bound variable**

**C**

**Cartesian product (of set) **

**codomain **

**complement (of set) **

**composite function **

**composite relation**

**connected graph **

**contingency**

**contradiction**

**contrapositive proposition**

**converse proposition**

**cycle **

**D**

**definition **

**difference (of sets) **

**digraph**

**directed path **

**domain **

**E**

**empty relation **

**empty set **

**equality of binary relations**

**equality of n-ary relations**

**equality of n-tuples **

**equality of ordered pairs **

**equality of sets **

**equivalence class**

**equivalence of wffs**

**equivalence relation**

**existential generalization**

**existential instantiation
**

**existential
quantification**

**existential
quantifier**

**extremal clause **

**F**

**first principle of mathmetical induction **

**free variable**

**function **

**H**

**Hasse diagram **

**I**

**image **

**image of set **

**in-degree **

**induction hypothesis **

**inductive clause **

**inductive step/induction **

**inference rules
**

**
****interpretation for the wff**

**intersection (of sets) **

**invalid wff**

**inverse function **

**irreflexive relation**

**L**

**least element **

**little-oh **

**little-omega **

**loop **

**M**

**mathmetical induction -- see ***first and second priciples of induction*

**max function **

**maximal element **

**(is a) member of (a set) **

**minimal element **

**N**

**naive set theory **

**n-ary relation **

**O**

**one-to-one function (injection) **

**one-to-one onto function (bijection) **

**onto function (surjection) **

**ordered pair **

**ordered n-tuple **

**out-degree **

**P**

**partial digraph **

**partial order **

**partition**

**path **

**poset **

**power set **

**predicate**

**product of functions **

**proof **

**proof by contradiction **

**proof by contrapositive **

**proper subset **

**properties of set operations with proofs **

**proposition**

**Q**

**quantifiers -- see ***universal and existential quantifiers*

**quasi order **

**quantifiers and connectives**

**quantifiers and connectives -- reducing scope of quantifiers **

**R**

**range **

**recursive definition **

**reflexive closure**

**reflexive relation**

**representation of set **

**S**

**satisfiable wff**

**scope of a
quantifier**

**second principle of mathmetical
induction **

**set **

**simple path **

**subdigraph **

**subset **

**sum of functions **

**symmetric closure**

**symmetric relation**

**syntax of proposition**

**
**

**T**

**tautology**

**theorem **

**total order **

**transitive closure**

**transitive relation**

**trivial proof **

**truth table**

**U**

**union (of sets) **

**universal generalization**

**universal instantiation**

**universal
quantification**

**universal
quantifier**

**universal relation **

**universal set **

**universe**

**unsatisfiable wff**

**V**

**vacuous proof **

**valid wff**

**vertex **

**W**

**well order **

**wff**